Skip to main content
. 2019 Jan 28;7:e6201. doi: 10.7717/peerj.6201

Table 6. Different evaluation scores calculated for SVM with different kernel functions for the CBIS-DDSM dataset.

Numbers in red indicate the best values between the several techniques.

SVM Kernel functions CBIS-DDSM dataset
Accuracy AUC Sensitivity Specificity Precision F1 score
Linear 86.8% 0.94 0.854 0.876 0.88 0.866
Quadratic 85.6% 0.93 0.851 0.858 0.86 0.855
Cubic 84.6% 0.92 0.841 0.848 0.85 0.845
Fine Gaussian 69.9% 0.82 0.63 0.851 0.92 0.747
Medium Gaussian 87.2% 0.94 0.862 0.877 0.88 0.871
Coarse Gaussian 86.2% 0.93 0.854 0.876 0.88 0.866