Table 6. Different evaluation scores calculated for SVM with different kernel functions for the CBIS-DDSM dataset.
SVM Kernel functions | CBIS-DDSM dataset | |||||
---|---|---|---|---|---|---|
Accuracy | AUC | Sensitivity | Specificity | Precision | F1 score | |
Linear | 86.8% | 0.94 | 0.854 | 0.876 | 0.88 | 0.866 |
Quadratic | 85.6% | 0.93 | 0.851 | 0.858 | 0.86 | 0.855 |
Cubic | 84.6% | 0.92 | 0.841 | 0.848 | 0.85 | 0.845 |
Fine Gaussian | 69.9% | 0.82 | 0.63 | 0.851 | 0.92 | 0.747 |
Medium Gaussian | 87.2% | 0.94 | 0.862 | 0.877 | 0.88 | 0.871 |
Coarse Gaussian | 86.2% | 0.93 | 0.854 | 0.876 | 0.88 | 0.866 |