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Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet,
because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain
unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse
and there is frequently little information available for prioritizing candidate genes. We developed a computational approach,
Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using
Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in
maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type
of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our
case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two
candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression
networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of
such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating
GWAS data with coexpression networks generalize to species beyond maize.

INTRODUCTION

Genome-wide association studies (GWAS) are a powerful tool for
understanding the genetic basis of trait variation. This approach
has been applied successfully to hundreds of important traits in
different species, including important yield-relevant traits incrops.
Sufficiently poweredGWAS often identify tens to hundreds of loci
containing hundreds of single-nucleotide polymorphisms (SNPs)
associated with a trait of interest (McMullen et al., 2009). In maize
(Zea mays) alone, GWAS have identified nearly 40 genetic loci for
flowering time (Buckler et al., 2009), 89 loci for plant height (Peiffer
et al., 2014), 36 loci for leaf length (Tian et al., 2011), 32 loci for
resistance tosouthern leafblight (Kumpetal., 2011), and26 loci for
kernel protein (Cook et al., 2012). Despite an understanding of the

overall genetic architecture and theability to statistically associate
many loci with a trait of interest, a major challenge has been the
identification of causal genes and the biological interpretation of
functional alleles associated with these loci.
Linkage disequilibrium (LD), which powers GWAS, acts as

a major hurdle limiting the identification of causal genes. Genetic
markers are identified by GWAS but often reside outside anno-
tated gene boundaries (Wallace et al., 2014) and can be relatively
far from the actual causal polymorphism. Thus, GWAS “hits” can
implicate many causal genes at each associated locus. In maize,
LD varies between 1 kb to over 1 Mb (Gore et al., 2009), and this
range can be even broader in other crop species (Morrell et al.,
2005; Caldwell et al., 2006). Moreover, there is increasing evi-
dence that gene regulatory regions play a significant role in
functional variation, leading to causal variants falling outside
annotated gene boundaries (Wray, 2007; Wallace et al., 2014).
Several quantitative trait loci (QTLs) composed of noncoding
sequences have been reported previously in maize (Clark et al.,
2006; Louwers et al., 2009; Castelletti et al., 2014). These chal-
lenging factors mean that even when a marker is strongly asso-
ciatedwitha trait,manycandidategenesareequallyplausibleuntil
a causal polymorphism is identified.
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The issueswithnarrowinga largesetof candidategenes to likely
causal genes are exacerbated in crop species, where gene an-
notation is largely incomplete. For example, inmaize, only;1%of
genes have functional annotations based on mutant analyses
(Andorf et al., 2016). Thus, even when a list of potential candidate
genes can be identified for a particular trait, there are very few
sources of information that can help identify genes linked to
a phenotype. The interpretation and narrowing of large lists of
highly associated SNPs with complex traits are now the bottle-
neck in developing newmechanistic understanding of how genes
influence traits.

One informative and easily measurable source of functional
information is gene expression. Surveying gene expression pro-
files in different contexts, such as throughout tissue development
or within different genetic backgrounds, helps establish how
a gene’s expression is linked to its biological function, including
variation in phenotype. Comparing the similarity of two genes’
expression profiles, or coexpression, quantifies the joint response
of the genes to various biological contexts, and highly similar
expression profiles can indicate shared regulation and function
(Eisen et al., 1998). The analysis of coexpression has been used
successfully to identify functionally related genes, including in
several crop species (Ozaki et al., 2010; Mochida et al., 2011;
Swanson-Wagner et al., 2012; Zheng and Zhao, 2013; Obayashi
et al., 2014; Sarkar et al., 2014; Schaefer et al., 2014;Michno et al.,
2018;Wen et al., 2018), and has been used to characterize GWAS
results in Arabidopsis (Arabidopsis thaliana) (Chan et al., 2011;
Corwin et al., 2016; Angelovici et al., 2017; Lee and Lee, 2018).

Because coexpression provides a global measure of functional
relationships, it can serve as a powerful means for interpreting
GWAS candidate loci. Specifically, we expect that variation in
several different genes contributing to the same biological pro-
cess would be associated with a given phenotype (Wolfe et al.,
2005; Rotival andPetretto, 2014). Thus, if genetic variation driving

the phenotype captured by GWAS is encoded by coregulated
genes, these data sets will overlap nonrandomly. Although not all
functional relationships are captured with coexpression rela-
tionships (Ritchie et al., 2015), these data still provide a highly
informative, andsometimes theonly, set of clues about genes that
otherwise have not been studied. This principle has been used
successfully with other types of networks, for example, protein-
protein interactions (Li et al., 2008), and coexpression has been
used as a basis for understanding GWAS in mouse and human
(Bunyavanich et al., 2014; Taşan et al., 2015; Calabrese et al.,
2017; Shim et al., 2017; Baillie et al., 2018).
We developed a freely available, open-source computational

framework calledCamoco (Coanalysis ofmolecular components)
designed specifically to integrate results from GWAS with gene
coexpression networks to prioritize individual candidate genes.
Camoco evaluates candidate SNPs derived from a typical GWAS,
and then identifies sets of high-confidence candidate genes with
strong coexpression where multiple members of the set are as-
sociated with the phenotype of interest.
We applied this approach to maize, one of the most important

agricultural crops in theworld, yielding 15.1billionbushels of grain
in the United States alone in 2016 (USDA, 2016). We specifically
focused on quantitative phenotypes measuring the accumulation
of 17 different elements in the maize grain ionome (Al, As, B, Ca,
Cd, Fe, K, Mg, Mn, Mo, Na, Ni, Rb, S, Se, Sr, and Zn). Plants must
take up all elements except carbon and oxygen from the soil,
making the plant ionome a critical component in understanding
the plant environmental response (Baxter, 2010), grain nutritional
quality (Guerinot and Salt, 2001), and plant physiology (Baxter
et al., 2008).
We evaluated the utility of three different types of coexpression

networks to support the application of Camoco and demonstrate
the efficacy of our approach by simulating GWAS to establish
maize-specific SNP-to-gene mapping parameters as well as
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a robust null model for GWAS-network overlap. Our study does
indeed confirm overlap between functional modules captured by
coexpression networks andGWAS candidate SNPs for themaize
grain ionome. We present high-confidence candidate genes
identified for a variety of different ionomic traits, test single-gene
mutants demonstrating the utility of this approach, and, more
generally, highlight lessons about the connection between co-
expression and GWAS loci from our study that are likely to gen-
eralize to other traits and other species.

RESULTS

Camoco: A Framework for Integrating GWAS Results and
Comparing Coexpression Networks

We developed a computational framework called Camoco that
integrates the outputs of GWAS with coexpression networks to
prioritize high-confidence causal genes associated with a phe-
notypeof interest. The rationale for our approach is that genes that

function together in a biological process that are identified by
GWAS also should have nonrandom structure in coexpression
networks that capture the samebiological function. Our approach
takes, as input, a list of SNPs associatedwith a trait of interest and
a table of geneexpression values andproduces, asoutput, a list of
high-priority candidate genes that are near GWAS peaks having
evidenceof strongcoexpressionwithother genesassociatedwith
the trait of interest.
There are three major components of the Camoco framework:

a module for SNP-to-gene mapping (Figure 1A), tools for the
construction and analysis of coexpression networks (Figure 1B),
and an “overlap” algorithm that integrates GWAS-derived can-
didate genes with the coexpression networks to identify high-
priority candidate geneswith strong coexpression support across
multiple GWAS loci (Figure 1C) (see Methods for details on each
component).
The overlap algorithm uses two network scoring metrics:

subnetwork density and subnetwork locality. Subnetwork density
measures the average interaction strength between all pairwise
combinations (i.e., unthresholded) of genes near GWAS peaks.

Figure 1. Schematic of the Camoco Framework.

The Camoco framework integrates genes identified by SNPs associated with complex traits with functional information inferred from coexpression
networks.
(A)AtypicalGWASresult foracomplex trait identifiesseveralSNPs (circled) passing the threshold forgenome-widesignificance indicatingamultigenic trait.
SNP-to-gene mapping windows identify a varying number of candidate genes for each SNP. Candidate genes are identified based on user-specified
window size and a maximum number of flanking genes surrounding an SNP (e.g., 50 kb and two flanking genes, designated in red).
(B) Independently, gene coexpression networks identify interactions between genes uncovering an unbiased survey of putative biological cofunction.
Network interactions are identified by comparing gene expression profiles across a diverse set of accessions (e.g., experimental conditions, tissue, and
samples). Gene subnetworks indicate sets of genes with strongly correlated gene expression profiles.
(C) Coanalysis of coexpression interactions among GWAS trait candidate genes identifies a small subset of genes with strong network connections. Blue
lines designate genes that have similar coexpression patterns indicating coregulation or shared function. Starred genes are potential candidate genes
associated with GWAS traits based on SNP-to-gene mapping and coexpression evidence. Red stars indicate genes that are not the closest to the GWAS
SNP (nonadjacent) that may have been missed without coexpression evidence.
(D)Statistical significance of subnetwork interactions is assessed by comparing coexpression strength among genes identified fromGWAS data sets with
those from random networks containing the same number of genes. In the illustrated case, the more interesting subnetwork has both high density and
locality.
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Specifically, density is obtained by computing the mean of raw
interaction scores among all pairs of genes in the subnetwork and
normalizing by the subnetwork size (Equation 1). Subnetwork
locality measures the proportion of significant (Z $ 3) coex-
pression interactions among genes within a GWAS-derived
subnetwork (local interactions) as compared with the number
of global interactions with other genes in the genome (global
interactions). Specifically, locality is obtained by first fitting
a linear regression between all genes’ local degree (among the
subnetwork of interest) and their global degree and measuring
themeanof the residual for genes in the subnetwork (Equation 2).
Density and locality metrics can be calculated on whole sub-
networks or on a gene-specific basis to prioritize candidate
genes by factoring out each gene’s contribution to the sub-
network (Equations 3 and 4) (seeMethods for details). For a given
input GWAS trait and coexpression network, the statistical
significance for both density and locality is determined by
generating a null distribution based on randomly generated
GWAS traits (n = 1000) with the same number of implicated loci
and corresponding candidate genes. The resulting null distri-
bution is then used to derive a P value for the observed sub-
network density and locality for all putative causal genes
(Figure 1D). Thus, for a given input GWAS trait, Camoco pro-
duces a ranked list of candidate causal genes for both network
metrics and a corresponding false discovery rate (FDR) that
indicates the significance of the observed overlap between each
candidate causal gene’s coexpression network neighbors and
the set of genes under implicated loci. Using this integrated
approach, the number of candidate genes prioritized for follow-
up validation is reduced substantially relative to the initial set of
genes under implicated loci.

Camoco allows users to build, validate, and analyze data
sets using common file types for gene expression, GWAS, and
species-specific referencedata (e.g.,OBO, FASTA, andGFF).Our
tool formalizes the integration of GWAS data with coexpression
networks by offering systematic SNP-to-gene mapping param-
eters, which can be evaluated using simulated GWAS gold
standard data sets. Camoco also corrects for artifacts (such as cis
coexpression bias) that arise from integrating GWAS and coex-
pression data. The framework offers a unified command line in-
terface to the components described above but also can be used
through its Python API to integrate into other workflows. Our
method can be applied to any trait and species for which GWAS
has been completed and sufficient gene expression data exist to
construct a coexpression network.

Generating Coexpression Networks from Diverse
Transcriptional Data

Acoexpression network that is derived from thebiological context
generating the phenotypic variation subjected to GWAS is a key
component of our approach. A well-matched coexpression net-
work will describe the most relevant functional relationships and
identify coherent subsets of GWAS-implicated genes. We and
others have shown previously that coexpression networks gen-
erated from expression data derived from different contexts
capture different functional information (Swanson-Wagner et al.,
2012; Schaefer et al., 2014). For example, experimentsmeasuring

changes in gene expression can explore environmental adapta-
tion, developmental and organ-based variation, or variation in
expression that arises from population and ecological dynamics
(reviewed in Schaefer et al., 2017). For some species, published
data contain enough experimental accessions to build networks
from these different types of expression experiments (the term
accession is used here to differentiate samples, tissues, con-
ditions, etc.). We reasoned that these different sources of ex-
pression profiles likely have a strong influence on the utility of the
coexpression network for interpreting genetic variation captured
by GWAS. Using this rationale, we constructed several coex-
pression networks independently and assessed the ability of
each to produce high-confidence discoveries using our Camoco
framework.
Three coexpression networks representing three different

biological contexts were built. The first data set targeted ex-
pression variation that exists between diverse maize acces-
sions built from whole-seedling transcriptomes on a panel of
503 diverse inbred lines from a previously published data set
characterizing the maize pan-genome (called the ZmPAN
network hereafter; Hirsch et al., 2014). Briefly, Hirsch et al.
(2014) chose these lines to represent major heterotic groups
within the United States, sweet corn, popcorn, and exotic
maize lines, and measured gene expression profiles for
seedling tissue as a representative tissue for all lines. The
second data set examined gene expression variation from
a previous study characterizing different tissues and de-
velopmental time points (Stelpflug et al., 2016). Whole-
genome RNA sequencing (RNA-Seq) transcriptome profiles
from 76 different tissues and developmental time points from
the maize reference accession B73 were used to build a net-
work representing a single-accession expression map (called
the ZmSAM network hereafter). Finally, we created a third data
set as part of the ionomics GWAS research program. These
data measure gene expression variation in the root, which
serves as the primary uptake and delivery system for all the
measured elements (Baxter, 2010; Chao et al., 2011; Baxter
and Dilkes, 2012). Gene expression was measured from ma-
ture roots in a collection of 46 genotypically diverse maize
inbreds (called the ZmRoot network hereafter). All data sets
used here were generated from whole-genome RNA-Seq
analysis, although Camoco also could be applied to microarray-
derived expression data.
Coexpression networks for each data set were constructed

from gene expression matrices using Camoco (see Methods for
specific details on building these networks). Once built, several
summary statistics were evaluated from interactions that arise
between genes in the network (Supplemental Figures 1–3). Co-
expression was measured among genes within the same Gene
Ontology (GO) term to establish how well density and locality
captured terms with annotated biological functions (Table 1;
Supplemental Data Set 1). Indeed, we observed enrichment
for a large number of GO terms for both metrics in all three net-
works as well as similar levels of enriched modules derived
fromagraphclustering approach (Table 2; Supplemental DataSet
2; van Dongen, 2000), supporting their ability to capture func-
tionally related genes (see Discussion; Supplemental Text and
Supplemental Data Set 3).
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Accounting for cis Gene Interactions

Camoco integrates GWAS candidates with coexpression inter-
actions by directly assessing the density or locality of interactions
amongcandidate genesnearGWASSNPs.However, the process
of mapping SNPs to surrounding candidate genes has inherent
complications that can strongly influence subnetwork coex-
pression calculations. While we assume that the majority of in-
formative interactions among candidate genes are between
GWAS loci, cis-regulatory elements and other factors can lead to
coexpression between linked genes and produce skewed dis-
tributions in density and locality calculations, which in turn can
bias coexpression statistics. Identifying significant overlap be-
tween GWAS loci and coexpression networks requires a distinc-
tion between coexpression among genes that are in close
proximity to one another on a chromosome (cis) compared with
those genes that are not (trans).

To assess the influence of cis coexpression, network inter-
actions for genes located on different chromosomes (trans in-
teractions) were compared with cis interactions for pairs of genes
less than 50 kb apart. The distributions of the two groups indicate
that cis genes are more likely to have a strong coexpression in-
teraction score than trans genes (Figure 2). This bias toward cis
genes is especially pronounced for strong positive coexpression,
where we observed substantially stronger enrichment for linked
gene pairs compared with trans genes (e.g., z score$ 3; Figure 2,
insets).

The enrichment of significant coexpression among cis genes,
likely due to shared cis-regulatory sequences or closely encoded
clusters of functionally related genes, prompted us to remove cis

interactions when examining coexpression relationships among
candidate genes identified by GWAS SNPs in Camoco. To ac-
count for the bias of strong coexpression among cis genes, only
interactions among pairs of genes originating fromunlinked SNPs
(i.e., trans) were included in density and locality calculations when
evaluating GWAS results (see Methods).

Evaluation of the Camoco Framework

To explore the limits of our approach, we examined factors that
influence overlap detection between coexpression networks and
genes linked to GWAS loci. In an idealized scenario, SNPs
identified byGWASmap directly to true causal genes, all of which
exhibit strong coexpression network interactions with each other
(Figure 3). In practice, SNPs canaffect regulatory sequencesor be
in LD with the functionally important allele, leading to a large
proportion of SNPs occurring outside of genic regions (Wallace
et al., 2014).
Weevaluated twomajor challenges that influenceSNP-to-gene

mapping. The first is the total number of functionally related genes
in a subnetwork, representing the fraction of genes involved in
a biological process that are identified simultaneously by GWAS.
In cases where too few genes represent any one of the underlying
causal processes, our proposed approach is not likely to perform
well; for example, consider the situation when GWAS identifies
a single locus in a 10-gene biological process due to incomplete
penetrance, limited allelic variation in the mapping population, or
extensive gene-by-environment interactions. We refer to this
source of noise as the missing candidate gene rate (MCR) or, in
other words, the fraction of genes involved in the causal process
not identified by the GWAS in question (Figure 3B; Equation 5).
The second key challenge in identifying causal genes from

GWAS loci is instances where associated SNPs each implicate
a large number of noncausal candidate genes. Thus, in cases
where the linked regions are large (i.e., imperfect SNP-to-gene
mapping), the framework’s ability to confidently identify subnet-
works of highly coexpressed causal genesmay be compromised.
Onewould expect to findscenarioswhere theproposedapproach
does not work simply because there are too many noncausal
genes implicated by linkage within each GWAS locus, such that
the coexpression signal among the true causal genes is di-
minished by the false candidates linked to those regions.We refer
to this source of noise as the false candidate gene rate (FCR), the
fraction of all genes linked to GWAS-implicated loci that are not
causal genes (Figure 3C; Equation 6).

Table 1. Significantly Coexpressed GO Terms

No. of Significant (P # 0.01) GO Terms (n = 1078)

Network Density Locality Both Scores Either Score

ZmPAN 451 (41%) 539 (50%) 312 (29%) 678 (63%)
ZmSAM 365 (34%) 437 (40%) 234 (21%) 568 (53%)
ZmRoot 573 (53%) 331 (31%) 278 (26%) 626 (58%)

Coexpression was measured among genes within each GO term that had coexpression data in each network using both density (Equation 1) and
locality (Equation 2). The significance of coexpression metrics was assessed by comparing values with 1000 random gene sets of the same size.

Table 2. Gene Coexpression Network Cluster Assignments

Network Clusters

Network
No. of Clusters
(10 $ n > 100)

No. of Clusters
(n $ 100)

No. of Clusters (n $ 10)
Enriched for GO Terms

(P # 0.01)

ZmPAN 76 18 71
ZmSAM 160 10 115
ZmRoot 150 10 106

Gene clusters were calculated by running the Markov Cluster (MCL)
algorithm on the coexpression matrix. Cluster values designate network-
specific gene clusters and are not compared across networks.
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To explore the limits of our coexpression-based approach with
respect to these factors, we simulated scenarios where we could
precisely control both MCR and FCR. In practice, neither of these
quantities can be controlled; MCR is a function of the genetic
architectureof thephenotypeaswell as thedegreeofpowerwithin
the study population of interest, and FCR is a function of re-
combination frequency in the GWAS population.

We evaluated the expected performance of the Camoco
framework for a range of each of these parameters by simulating
ideal GWAS scenarios using GO terms with significantly coex-
pressed genes (P # 0.05; Table 1). These ideal cases were then
subjected to processes where either a subset of genes was

replaced by random genes (i.e., to simulate MCR but conserve
term size) or additional functionally unrelated genes were added
using SNP-to-gene mapping (i.e., to simulate FCR introduced by
linkage). In both cases, simulated GWAS candidates (i.e., genes
annotated to our selected GO terms) were subjected to varying
levels of either FCRorMCRwhile tracking thenumberofGO terms
that remained significantly coexpressed at each level. These
simulations enabled us to explore a broad range of settings for
these key parameters and establish whether our proposed ap-
proach had the potential to be applied in maize.

Simulated GWAS Data Sets Show Robust Coexpression
Signal to MCR and FCR

Subnetwork density and localityweremeasured forGO termswith
significantly coexpressed genes containing between 50 and 150
genes in each network at varying levels of MCR (Supplemental
Data Set 4). At each MCR level, density and locality among the
remaining genes were compared with 1000 random sets of genes
of the same size. The proportion of initial GO terms that remained
significantly coexpressed was recorded for each network (Fig-
ure 4, red curves; see Supplemental Figure 4A for absolute term
numbers). GO termsalsowere split into twostarting groupsbased
on the strength of the initial coexpression: moderate (0.001 < P#

0.05; blue curves) and strong (P # 0.001; violet curves).
As expected, the strength of coexpression among GO terms

decreased as MCR increased. Figure 4 shows the decay in the
proportion of GO terms that exhibit significant coexpression at
increasing levels of MCR (red curves). In general, the decay of
signal is similar between density and locality, where signal initially
decays slowly until;60%MCR, when signal quickly diminishes.
In all three networks, GO terms with stronger initial coex-

pression were more robust to MCR. Signal among GO terms with
strongly coexpressed genes (P# 0.001; violet curves) decayed at
a substantially lower rate than GO terms with a more moderate
signal, indicating that this approach is robust for GWAS data sets
withmoderate levels ofmissing geneswhen coexpression among
true candidate genes is strong. Coexpression signal in relation to
MCRalsowascomparedbetweenGOtermssplit by thenumberof
genes within the term (Supplemental Figures 4B and 4C), which

Figure 2. Cis Versus trans Coexpression Network Interactions.

The distributions of coexpression network interaction scores between cis and trans sets of geneswere compared. Distribution densities of trans gene pairs
(green) show interactions between genes on separate chromosomes. Distribution densities of cis gene pairs (blue) show interactions between genes with
less than50-kb intergenic distance. Inset graphs show zscore valuesgreater than3.Nonparametric Pvalueswerecalculatedbetweencoexpression values
taken from cis and trans distributions (Mann-Whitney U test).

Figure 3. Simulating GWAS Network Overlap Using GO Terms.

Several GWAS scenarios were simulated to assess the effect of noise on
coexpression network overlap.
(A) Ideal GWAS,where SNPs (blue points)map directly to candidate genes
within the same biological process (i.e., a GO term) and have strong co-
expression (green lines). Signal is defined as the coexpression among the
genes exclusive to the GO term. Noise in the overlap between GWAS and
coexpression networks was introduced by varying two parameters: the
MCR and FCR.
(B) Effect of a large proportion of missing candidate genes (MCR = 2/5) on
network signal.
(C)Effectof falsecandidategenes (FCR)onnetworkoverlap, either through
false-positive GWAS SNPs (orange point) or through imperfect SNP-to-
genemapping (FCR=3/8).Orange linesdesignate theadditional candidate
genes that introduce coexpression noise that impedes the identification of
network structure.

Integrating Networks and GWAS in Maize 2927

http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1


did not influence the rate at which the coexpression signal
decayed.

Likewise, the effect of FCR was simulated. GO terms with
between 50 and 150 genes (MCR = 0) with significant coex-
pression amongmember genes (P#0.05; Supplemental DataSet
4) were selected. The nucleotide position of the starting base pair
of each trueGO term genewas used as input for our SNP-to-gene
mapping protocol to identify GWAS candidates (see Methods).
Subnetwork density and locality were calculated for the simulated
candidate genes corresponding to each SNP-to-gene mapping
combination, in each network, to evaluate the decay of coex-
pression signal as FCR increases (Figure 5).

Candidate genes were added by varying the window size for
each SNP up to 50, 100, and 500 kb upstream and downstream
and by varying the maximum number of flanking genes on each
side to one, two, and five. Given the number of additional can-
didate genes introduced at each SNP-to-gene mapping combi-
nation, FCRwas calculated for eachGO term at eachwindow size
(Figure 5, box plots).

Coexpression signal in relation to FCR was assessed by
comparing subnetwork density and locality for each GO term at
different SNP-to-gene mapping parameters for each of the three

coexpression networks to random subnetworks with the same
number of genes (n = 1000) (Figure 5, top). The proportion of GO
terms with significantly coexpressed genes decayed at higher
levels of FCR (see Supplemental Figure 5A for absolute term
numbers). TheminimumFCR level ranged from1 to80%acrossall
GO termsbut formostGO termswas;50%,as themost stringent
SNP-to-gene mapping (50 kb/one flank) approximately doubled
the number of candidate genes. Two additional scenarios were
considered in which signal was split further based on the initial
coexpression strength: moderate (0.001 < P < 0.05; blue curves)
and strong (P # 0.001; violet curves).
Despite high initial false candidate rates, coexpression signal

among GO terms remained significant even at 60 to 70% FCR.
Similar to the results with MCR, GO terms with stronger initial
coexpression were more likely to remain significantly coex-
pressed at higher FCR levels. Coexpression signal in relation to
FCRalsowas comparedbetweenGO terms split by the number of
genes in the term (Supplemental Figures5Band5C),whichdidnot
differentiate the rate at which coexpression signal decayed.
In cases where true candidate genes identified by GWAS were

strongly coexpressed, as simulated here, a substantial number of
false-positive SNPs or an introduction of false candidate genes

Figure 4. Strength of Coexpression among GO Terms at Varying Levels of MCR.

Subnetwork density and locality weremeasured for all GO termswith strong initial coexpression (P# 0.05), comparing coexpression inGO termswith 1000
randomnetworksof thesamesize.Coexpressiondensityand locality thenwerecomparedagain (n=1000)with varyingMCR,wherea fractionofgeneswere
removed from the term and replacedwith randomgenes to conserveGO term size. Curves declinewith increasedMCR, as the proportion of GO termswith
significantlycoexpressedgenes (P#0.05,n=1000)decreasescomparedwith the initial numberofstronglycoexpressed terms ineachnetwork (redcurves).
GO terms in each network also were split into two subsets based on initial coexpression strength: strong (initial coexpression P# 0.001; blue curves) and
moderate (initial coexpression 0.001 < P # 0.05; violet curves).
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through uncertainty in SNP-to-gene mapping can be tolerated,
and network metrics still detected the underlying coexpressed
gene sets using ourmethod. These results indicate that, in GWAS
scenarios where the majority of SNPs do not resolve perfectly to
candidate genes, systematic integration with coexpression net-
workscanefficientlyfilterout falsecandidates introducedbySNP-
to-gene mapping if the underlying causal loci are linked to genes
that are strongly coexpressed with each other. Moreover, in in-
stances where several intervening genes exist between strongly
associated SNPs in LD with each other and the true causative
allele, true causal candidates canbedetected using coexpression
networks as a functional filter for candidate gene identification.

The potential for using this approach, however, is highly de-
pendent on the LD of the organism in question, the genetic
architecture of the trait being studied, and the degree of coex-
pression between causative loci. Simulations provide insight into
the feasibility of using Camoco to evaluate overlap between
coexpression networks andGWASaswell as a survey of theSNP-
to-genemapping parameters that should be usedwhen using this
approach (see Discussion for more details). In the context of

maize, the simulations performed here suggest that systematic
integration of coexpression networks to interpret GWAS results
will increase the precision with which causal genes associated
with quantitative traits in true GWAS scenarios can be identified.

High-Priority Candidate Causal Genes under Ionomic GWAS
Loci

Identifying the biological processes underlying the elemental
composition of plant tissues, also known as the ionome, can lead
to a better understanding of plant adaptation as well as improved
crops (Baxter and Dilkes, 2012). High-throughput analytic ap-
proaches such as inductively coupled plasmamass spectrometry
(ICP-MS) are capable of measuring elemental concentrations for
multipleelementsandarescalable to thousandsofaccessionsper
week. Using ICP-MS, we analyzed the accumulation of 17 ele-
ments in maize kernels described in depth by Ziegler et al. (2017).
Briefly, kernels from the nested association mapping (NAM)
population were grown in four geographic locations (McMullen
et al., 2009). To reduce environment-specific factors, the SNPs

Figure 5. Strength of Coexpression among GO Terms at Varying Levels of FCR.

GOtermswith significantlycoexpressedgenes (density or localityP#0.05)wereused tosimulate theeffect ofFCRonGWASresults. Falsecandidateswere
added toGOtermsby includingflankinggenesnear trueGOtermgenesaccording toSNP-to-genemapping (window) parameters. Boxplots showeffective
FCR of GO terms at each SNP-to-genemapping parameter. Signal plots show the proportional number of GO terms that remain significant at FCR$ x (red
curves).GOterms ineachnetworkalsoweresplit into twosubsetsbasedon initial coexpressionstrength: strong (initial coexpressionP#0.001;bluecurves)
and moderate (initial coexpression 0.001 < P # 0.05; violet curves).
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used in this study were from the GWAS performed on the all-
location models. Approximately 30million SNPs and small-copy-
number variants were projected onto the association panel and
used to perform a GWAS for each of the 17 elements. SNPs were
tested for the significance of association for each trait using re-
sampling model inclusion probability (Valdar et al., 2009) (RMIP
# 0.05; see Methods). For each element (trait), significantly as-
sociatedSNPswereusedas input toCamoco togenerate candidate
genesfromthemaizefilteredgeneset (FGS;n=39,656)usingarange
of SNP-to-gene mapping parameters: 50-, 100-, and 500-kb win-
dows (upstream/downstream) limited each to one, two, or five
flanking genes (upstream/downstream of SNP; Figure 1A). In total,
4243 statistically significant SNPs were associated with maize grain
ionome traits. Summing the potential candidate genes across all 17
traits implicates between 5272 and 22,927 unique genes depending
on the SNP-to-gene mapping parameters used (between 13 and
57% of the maize FGS, respectively; Supplemental Data Set 5). On
average, each trait’s significantly associated SNPs identified 119
nonoverlapping windows across the 10 chromosomes of maize
(i.e., effective loci; see Methods), and these implicate an average of
613 candidate genes per element (see Methods).

Given the large number of candidate genes associated with
elemental accumulation, we used Camoco to integrate network
coexpressionwith effective loci identifiedbyGWAS for eachof the
17 elemental traits separately. By combining candidate gene
lists with the three gene expression data sets (ZmPAN, ZmRoot,
and ZmSAM) and two coexpression network metrics (locality
and density), high-priority candidate genes driving elemental
accumulation in maize were identified (Figure 1C). For each

network-trait combination, Camoco identified a ranked list of pri-
oritized candidate causal genes, each associated with an FDR that
reflects the significanceof coexpression connecting that candidate
gene to genes near other loci associated with the same trait
(Supplemental Data Set 6). We defined a set of high-confidence
discoveries by reporting candidates thatwerediscoveredat FDR#

30% inat least twoSNP-to-genemappingparameter settings (e.g.,
50 kb/one flank and 100 kb/one flank), denoted as the high-priority
overlap (HPO) set (Supplemental Data Set 7; see Methods).
By these criteria, we found strong evidence of coexpression for

610 HPO genes that were positional candidates across the 17
ionomic traits measured (1.5% maize FGS). The number of HPO
genes discovered varied significantly across the traits we ex-
amined, with between 2 and 209 HPO genes for a given element
considering either density or locality in any network (Figure 6,
Either/Any column). HPO genes discovered by Camoco often
were nonadjacent to GWAS effective loci, either having genes
intervening between the HPO candidate or that were closer to the
GWAS-implicated locus (Figure 1C), demonstrating that Camoco
often identifies candidates with strong coexpression evidence
that would not have been selected by choosing the closest po-
sitional candidate.

Genotypically Diverse Networks Support Stronger
Candidate Gene Discoveries Than Tissue Atlases

The variation in the number of genes discovered by Camoco
depended on which coexpression network was used as the basis

Figure 6. Maize Grain Ionome High-Priority Candidate Gene Heat Map Summary.

Gene-specific density and locality metrics were compared with random sets of genes (n = 1000) of the same size to establish a 30% FDR. Genes were
consideredcandidates if theywereobservedat twoormoreSNP-to-genemappings (i.e., HPO).Candidates in theEither columnareHPOgenes discovered
by either density or locality in any network. The number of genes discovered for each element is further broken down by coexpression method (density,
locality, and both) and by network (ZmPAN, ZmSAM, and ZmRoot). Candidates in the Both column were discovered by density and locality in the same
networkor indifferent networks (Any). The shadingof theheatmap indicatesmoreHPOgenes.Note that zero elements hadHPOgenesusingbothmethods
in the ZmPAN and ZmSAM networks.

2930 The Plant Cell

http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1
http://www.plantcell.org/cgi/content/full/tpc.18.00299/DC1


for discovery. TheZmRoot coexpressionnetworkproved tobe the
strongest input, discovering genes for 15 of the 17 elements
(absent inNiandRb) for a total of335HPOgenes, ranging from1 to
126 per trait (Supplemental Data Set 7). In contrast, the ZmSAM
network, which was constructed based on a tissue and de-
velopmental expression atlas collected exclusively from the B73
accession, supported the discovery of candidate genes for only 8
elements (B, Ca, K, Mg, Ni, P, Rb, and Se) for a total of 74 HPO
genes, ranging from1to52per trait (SupplementalDataSet7).The
ZmPAN network, which was constructed from whole seedlings
(pooled tissue) across 503 different accessions, provided in-
termediate results, supporting high-confidence candidate dis-
coveries for 10 elements (Al, As, Cd, Mg, Mn, Mo, Ni, Se, Sr, and
Zn) for a total of 228 HPO genes, ranging from 1 to 97 per trait
(Supplemental Data Set 7). The relative strengths of the different
networks for discovering candidate causal geneswere consistent
even at stricter FDR thresholds (e.g., FDR # 0.10; Supplemental
Data Set 7).

Network Coexpression Metrics Provide Complementary
Information, and Most Candidate Causal Genes Are Trait
Specific

Bothdensityand localitywereassessedonagene-specific level to
measure the strength of a given candidate causal gene’s coex-
pression relationships with genes in other GWAS-identified loci
(Equations 3 and 4) (Figure 6, Density/Any and Locality/Any). In-
terestingly, the high-confidence genes identified by the two ap-
proaches were largely complementary, in terms of both which
traits and which network they produced results for. Indeed, when
we measured the direct correlation of gene-specific density
and locality measures across several GWAS traits and GO terms,
we observed very weak positive but significant correlations
(Supplemental Figure 6).Weobserved that the utility of the locality
metric appeared to be associated with the number of accessions
used to construct the network (Supplemental Data Set 8; see
Discussion). One important question is the extent to which pu-
tative causal genes overlap across different ionomic traits. It is
plausible that some mechanisms affecting elemental accumula-
tion are shared by multiple elements. However, most of the
discovered HPO genes are element specific, with relatively
little overlap between elements (Supplemental Figure 7 and
Supplemental Data Set 9).

Camoco Identifies Genes with Known Roles in
Elemental Accumulation

To explore the broader biological processes represented among
HPO genes, we performed GO enrichment analysis on the can-
didate lists, revealingenrichments forfiveelements (Supplemental
Data Set 10). For example, Sr was enriched for genes involved in
anion transport (GO:0006820; P # 0.008) and metal ion trans-
membrane transporter activity (GO:0046873; P # 0.015) (see
Supplemental Text for in-depth summary). Possibly due to in-
sufficient functional annotation of the maize genome, these en-
richment results were limited, and zero elements passed a strict
multiple-test correction (Bonferroni). We created a larger set of
genes, including genes highly connected to the HPO genes, and

compared those with GO terms (Supplemental Text). As detailed
in the Supplemental Text, several GO terms were enriched in this
set, including genes that act in previously described pathways
known to impact elemental traits (Supplemental Figure 8 and
Supplemental DataSet 11). However, GO termswere too broador
insufficiently specific to distinguish causal genes.
We also manually examined literature support for the associ-

ation of candidate genes with ionomic traits (see Supplemental
Text for in-depth summary). Complementing genes with known
roles in elemental homeostasis, HPO gene sets for some ionomic
traits included multiple genes encoding known members of the
same pathway or protein complex. For example, one gene with
highly pleiotropic effects on the maize kernel ionome is sugary1
(GRMZM2G138060) (Baxter et al., 2014), which was present
among the HPO genes for Se accumulation (Supplemental Data
Set 7) based on the root coexpression network (ZmRoot-Se) but
was linked to significant NAMGWAS SNPs for the elements P, K,
and As. Previous analysis of lines segregating the sugary1 allele
demonstrated effects on the levels of P, S, K, Ca, Mn, Fe, As, Se,
and Rb in the seed. A number of transporters with known roles in
ionome homeostasis also were identified among the HPO genes.
Among these were a P-type ATPase transporter of the ACA P2B
subfamily4 (GRMZM2G140328;ZmRoot-Sr) encodingahomolog
of known plasmamembrane-localized Ca transporters in multiple
species (Baxter et al., 2003), an ABC transporter homolog of the
family involved in organic acid secretion in the roots from the As
HPOset (GRMZM2G415529; ZmRoot-As) (Badri et al., 2008), and
a pyrophosphate-energized pump (GRMZM2G090718; ZmPAN-
Cd). Thesecandidates suggest thatbiological signalwasenriched
by combining coexpression with GWAS data and provided evi-
dence of associations between multiple pathways and elemental
homeostasis.

Mutant Analysis Validates That Gibberellin-Signaling DELLA
Domain Transcription Factors Influence the Maize Ionome

One of the high-confidence candidate genes that appeared in the
HPOsetscomparingCdand theZmRootnetwork is thegibberellin
(GA)-signaling component and DELLA and GRAS domain tran-
scription factor dwarf9 (d9; GRMZM2G024973) (Winkler and
Freeling, 1994). d9 is one of two DELLA paralogs in the maize
genome, the other being d8 (GRMZM2G144744); both can be
mutated to dominant-negative forms that display dwarf pheno-
types and dramatic suppression of GA responses (Lawit et al.,
2010). Camoco ranked d9 but not d8 among the high-confidence
candidates for Cd, although both are present in the root-based
coexpression network (ZmRoot). In the ZmRoot network, D9
was strongly coexpressed with 38 other HPO genes (Figure 7;
Supplemental Text). There was only moderate, but positive, co-
expression between D8 and D9 transcripts (ZmRoot, z = 1.03;
ZmPAN, z = 1.04). Given the indistinguishable phenotypes of the
knowndominantmutantsofd8andd9, themost likely explanation
for this result is that there was allelic variation for d9 but not d8 in
theGWASpanel. These results suggested that GA signaling in the
roots might shape the ionome and alter the accumulation of Cd in
seeds, with potential implications for human health.
To test for an influence of GA signaling on the ionome and

provide single-locus tests, we grew two dominant GA-insensitive
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mutants, D9-1 and D8-mpl, and their congenic wild-type siblings
(sib9 and sib8). The dominantD8-mpl andD9-1 alleles have nearly
equivalent effects on aboveground plant growth and similar GA-
insensitivity phenotypes in the shoots (Winkler and Freeling,
1994). Bothmutants were obtained from themaize genetics coop
and crossed three times to inbred B73 to generate BC2F1 families
segregating 1:1 for the dwarf phenotype. Ears from phenotypically
dwarf and phenotypically wild-type siblings were collected and
processed for single-seed ionomic profiling using ICP-MS (Fig-
ure 8). Both dwarf lines had significantly different elemental com-
positions comparedwith their wild-type siblings. A joint analysis by
Student’s t tests between least-squared means comparing dwarfs
and wild types revealed that Cu, Fe, P, and Sr were higher in the
dwarf than in wild-type seeds (designated with two asterisks in
Figure 8). Transcripts encoded by d8 are expressed at lower levels
than d9 in the root but at manyfold higher levels in the shoot (Wang
et al., 2009; QTeller, 2018). D8-mpl also was significantly different
fromitssibling inCdandMoaccumulation. It ispossible thatD8-mpl
has a shoot-driven effect on Mo accumulation in the seed, but we
note that previous work (Asaro et al., 2016) identified a large-effect
QTLaffectingMoandcontaining themot1geneamere22Mbaway
from d8. As the allele atmot1 is uncharacterized in the original D8-
mplgenetic background, linkagedragcarryingamot1 allele cannot
be ruled out. The other dominant-negative allele, D9-1, did not
recapitulate the Cd accumulation effect of the linked GWAS QTL
that was the basis for its discovery as a high-confidence candidate
gene by Camoco. However, the D8-mpl allele did recapitulate the
accumulationeffect, andourdatademonstrate that bothD8andD9
have broad effects on other ionomic phenotypes.

GenescoexpressedwithD9 thathaveannotated functionswere
investigated to determine which were further associated with

ionomic traits, in particular seedCd levels (see Supplemental Text
for an in-depth report). Genes linked to the cell cycle, root de-
velopment, and Fe uptake suggest the hypothesis that maize
DELLA domain transcription factors regulate root architecture or
the type II Fe uptake mechanism used by grasses to affect the
maize ionome.

Camoco Produces High-Confidence Candidate Genes on
a Large Collection of Nonionomic GWAS

To assess the generalizability of our approach, we applied it to
a separate collection of GWAS surveying a compendium of
phenotypes using themaize NAMpopulation (Supplemental Data
Set 12). Using Camoco, SNPs were mapped to genes using two
differentwindowsizes (50and100kb) and two flankinggene limits
(one and two genes). Gene-specific density and locality were
calculated for each trait in all three coexpression networks, and
HPO genes were identified as genes with less than 10%FDR in at
least two SNP-to-gene mappings. Between 0 (fructose, leaf
length, malate, northern leaf blight, second principal component
of metabolites PC2, protein, stalk strength, and total amino acid)
and 302 (average internode length [below ear]) HPO genes were
discovered for the 41 traits examined (Supplemental Data Set 12),
with candidates produced for 33 of the 41 traits (80%). The
candidate genes prioritized for these traits were largely non-
overlappingwith those discovered for the ionome traits: only 14 of
697 possible trait pairings (2%) overlapped significantly in terms
of the candidate gene sets (Bonferroni-corrected P < 0.05;
Supplemental Data Set 13). As with our maize ionome Camoco
results, the genotype networks (ZmPAN and ZmRoot) out-
performed the single-accession map network (ZmSAM),

Figure 7. Coexpression Network for D9 and Cd HPO Genes.

Coexpression interactions among HPO genes were identified in the ZmRoot network for Cd and visualized at several levels.
(A) Local interactions among the 126 CdHPO genes (red nodes). Genes are grouped and positioned based on chromosomal location. Interactions among
HPO genes and D9 (GRMZM2G024973) are highlighted in yellow.
(B) Force-directed layout of D9 with HPO neighbors. Circled genes are sets of genes with previously known roles in elemental accumulation.
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supporting our earlier conclusion that genotypically diverse tissue
networks support stronger candidate gene discovery for inter-
pretingGWAS than tissue atlases. A full list ofWallaceHPOgenes
can be found in Supplemental Data Set 14.

DISCUSSION

Our approach addresses a challenging bottleneck in the process
of translating large sets of statistically associated loci into shorter
lists based on a more mechanistic understanding of these traits.
Marker SNPs identified by a GWAS provide an initial lead on
a region of interest, but due to LD, the candidate region can be
quite broad and implicate many potentially causal genes. In ad-
dition to LD, many SNPs identified by GWAS studies lie in reg-
ulatory regions quite far from their target genes (Clark et al., 2006;
Louwers et al., 2009; Castelletti et al., 2014). Previous studies in
maize found that, while LD decays rapidly in maize (;1 kb), the
variance can be large due to the functional allele segregating in
a small number of lines (Wallace et al., 2014). Additionally,Wallace
et al. (2014) showed that the causal polymorphism is likely to
reside in regulatory regions, that is, outside of exonic regions.

Relying solely on window-based SNP-to-gene mapping can
result in a very large (here, upward of 57% of all genes) and
ambiguous set of candidate genes. Until we precisely understand
the regulatory landscape in the species being studied, even the
most powerful GWAS will identify polymorphisms that implicate
genesmany base pairs away. Here, we surveyed several different

SNP-to-gene parameters, finding that the large majority of HPO
genes often were not the closest genes to the identified SNPs
(Supplemental Figure 9). These genes likely would not have been
identified using the common approach of prioritizing the genes
closest to each marker SNP.
A common approach to interpreting lists of significant SNPs is

through manual inspection of the genome region of interest with
a goal of identifying candidate geneswhose function is consistent
with the phenotype of interest. This can introduce bias into
the discovery process and necessarily ignores uncharacterized
genes. For nonhuman and nonmodel species, like maize, this
manual approach is especially ineffective, because the large
majority of the genome remains functionally undercharacterized.
Functional validation is expensive and time consuming. Com-
bining data-driven approaches such as network integration with
expert biological curation is anefficientmeans for theprioritization
of genes driving complex traits like elemental accumulation, so
that functional validation can be applied to only those best can-
didates. Camoco leverages orthogonal gene expression data,
which can nowbe readily collected formost species of interest, to
add an additional layer of relevant biological context to the in-
terpretation of GWAS data and the prioritization of potentially
causal variants for further experimental validation. In this way,
Camococomplementsapproaches taken inmodel organismsand
humans, where probabilistic functional gene networks have been
used toanalyzeGWASdatasets (Leeetal., 2010;Shimetal., 2017;
Lee and Lee, 2018). Using RNA-Seq or other high-throughput

Figure 8. Ionomic Profiles of D8-mpl and D9-1 Mutants.

Box plots display ICP-MS values for D8-mpl and D9-1 along with congenic wild-type siblings (sib8 and sib9). Embedded P values indicate statistical
differences betweenmutants and wild-type siblings, while asterisks (**) indicate significant differences in a joint analysis between dwarf and the wild type.
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sequencing methods, high-quality functional networks can be
readily constructed even in species that have limited existing
genomic datasets. We evaluated our framework under simulated
conditions as well as applied to a large-scale GWAS in order to
define different coexpression metrics and networks, biases such
as cis coexpression, and network parameters needed to be
considered in order to identify coexpression signal.

Camoco successfully identified subsets of genes linked to
candidate SNPs that also exhibit strong coexpression with genes
near other candidate SNPs. Integrating GWAS data with coex-
pression networks resulted in a set of 610 HPO genes that are
primed for functional validation (1.5% of the maize FGS). The
resulting prioritized gene sets reflect groups of coregulated genes
that potentially canbeused to infer a broader biological process in
which genetic variation affects the phenotype of interest. Indeed,
usingCamoco, we found strong evidence for HPOgene sets in 13
of the 17 elemental accumulation phenotypes we examined (with
five or more HPO genes). These high-priority sets of genes rep-
resent a small, high-confidence subset of the candidates impli-
cated by the GWAS for each phenotype (Figure 6; Supplemental
Data Set 6).

It is important to note caveats of our approach. The core as-
sumption underpinning Camoco is that there aremultiple variants
in different genes, each contributing to a phenotype’s variation
through a shared biological process. We expect that this as-
sumption holds for many phenotypes influenced by natural
variation (supported by the fact that we have discovered strong
candidates for most traits examined here), but exceptional
traits and causal alleles will violate this assumption. In such
cases, Camoco will not performwell. For example, phenotypes
caused by genetic variation in a single or small number of genes
or, alternatively, caused by a diverse set of otherwise func-
tionally unrelated genes are not good candidates for our
approach.

Also, we note that it is possible that some of the coexpression
measured across a set of genetically diverse individuals is derived
from the nonrandom inheritance of alleles. As a result, both
population structure andLDcould lead tocoexpressedgenes.We
designed Camoco to correct for the coexpression among cis-
linked genes (e.g., produced by coinherited cis-regulatory var-
iants), which was shown to be present in all three networks
(Figure 2). However, the extent to which population structure
drives the coexpression of physically unlinked genes near GWAS
SNPs is unclear, and we do not yet have an approach to detect or
correct thispotential sourceof confounding.Population structure,
however, was accounted for in the identification of the GWAS-
implicated loci. The extent to which unaccounted population or
demographic parameters inflate GWAS and network overlap
should be considered when interpreting any gene coexpression
networks derived from diverse sets of natural accessions, in-
cluding in the context of Camoco.

Finally, expression data used to build networks do not fully
overlap with genomic data included in GWAS. For example, of the
39,656genes in themaizeFGS,11,718genesdidnotpassquality-
control filters and were absent from the three coexpression net-
works analyzed here; thus, they could not be analyzed despite the
possibility that there were potentially significant GWAS SNPs
nearby.

Relationship between Camoco and Previous Tools for
GWAS Analysis

It is important to note that previous studies have leveraged the
complementarity of gene expression and/or other functional ge-
nomic data to interpret GWAS. For example, one powerful pre-
viously described approach is GWAB (Lee et al., 2011; Shim et al.,
2017;Lee andLee, 2018),which integrates functional networksand
GWAS results to prioritize candidate genes, with applications de-
scribed in Arabidopsis and human. These studies focus on the use
of integrated functional networks, which incorporate data from
a diverse set of sources (e.g., protein-protein interaction networks,
phylogenetic similarity, and sequence similarity). Such networks
havebeenbuilt forArabidopsisandhuman (andseveralother “data-
rich” species), but their construction is not possible in many plant
species where functional genomic data beyond expression simply
do not exist. Here, we focus exclusively on coexpression networks
as the basis for GWAS interpretation, as these can be built for the
majority of species where research communities are performing
GWAS (because gene expression compendia have already been
produced or can be readily produced).
Another series of studies describe the use of coexpression

networks from ATTED-II to interpret GWAS results in Arabidopsis
(Chan et al., 2011; Corwin et al., 2016). There are two notable
distinctions between our work and these studies. First, these
studies focus on analyzing SNPs very near or within coding re-
gions of genes (<1 kb for Chan et al. [2011] and two significant
SNPs in a coding region for Corwin et al. [2016]). Here, we provide
evidence for many traits where the coexpression network clus-
tering of causal candidate genes is much stronger when one
considers genes encoded quite far (e.g., >100 kb) from the as-
sociated SNPs, including genes that are not directly adjacent.
Second, both of these studies leverage a single coexpression
network from the ATTED-II database. Here, we explore the im-
portant issue of which gene expression data provide the most
informative context for GWAS candidate gene prioritization (tis-
sue/developmental assays versus profiling of diverse individuals).
We note that there also has been previous work integrating

coexpression networks with GWAS, focused on interpreting hu-
man traits (Bunyavanich et al., 2014; Calabrese et al., 2017; Baillie
et al., 2018). Most of these studies first cluster the coexpression
network using no GWAS information, define modules, and then
assess the overlap between GWAS-identified loci and these
modules. These studies are generally less focused on prioritizing
individual candidate causal genes and instead focus on charac-
terizing broad modules with connections to traits of interest.
Our study explores several important issues affecting the in-

tegrationofcoexpressionandGWASresultsandprovides insights
about best practices. Importantly, we provide a complete, scal-
able computational pipeline for constructing coexpression net-
works and integrating GWAS results, which can be used in many
different species as long as gene expression data are available.

Camoco-Discovered Gene Sets Are as Coherent as
GO Terms

In evaluating the expected performance of our approach, we
simulated the effect of imperfect SNP-to-gene mapping by
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assuming that GO terms were identified by a simulated GWAS
trait. Neighboring genes (encoded nearby on the genome) were
added to simulate the scenario where we could not resolve the
causal gene from linked neighboring genes. This analysis was
useful, as it established the boundaries of possibility for our ap-
proach: that is, howmuch noise in terms of false candidate genes
can be tolerated before our approach fails. As described in Fig-
ure 5, this analysis suggests a sensitivity of;40% using a6500-
kb window to map SNPs to genes (two flanking genes maximum)
or a tolerance of nearly 75% false candidates due to SNP-to-gene
mapping. Therefore, if linkage regions implicated by GWAS ex-
tend so far as to include more than 75% false candidates, we
would not be likely to discover processes as coherent as
GO terms.

At the same window/flank parameter setting noted above, we
were able tomake significant discoveries (geneswith FDR# 0.30)
for 7 of 17 elements (41%) using the density metric in the ZmRoot
network. This success rate is remarkably consistentwithwhatwas
predicted by our GO simulations at the same window/flanking
gene parameter setting. Intriguingly, HPO gene sets alone were
not enriched significantly for GO termgenes, indicating that, while
the HPO gene sets and GO terms exhibited strikingly similar
patterns of gene expression, the gene sets they described do not
overlap significantly. It was not until the HPO gene sets were
supplemented with coexpression neighbors that gene sets ex-
hibitedGO termenrichment, although the resulting termswerenot
very specific.We speculate that this is due to discovery bias in the
GO annotations that were used for our evaluation, which were
largelycurated frommodel speciesandassigned tomaize through
orthology. There are likely a large number of maize-specific
processes and phenotypes that are not yet characterized but
that have strong coexpression evidence and can be given func-
tional annotations through GWAS.

Our analysis shows that loci implicated by ionomic GWAS loci
exhibit patterns of coexpression as strong as many of the maize
genes coannotated toGO terms. Additionally, gene sets identified
by Camoco have strong literature support for being involved in
elemental accumulation despite not exhibiting GO enrichment.
Indeed, one of the key motivations of our approach was that crop
genomes like maize have limited species-specific gene ontolo-
gies, and this result emphasizes theextentof this limitation.Where
current functional annotations, such as GO, rely highly on or-
thology, future curation schemes could rely on species-specific
data obtained from GWAS and coexpression.

Beyondhighlighting the challengesof agenome lackingprecise
functional annotation, these results also suggest an interesting
direction for future work. Despitemaize genes’ limited ontological
annotations, many GWAS have been enabled by powerful map-
ping populations (e.g., NAM; McMullen et al., 2009). Our results
suggest that thesesetsof loci, combinedwithapropermapping to
the causal genes they represent using coexpression, could serve
as a powerful resource for gene function characterization. Fur-
thermore, our simulations using FCR indicate that researchers
could use more permissive genome-wide significance cutoffs
from GWAS, as the networks act as robust filters against false-
positive genes. Systematic efforts to curate the results from such
GWAS using Camoco and similar tools, then providing public
access in convenient forms, would be worthwhile. Maize is

exceptional in this regard due to its excellent genomic tools and
powerful mapping populations. There are several other crop
specieswith richpopulationgenetic resourcesbut limitedgenome
functional annotations that also could benefit from this approach.

Coexpression Context Matters

Using our approach, we evaluated 17 ionomic traits for overlap
with three different coexpression networks. Two of the coex-
pression networks were generated from gene expression profiles
collected across adiverse set of individuals (ZmRoot andZmPAN)
and performed substantially better than the ZmSAM network,
which was based on a large collection of expression profiles
across different tissues and developmental stages derived from
a single reference line (B73). We emphasize that this result is not
a reflection of the data quality or even the general utility of the
coexpression network used to derive the tissue/developmental
atlas. Evaluations of this network showed a similar level of en-
richment for coexpression relationships among genes involved in
the same biological processes (Table 1) and had very similar
network structure (Table 2). Instead, our results indicate that the
underlying processes driving genotypic variation associated with
traits captured by GWAS are better captured by transcriptional
variation observed across genetically diverse individuals. Indeed,
despite networks having similar levels of GO term enrichment
(Table 1), the actual GO terms that drove that enrichment are quite
different (Supplemental Data Set 1), which is consistent with our
previous analysis demonstrating that the experimental context
of coexpression networks strongly influences which biological
processes it captures (Schaefer et al., 2014).
Between the two coexpression networks based on expression

variation across genotypically diverse individuals, we also ob-
served differences depending onwhich tissueswere profiled. Our
coexpressionnetworkderived fromsamplingof root tissue across
a diverse set of individuals (ZmRoot) provided the best perfor-
mance at the FDRwe analyzed (Figure 6), producing a total of 335
(326 from density and 11 from locality, 2 in both) HPO candidate
genes as compared with 228 (all from locality) HPO candidate
genes produced by the ZmPAN network, which was derived from
expression profiles of whole seedlings. This result affirms our
original motivation for collecting tissue-specific gene expression
profiles: we expected that processes occurring in the roots would
be central to elemental accumulation phenotypes, which were
measured in kernels. However, the difference between the per-
formance of these two networks was modest and much less
significant than the difference between the developmental/tissue
atlas-derived network and the diverse genotype-derived net-
works. Furthermore, we expect neither the ZmRoot nor the
ZmPAN network to fully describe elemental accumulation pro-
cesses. While ions are initially acquired from the soil via the root
system,wedo not directly observe their accumulation in the seed.
The data sets presented here could be further complemented by
additional tissue-specific data, such as genotypically diverse
seed, stalk, or leaf networks.
The performance of the ZmRoot versus the ZmPAN network

also was quite different depending on which network metric we
used. Specifically, HPO gene discovery in the ZmRoot network
was driven by the density metric, while the performance of the
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ZmPAN network relied on the locality metric (Figure 6). Locality
and density were positively correlated, but only modestly, in both
networks (Supplemental Figure 6), implying that these twometrics
are likely complementary. Indeed, this relationship also was ob-
served for the density and locality ofGO terms. Table 1 shows that
both metrics had similar overall performance, each capturing
;40% of GO terms in each network; however, only ;25% were
captured by both metrics, indicating that there are certain bi-
ological processes where onemetric ismore appropriate than the
other. In addition to the tissue source differing between the
ZmRoot and ZmPAN networks, the number of experimental ac-
cessions differed drastically as well (503 accessions in ZmPAN
and48 inZmRoot), and this influenced theperformanceofnetwork
metrics. We showed that locality was sensitive to the number of
accessions used to calculate coexpression (Supplemental Data
Set 8), which could partially explain the bias between network
metrics and the number of input accessions. This result also
suggests that the 46 accessions in ZmRoot did not saturate this
approach for coexpression signal and that expanding theZmRoot
data set to includemore accessions would result in greater power
todetectoverlapand the identificationofmore truepositivesusing
the locality metric. In future work, it would beworthwhile to further
explore the relationship between the network data source and
which subnetwork metrics perform the best.

In general, our results strongly suggest that coexpression
networks derived from expression experiments profiling geneti-
cally diverse individuals, as opposed to deep expression atlases
derived fromasingle referencegenotype,will bemorepowerful for
interpreting candidate genetic loci identified in a GWAS. Fur-
thermore, our findings suggest that where it is possible to identify
relevant tissues for a phenotype of interest, tissue-specific ex-
pression profiling across genetically diverse individuals is an ef-
fective strategy. Identifying the best coexpression context for
a given GWAS is an important consideration for data generation
efforts in future studies.

METHODS

Availability of Data and Material

FullGWAS information for allmaize (Zeamays) ionome traits studiedhere is
publicly available from Ziegler et al. (2017). Fragments per kilobase per
million reads (FPKM) values from RNA-Seq data for the ZmSAM network
wereused fromStelpflugetal. (2016). FPKMvalues for theZmPANnetwork
are available fromHirsch et al. (2014). RawRNA-Seq data used to build the
ZmRoot network are available in National Center for Biotechnology In-
formationBioProjectPRJNA304663.All computer sourcecodeused in this
study is available from http://www.github.com/schae234/Camoco.

Software Implementation of Camoco

Camoco is a python library that includes a suite of command line tools to
interrelate and coanalyze different layers of genomic data. Specifically, it
integrates genes present near GWAS loci with functional information
derived from gene coexpression networks. Camoco was developed to
build and analyze coexpression networks from gene transcript expression
data (i.e., RNA-Seq), but it also can be utilized on other expression data
such as metabolite, protein abundance, or microarray data.

This software implements three main routines: (1) construction and
validationofcoexpressionnetworks fromacountsorabundancematrix; (2)

mapping SNPs (or other loci) to genes; and (3) an algorithm that assesses
the overlap of coexpression among candidate genes near significant
GWAS peaks.

Camoco is open source and freely available under the terms of the "MIT
license" (see source code for full terms). Full source code, software
examples, as well as instructions on how to install and run Camoco are
availableonGitHub (CamocoSoftwareRepository, 2018).Camocoversion
0.5.0 (DOI: 10.5281/zenodo.1049133) was used for this article.

Construction and Quality Control of Coexpression Networks

Camoco Parameters

All networks were built using the command line interface (CLI) with the
following Camoco quality control parameters: min_expr_level, 0.001
(expression [FPKM] below this is set to NaN [not a number]); max_
gene_missing_data, 0.3 (genes missing expression data more than this
percentage were removed from analysis); max_accession_missing data,
0.08 (accessions missing expression data in more than this percentage
were removed from analysis); and min_single_sample_expr, 1.0 (genes
must have at least this amount of expression [FPKM] in one accession).

ZmPAN: A Genotypically Diverse, Pan-Genome Coexpression
Network

Camoco was used to process the FPKM table reported by Hirsch et al.
(2014) and to build a coexpression network. The raw gene expression data
were passed through the quality control pipeline in Camoco. After quality
control, 24,756 genes were used to build the network. For each pairwise
combination of genes, a Pearson correlation coefficient was calculated
across FPKM profiles to produce ;306 million network edge scores
(Supplemental Figure 1A), which were then Fisher transformed and
standardnormalized (zscorehereafter) toallowcross-networkcomparison
(Supplemental Figure 1B) (Huttenhower et al., 2006; Schaefer et al., 2014).
A global significance threshold of z $ 3 was set on coexpression inter-
actions to calculate gene degree and other conventional network
measures.

To assess overall network health, several approacheswere taken. First,
the z scores of edges between genes coannotated in the maize GO terms
were compared with edges in 1000 random terms containing the same
number of genes. Supplemental Figure 1C shows the distribution of P
values compared with empirical z scores of edges within a GO term. With
a nominal P value cutoff of 0.05, the PAN coexpression network had 11.9-
fold more GO terms than expected with P # 0.05, suggesting that edges
within this coexpression network capture meaningful biological variation.
Degree distribution also is as expected within the network. Supplemental
Figure 1D shows empirical degree distributions compared with the power
law, exponential, and truncated power law distributions. Typically, the
degreedistributionsofbiological networksarebestfit bya truncatedpower
law distribution, which is consistent with the ZmPAN genome coex-
pression network (Ghazalpour et al., 2006).

ZmSAM: A Maize Single-Accession Map Coexpression Network

Publicly available gene expression data were generated from Stelpflug
et al. (2016). In total, 22,691genespassedquality controlmetrics. Similar to
the ZmPAN network described above, gene interactions were calculated
between each pairwise combination of genes to produce ;257 million
network edges. A global significance threshold of z $ 3 was set on co-
expression interactions in order to differentiate significantly coexpressed
gene pairs.

Supplemental Figure 2A shows the distribution of edge scores before
they were Fisher transformed and standard normalized (Supplemental
Figure 2B). The ZmSAM network shows a 10.8-fold enrichment for strong
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edge scores (P # 0.05) between genes annotated to the same GO terms
(Supplemental Figure 2C). A final network health check shows that the
empirical degree distribution of the ZmSAM network is consistent with
previously characterized biological networks (Supplemental Figure 2D).

ZmRoot: A Genotypically Diverse Maize Root Coexpression Network

Plants were grown from 48 diverse maize accessions: A5554, B57, B73,
B76, B97, CML103, CML108, CML157Q, CML158Q, CML228, CML277,
CML311, CML322, CML341, CML69, CMl333, F2834T, F70NY2011, H84,
H95 HP301, HY, IL14H, KY21, KY228, Ki11, Ki3, Ki44, M162W, M37W,
MO17, MO18W, MS71, NC260, NC350, NC358, NC360, OH40B, OH43,
OH7B, P39, SC357, T2I16, TX303, TZi8, U267Y, W22, and W64A. Lines
were selected to span a diverse panel starting with the 25 NAM parents,
thenaddingmorediverse lines thatwereat theextremeof accumulation for
at least one element. Two to three plants per genotype were distributed to
independent trays and grown in the greenhouse soil mixture for 2 weeks,
and a 1- to 2-inch section of the root ;1 inch below the soil surface was
collectedand frozen in liquidnitrogen.Rootswereground in liquidnitrogen,
and RNA was extracted using Trizol. Sample quality was checked on
a Bioanalyzer, and then two samples per genotype were pooled before
library construction. Library construction and sequencingwere done at the
University of Minnesota sequencing core. RNA was extracted and se-
quenced in triplicate and multiplexed across 11 barcoded, multiplexed
sequencing lanes using TruSeq Stranded RNA Library Prep and Illumina
HiSeq 100-bp paired-end RNA-Seq reads. Each library was split across
twodifferent IlluminaHiSeq2000 lanes (between6and10 linesmultiplexed
per lane) totaling 10 lanes, with a final lane including all the libraries to help
eliminate technical artifacts.Raw readsweredeposited into theShortRead
Archive under project number PRJNA304663.

Raw reads were passed through quality control using the program
AdapterRemoval (Lindgreen, 2012), which collapses overlapping reads
into high-quality single reads while also trimming residual PCR adapters.
Readswere thenmapped to themaize 5b reference genomeusingBWA (Li
and Durbin, 2009; Schubert et al., 2014), PCR duplicates were detected
and removed, and then realignment was performed across detected in-
sertions and deletions, resulting in between 14 and 30million high-quality,
unique nuclear reads per accession. Two accessions (H84 and H95) were
dropped due to low coverage, bringing the total number to 46.

The quantification of gene expression levels into FPKMwas done using
amodified version of HTSeq that quantifies both paired- and unpaired-end
reads (Anders et al., 2015) available on GitHub (MixedHTSeq Software
Repository, 2018). Raw FPKM tables were imported into Camoco and
passed through the quality control pipeline. After quality control steps,
25,260 genes were included in coexpression network construction con-
taining ;319 million interactions. Supplemental Figure 3A shows raw
Pearson correlation coefficient scores, while Supplemental Figure 3B
shows z scores after standard normal transformation. Similar to ZmPAN
and ZmSAM, coexpression among GO terms was compared with random
gene sets of the same size as GO terms (1000 instances), showing a 13.5-
fold enrichment for GO terms with significantly coexpressed genes
(Supplemental Figure 3C). The degree distribution of the ZmRoot network
closely follows a truncated power law similar to the other networks built
here (Supplemental Figure 3D).

SNP-to-Gene Mapping and Effective Loci

Two parameters are used during SNP-to-gene mapping: candidate win-
dow size and maximum number of flanking genes. Windows were cal-
culated both upstream and downstream of input SNPs. SNPs having
overlapping windows were collapsed down into effective loci containing
the contiguous genomic intervals of all overlapping SNPs, including
windows both upstream and downstream of the effective locus’ flanking
SNPs (e.g., locus 2 in Figure 1A). Effective loci were cross referenced with

the maize 5b FGS GFF file (http://ftp.maizesequence.org/release-5b/
filtered-set/ZmB73_5b_FGS.gff.gz) to convert effective loci to candidate
gene sets containing all candidate genes within the interval of the effective
SNP and also including up to a certain number of flanking genes both
upstream and downstream from the effective SNP. For each candidate
gene identified by an effective locus, the number of intervening genes was
calculated from the middle of the candidate gene to the middle of the
effective locus. Candidate geneswere rankedby the absolute value of their
distance to the center of their parental effective locus. Algorithms im-
plementing the SNP-to-gene mapping used here are accessible through
the Camoco command line interface.

Calculating Subnetwork Density and Locality

Coexpression was measured among candidate genes using two metrics:
density and locality. Subnetwork density is formulated as the average
interaction strength between all (unthresholded) pairwise combinations of
input genes, normalized for the total number of input gene pairs:

Subnetwork Densityðsubnetwork SÞ ¼
�
∑all gene pairs i,j ∈ S i�j wij

�

� 1ffiffiffiffiffiffi
Ne

p
�

(1)

wherewij is the coexpression score between genes i and j andNe is the
total number of pairwise, nonself gene interactions in the subnetwork.

Network locality assesses the proportion of significant coexpression
interactions (z $ 3) that are connected locally to other subnetwork genes
compared with the number of global network interactions. To quantify
network locality, both local and global degree are calculated for each gene
within a subnetwork where local degree is the number of interactions to
other genes in the subnetwork and global degree is the total number of
interactions a gene has. To account for degree bias, where genes with
a high global degree aremore likely to havemore local interactions, a linear
regression is calculated on local degree using global degree (designated
local ; global), and regression residuals for each gene are analyzed:

Subnetwork Locality ðsubnetwork SÞ
¼ ∑all genes i ∈S Gene2Specific Locality ðgene iÞ

Ng
(2)

where the gene-specific locality measure is defined below (Equation 4)
and Ng is the number of genes in the subnetwork of interest.

Gene-specific density is calculated by considering subnetwork inter-
actions on a per-gene basis:

Gene2Specific DensityðgeneiÞ ¼ ∑all genes j �i wij

Ng 2 1
(3)

wherewij is the coexpression score between genes i and j andNg is the
total number of genes in the coexpression network.

Gene locality residuals can be interpreted independently to identify
gene-specific locality:

Gene2Specific Locality ðgene iÞ ¼ ei (4)

where ei is the residual for gene i derived from fitting the following re-
gression model on the entire genome:

degreelocalðgene jÞ ¼ a degreeglobalðgene jÞ þ ej

where degreelocal(gene j ) is the total number of interactions between
gene jand thesubnetworkof interestmeeting the thresholdanddegreeglobal
(gene j ) is the total number of interactions between gene j and any other
gene in the genome.

Interactions among genes that originate from the same effectiveGWAS
locus (i.e., cis interactions) were removed from density and locality
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calculations due to biases in cis coexpression. During SNP-to-gene
mapping, candidate genes retained information containing a reference
back to the parental GWASSNP. A software flagwithin Camoco allows for
interactions derived from the same parental SNP to be discarded from
coexpression score calculations.

The statistical significance of subnetwork density and locality metrics
(for both individual genes and whole subnetworks) was assessed by
comparing the observed statistic with the distribution of 1000 randomly
sampled sets of candidate genes, conserving the number of input genes.
This sampling was used to derive a null distribution, which was used to
calculate an empirical P value.

Simulating GWAS Using GO Terms

GO (Harris et al., 2004) annotations were downloaded for maize genes
from http://ftp.maizesequence.org/release-4a.53/functional_annotations/.
Coannotated genes within a GO term were treated as true causal genes
identified by a hypothetical GWAS. Terms between 50 and 100geneswere
included to simulate the genetic architecture of a multigenic trait. In each
coexpression network, terms having genes with significant coexpression
(P # 0.05; density or locality) were retained for further analysis. Noise
introducedby imperfectGWASwassimulatedusing twodifferentmethods
to decompose how noise affects significantly coexpressed networks.
These methods were the MCR

MCR ¼ 12
# True Candidate Genes

# Candidate Genes
(5)

and the FCR

FCR ¼ # Candidate Genes2# True Candidate Genes
# Candidate Genes

(6)

Simulating MCR

The effects ofMCRwere evaluatedby subjectingGO termswith significant
coexpression (P# 0.05; described above) to varying levels of MCRs. True
GO termgeneswere replacedwith randomgenes at varying rates (MCR: 0,
10, 20, 50, 80, 90, and 100%). The effect of MCR was evaluated by as-
sessing the number of GO terms that retained significant coexpression
(compared with 1000 randomizations) at each level of MCR.

Adding False Candidate Genes by Expanding SNP-to-Gene Mapping
Parameters

To determine how false candidates due to imperfect SNP-to-gene map-
ping affected the ability to detect coexpressed candidate genes linked to
a GWAS trait, GO terms with significantly coexpressed genes were re-
assessed after incorporating false candidate genes. Each gene in a GO
term was treated as an SNP and remapped to a set of candidate genes
using the different SNP-to-gene mapping parameters (all combinations
of 50, 100, and 500 kb and one, two, or five flanking genes). Effective FCR
at each SNP-to-gene mapping parameter setting was calculated by
dividing the number of true GO genes with candidates identified
after SNP-to-gene mapping. Since varying SNP-to-gene mapping pa-
rameters changes the number of candidate genes considered within
a term, each term was considered independently for each parameter
combination.

Maize Ionome GWAS

Elemental concentrations were measured for 17 different elements in the
maize kernel using ICP-MS as described by Ziegler et al. (2017). Outliers
were removed from single-seed measurements using median absolute
deviation (Davies and Gather, 1993). Basic linear unbiased predictors for

each elemental concentration were calculated across different environ-
ments and used to estimate variance components (Hung et al., 2012).
Joint-linkage analysis was run using TASSEL version 3.0 (Bradbury et al.,
2007) with over 7000 SNPs obtained by a genotype-by-sequencing ap-
proach (Elshire et al., 2011). An empirical P value cutoff was determined by
performing 1000 permutations inwhich the basic linear unbiased predictor
phenotype data were shuffled within each NAM family before joint-linkage
analysiswasperformed. ThePvalue corresponding to a5%FDRwasused
for inclusion of a QTL in the joint-linkage model.

Genome-wide association was performed using stepwise forward re-
gression implemented in TASSEL version 4.0 similar to other studies (Tian
et al., 2011; Cook et al., 2012; Wallace et al., 2014). Briefly, genome-wide
association was performed on a chromosome-by-chromosome basis. To
account for the variance explained by QTLs on other chromosomes, the
phenotypes used were the residuals from each chromosome calculated
from the joint-linkagemodel fitwith all significant joint-linkageQTLsexcept
those on the given chromosome. Association analysis for each trait was
performed 100 times by randomly sampling, without replacement, 80% of
the lines from each population.

The final input SNP data set contained 28.9million SNPs obtained from
the maize HapMap1 (Gore et al., 2009), the maize HapMap2 (Chia et al.,
2012), as well as an additional ;800,000 putative copy-number variants
from an analysis of read depth counts in HapMap2 (Chia et al., 2012;
Wallace et al., 2014). These ;30 million markers were projected onto all
5000 lines in the NAM population using low-density markers obtained
through a genotype-by-sequencing approach. A cutoff P value (P# 1e-6)
wasused from inclusion in the finalmodel. SNPsassociatedwithelemental
concentrations were considered significant if they were selected in more
than 5 of the 100 models (resample model inclusion probability) (Valdar
et al., 2009).

Identifying Ionome HPO Genes and HPO+ Genes

Gene-specific density and locality were calculated for candidate genes
identified from the 17 ionome GWAS traits as well as for 1000 random
sets of genes of the same size. Gene-specific metrics were converted to
the standard normal scale (z score) by subtracting the average gene-
specific score from the randomized set and dividing by the average ran-
domized SD. An FDR was established by incrementally evaluating the
number of GWAS candidates discovered at a z score threshold compared
with the average number discovered in the random sets. For example, if
10 GWAS genes had a gene-specific z score of 3 and an average of
2.5 randomized genes (in the 1000 random sets) had a score of 3 or above,
the FDR would be 25%.

HPO candidate genes for each element were identified by requiring
candidate genes to have a coexpression FDR# 30% in two or more SNP-
to-gene mapping scenarios in the same coexpression network using the
same coexpression metric (i.e., density or locality).

HPO+candidate gene setswere identifiedby taking the number of HPO
genes discovered in each element (n genes) and querying each coex-
pression network for the set of n genes that had the strongest aggregate
coexpression. For example, of the 18 HPO genes for P, an additional 18
genes (36 total)wereadded to theHPO+setbasedoncoexpression ineach
of thenetworks.Geneswereaddedbasedon thesumof their coexpression
to the original HPO set.

Reduced-Accession ZmPAN Networks

Both the ZmPAN and ZmRoot networks were rebuilt using only the 20
accessions in common between the 503 ZmPAN and 46 ZmRoot ex-
perimental data sets. The ZmPAN network also was built using the
common set of 20 accessions as well as 26 accessions selected from
the broader set of 503 to simulate the number of accessions used in the

2938 The Plant Cell

http://ftp.maizesequence.org/release-4a.53/functional_annotations/


ZmRoot network. Density and locality were assessed in these reduced-
accession networks using the same approach as the full data sets.

Identifying High-Priority Genes from 41 Nonionomic GWAS

Camoco was used to identify HPO candidate genes from 41 GWAS traits
reported previously by Wallace et al. (2014): 100 kernel weight, anthesis-
silking interval, average internode length (above ear), average internode
length (below ear), average internode length (whole plant), boxcox-
transformed leaf angle, chlorophyll a, chlorophyll b, cob diameter, days
to anthesis, days to silk, ear height, ear row number, fructose, fumarate,
glucose, glutamate, height above ear, height per day (until flowering), leaf
length, leaf width,malate, nitrate, nodes above ear, nodes per plant, nodes
to ear, northern leaf blight, PCA of metabolites: PC1, PCA of metabolites:
PC2, photoperiod growing-degree days to silk, photoperiod growing-
degree days to anthesis, plant height, protein, ratio of ear height to total
height, southern leaf blight, stalk strength, starch, sucrose, tassel branch
number, tassel length, and total amino acids. SNPsweremapped to genes
using two window sizes (50 and 100 kb) as well as two flanking gene
parameters (one and two genes). Overlap was calculated using both
density and locality in all three coexpression networks, and FDR was
calculated for candidate genes in each GWAS subnetwork as described
above. HPO candidate genes were identified as described above as
candidate genes with less than 10% FDR in at least two SNP-to-gene
mappings (Supplemental Data Set 12).

Accession Numbers

Raw RNA-Seq data used to build the ZmRoot network (A5554, B57, B73,
B76, B97, CML103, CML108, CML157Q, CML158Q, CML228, CML277,
CML311, CML322, CML341, CML69, CMl333, F2834T, F70NY2011, H84,
H95 HP301, HY, IL14H, KY21, KY228, Ki11, Ki3, Ki44, M162W, M37W,
MO17, MO18W, MS71, NC260, NC350, NC358, NC360, OH40B, OH43,
OH7B, P39, SC357, T2I16, TX303, TZi8, U267Y, W22, and W64A) are
available in National Center for Biotechnology Information BioProject
PRJNA304663. All computer source code used in this study is available
from GitHub (http://www.github.com/schae234/Camoco), version 0.5.0,
and from Zenodo (DOI: 10.5281/zenodo.1049133).
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