Table 4. The accuracy of SVM with different kernel functions for the threshold and region based technique for the DDSM dataset.
SVM Kernel functions | Threshold + region based segmentation technique | |||||
---|---|---|---|---|---|---|
Accuracy | AUC | Sensitivity | Specificity | Precision | F1 score | |
Linear | 80.5% | 0.88 | 0.774 | 0.842 | 0.86 | 0.815 |
Quadratic | 80.1% | 0.87 | 0.772 | 0.833 | 0.85 | 0.809 |
Cubic | 78.3% | 0.85 | 0.764 | 0.797 | 0.81 | 0.786 |
Fine Gaussian | 54% | 0.7 | 0.51 | 0.833 | 0.99 | 0.673 |
Medium Gaussian | 79.1% | 0.86 | 0.756 | 0.820 | 0.84 | 0.796 |
Coarse Gaussian | 77.2% | 0.85 | 0.736 | 0.813 | 0.84 | 0.785 |