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SUMMARY

The c-Src oncogene is anchored to the cytoplasmic membrane through its N-terminal myristoylated

SH4 domain. This domain is part of an intramolecular fuzzy complexwith the SH3 andUnique domains.

Here we show that the N-terminal myristoyl group binds to the SH3 domain in the proximity of the RT

loop, when Src is not anchored to a lipid membrane. Residues in the so-called Unique Lipid Binding

Region modulate this interaction. In the presence of lipids, the myristoyl group is released from the

SH3 domain and inserts into the lipid membrane. The fuzzy complex with the SH4 and Unique domains

is retained in the membrane-bound form, placing the SH3 domain close to the membrane surface and

restricting its orientation. The apparent affinity of myristoylated proteins containing the SH4, Unique,

and SH3 domains is modulated by these intramolecular interactions, suggesting a mechanism linking

c-Src activation and membrane anchoring.

INTRODUCTION

c-Src is the leading member of the Src family of kinases (SFK). Its oncogenic potential was brought to light

already in 1970 (Duesberg and Vogt, 1970). Since then, c-Src has been associated to a plethora of cell

signaling pathways and has emerged as a key player in the regulation of cell adhesion, growth, movement,

differentiation, and therefore cell invasion and survival. c-Src deregulation is directly associated to poor

prognosis in colorectal and breast cancer (Martin, 2001; Yeatman, 2004; Sen and Johnson, 2011; Sirvent

et al., 2012). c-Src shares with the other SFKs a common domain arrangement formed by the mem-

brane-anchoring SH4 region followed by the Unique domain (UD), and the SH3, SH2, and kinase domains.

The SH3, SH2, and kinase domains can adopt a closed, autoinhibited form stabilized by interactions be-

tween the SH2 domain and a phosphotyrosine residue near the C terminus, as well as additional interac-

tions involving the SH3 domain (Xu et al., 1999).

Importantly, membrane binding is essential for the transforming activity of v-Src and for the activation of

c-Src by a membrane-bound phosphatase (Kamps et al., 1986; Bagrodia et al., 1993). All SFKs are myristoy-

lated at the N terminus of the SH4 domain (Resh, 1994). A second lipid interaction motif is required for

effective membrane anchoring. This is provided by palmitoylation of cysteine residues in most SFKs and

by electrostatic interaction of the positively charged SH4 domain with the negatively charged lipids in

the case of c-Src (Murray et al., 1998).

The UD is intrinsically disordered and the most divergent region in the SFK. Its role remains poorly under-

stood. Recently, the interplay between the UD and SH3 domain has been deciphered, in which the SH3

domain acts as a scaffold of a fuzzy complex that includes the UD and SH4 domain (Maffei et al., 2015; Ar-

besú et al., 2017). Moreover, additional lipid-binding regions were identified in the UD and the SH3 domain

by nuclear magnetic resonance (NMR) titrations with lipid bicelles in non-myristoylated constructs (Pérez

et al., 2013). The UD residues affected by lipid binding included S51, A53, A55, and the 60–67 region, which

we refer to as the Unique Lipid Binding Region (ULBR). Replacing residues 63–65 (Leu-Phe-Gly) by alanine

(AAA mutant) abolished lipid binding by this region. Mutation of the same residues in the context of the

full-length myristoylated c-Src highlighted the critical role of the ULBR because it resulted in a 50% reduc-

tion of the invasive capacity of c-Src-dependent human colorectal cells (Arbesú et al., 2017), but the actual

mechanism still needs to be described.

On the other hand, the subcellular location of c-Src critically affects its function (Dwyer et al., 2016), and

c-Src localization and trafficking are not fully understood. c-Src can be found at the plasma, perinuclear,

and endosomal membranes (Konitsiotis et al., 2017), and also in the cytoplasm (Donepudi and Resh,
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Figure 1. System Overview

The constructs used in the study are schematically indicated. The wavy line refers to the myristoyl group attached to the

N terminus. The structure of the SH3 domain, with the three loops and the two tryptophan residues, is shown in the right.

The domain structure of the c-Src protein is shown on the top, and the sequence of the wild-type MyrUSH3 is indicated at

the bottom. The myristoylated constructs contained a His6 tag after the SH3 domain. The non-myristoylated constructs

contained an additional GAMA tetrapeptide that arises from cloning instead of the N-terminal glycine.
2008) and nucleus (Honda et al., 2016). Endosomal recycling has been found to be crucial for the mainte-

nance of c-Src enrichment at the plasma membrane (Konitsiotis et al., 2017). Trafficking of c-Src between

these different compartments lacks a comprehensive description.

Here we used NMR, very well suited for the study of proteins containing disordered domains in solution,

and surface plasmon resonance (SPR) to characterize the myristoylated N-terminal region of c-Src,

including the SH4 domain, UD, and SH3 domain, in solution and its binding to liposomes. We found

that the N-terminal myristoyl group binds to the SH3 domain (in the so-called RT loop) in free c-Src. This

provides an additional stabilizing element to the previously described intramolecular fuzzy complex in

which the folded SH3 domain acts as a scaffold for the intrinsically disordered regions. In the presence

of liposomes or supported lipid bilayers (SLBs) the myristoyl group is released to allow anchoring to the

lipid bilayer, but the interaction of the SH4 and SH3 domains and the fuzzy intramolecular complex is

retained. Mutations in the UD and SH3 domain affect lipid binding by the myristoylated SH4 domain sug-

gesting a competitive model, in which the availability or exposure of the myristoyl group is modulated by

interactions involving these domains.

RESULTS

The N-Terminal Myristoyl Group Interacts with the SH3 Domain in the Absence of Lipids

The 2–150 region of human c-Src (hereafter USH3, see Figure 1) contains the disordered SH4 domain

and UD constrained around the folded SH3 domain, while retaining a high flexibility. This arrangement

has been described as an intramolecular fuzzy complex (Arbesú et al., 2017). Myristoylated USH3

(MyrUSH3) was prepared in E. coli by co-expression with yeast N-myristoyltransferase following a

previously described protocol, ensuring full myristoylation and the absence of spurious lauroylation of

USH3 (Flamm et al., 2016). Using samples containing fully myristoylated proteins is crucial for in vitro

biophysical characterization; therefore the protocol used in this study contains modifications coming

from continuous improvement of the expression and purification methods. Liquid chromatography

and mass spectrometry analysis confirmed that the purified proteins were 100% myristoylated (see Fig-

ure S1). Chemical shift perturbations (CSPs), calculated by comparing NMR peak positions in spectra
iScience 12, 194–203, February 22, 2019 195
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Figure 2. Myristoylation-Induced Chemical Shift Perturbations

(A) Combined chemical shift perturbations between myristoylated and non-myristoylated USH3WT. (Left) The SH4-Unique disordered region at 278 K. Blue

arrows mark positions known to be sensitive to the formation of the fuzzy complex. (Right) The SH3 domain at 298 K. Duplicated signals are shown in green.

The CSP corresponds to the highest value in each duplicated signal. Red bars mark residues that are absent only in one of the conditions compared.

Unassigned residues and prolines (P) are arbitrarily given a CSP of zero. The horizontal red line represents the mean value plus five standard deviations of the

10% lowest CSP.

(B) The same as (A) but for myristoylated and non-myristoylated USH3 AAA.
obtained from two constructs or the same construct measured in two conditions, were used to map

the residues affected by the presence of the myristoyl group or its interaction with lipid membranes.

The myristoylated proteins were compared with the non-myristoylated variants or the isolated SH3

domain. The liposome-bound myristoylated proteins were compared with the same constructs

measured in the absence of lipids. A schematic representation of the protein constructs used in this

study, the sequence of USH3, and a three-dimensional structure of the SH3 domain are presented in

Figure 1.

The CSPs of the NH group NMR signals in MyrUSH3 with respect to USH3, presented in Figure 2A, provide

information on the regions most affected by the presence of the myristoyl group. SH4 domain and UD sig-

nals (Figure 2A left) weremeasured at 278 K, to minimize exchange with water protons. SH3 domain spectra

(Figure 2A right) were measured at 298 K (also see Figure S2).

Large CSPs are found in the proximity of the RT loop of the SH3 domain, as can be visualized in Figure 2A

(right). Interestingly, duplicated signals (marked in green) were observed for some of the most strongly

affected residues in the SH3 domain (T99, T101, L103, and V114) in MyrUSH3. The intensities of the two

peaks were close to 1:1 (see Figure S3A). As sample purity was carefully assessed, duplicated signals prob-

ably originate from slow exchange between alternative conformations.

As expected, high CSPs between the myristoylated and non-myristoylated forms are observed in the SH4

domain where the myristoyl group is attached (Figure 2A left). Apart from these perturbations, minor

effects were observed in the UD, including moderate CSPs in H25, D45, and H47. Small CSPs could also

be noted in L63, part of the ULBR, and in the region T74 to G80 located in the hinge connecting the UD

and SH3 domain. The histidine chemical shifts are very sensitive to changes in their electrostatic environ-

ment and do not necessarily reflect direct interaction sites. Chemical shifts of key residues in the UD,

namely, T37, A55, E60, K62, and N68, are diagnostic of the interaction between the UD and SH3 domain

(Maffei et al., 2015; Arbesú et al., 2017), highlighted by blue arrows in Figure 2A. The extremely low

CSPs observed for these key residues indicated very similar environments in the presence or absence of

myristoylation confirming that the intramolecular fuzzy complex is retained in the presence of the myristoyl

group.
196 iScience 12, 194–203, February 22, 2019
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Figure 3. Chemical Shift Perturbations with Respect to the Isolated SH3 Domain

(A) Perturbations induced by the presence of the SH4 domain and UD in the SH3 domain in USH3 WT (left) and USH3 AAA (right).

(B) Perturbations induced in the SH3 domain by the presence of the myristoylated N-terminal region in USH3 WT (left) and USH3 AAA (right). The three SH3

loops are shadowed. The mark in the RT loop region highlights the increased perturbations with respect to the non-myristoylated form. Green bars

correspond to duplicated signals. Red bars correspond to missing signals.

(C) Perturbations induced by binding of MyrUSH3 WT (left) or Myr USH3 AAA (right) to negatively charged liposomes. The mark in the RT loop region

highlights the loss of perturbations with respect to the same constructs in the absence of liposomes.

(D) The indole NHs experience similar environments in free SH3 and in the liposome-bound form of myristoylated USH3. However, in the absence of

liposomes, Trp 121 is sensing the presence of the disordered SH4-UD regions and the chemical shift of its indole NH does not change upon myristoylation.
Next, we used the isolated SH3 as a reference to study the effect of the presence of the myristoyl group in

the preexisting interactions of the SH3 domain with the UD and SH4 domain. CSPs in Figure 3A identify the

SH3 residues affected by the presence of the disordered region when it is not myristoylated (USH3),

whereas Figure 3B shows the effects observed when the N terminus is myristoylated (MyrUSH3). In each

panel, the wild-type (WT) and AAA mutants are compared. Large CSPs were observed in the RT and

n-Src loops, but the perturbations are not the same in USH3 and MyrUSH3. The perturbation of the RT

loop is larger in the myristoylated form, indicating that the myristoyl group is interacting in the proximity

of this loop. A number of hydrophobic residues are located in a groove close to the RT loop (W121,

W122, L123, and V140). The chemical shifts of the NH signals of these residues are not specially affected

by the presence of the myristoyl group, whereas their side chains may contribute to the observed interac-

tion of the myristoyl group with the SH3 domain.

Insertion of Myristoyl Group in the Lipid Bilayer Competes with Its Intramolecular Interaction

with the SH3 Domain

We next measured the NMR spectra of MyrUSH3 in the presence of negatively charged large unilamellar

vesicles (LUVs) formed by 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-

3-phospho-10-rac-glycerol (DOPG) in a DOPC:DOPG ratio of 3:1. The protein concentration was 75 mM,

and the total lipid concentration was 5 mM.We used the polyunsaturated lipids to ensure that lipid bilayers

were in the liquid crystalline state in which proteins and lipids can freely diffuse, even at 278 K.

In the presence of liposomes, the RT loop residues displayed chemical shifts typical of free SH3, indi-

cating that the interaction of the disordered regions of c-Src with the RT loop was lost (Figure 3C

left). The indole NH NMR signal of tryptophan 121 side chains in the SH3 domain (Figure 3D) had

different chemical shifts in free SH3 and in the non-myristoylated USH3. Myristoylation did not affect

signal position, but when MyrUSH3 was bound to lipids, the indole NH signal recovered the chemical

shifts found in free SH3.

These chemical shifts of RT loop residues are compatible with the release of the myristoyl group from the

RT loop region of the SH3 domain upon insertion into the lipid membrane. The changes in indole NH
iScience 12, 194–203, February 22, 2019 197
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Figure 4. Chemical Shift Perturbations Induced by Liposome Binding

(A and B) (A) In MyrUSH3WT and (B) in MyrUSH3 AAA. The blue arrows indicate residues forming the Unique Lipid Binding Region, which is not perturbed in

these experiments. Red bars mark residues that are absent only in one of the conditions compared. Unassigned residues and prolines (P) are arbitrarily given

a CSP of zero. Expansions of selected regions of the SH4 domain spectra in the absence of lipids (blue) or in the presence of liposomes (gold) are presented

below each of the CSP plots.
signals are also compatible with the RT loop losing its interactions when the myristoyl group inserts into the

lipid bilayer, as the side chain of tryptophan 121 is pointing toward the RT loop (see Figure 1).

The insertion of the myristoyl group in lipid membranes had been previously demonstrated using 2H-NMR

in Myr-Src(2–19) (Scheidt and Huster, 2009). Importantly, the interactions in other SH3 regions, notably the

n-Src loop and some residues in the distal loop were retained in the membrane-bound form (compare Fig-

ure 3C with Figures 3B and 3A).

Figure 4A compares the chemical shifts of MyrUSH3 SH4 domain and UD in the presence and absence

of LUVs.

As expected, the SH4 domain (positively charged) is strongly perturbed by the interaction of MyrUSH3 with

negatively charged LUVs, and most signals are broadened beyond detection (Figure 4A lower panels).

However, the UD shows very small CSPs. In particular, residues T37, A55, E60, and N68, previously shown

to be reporters of the intramolecular fuzzy complex, were almost unperturbed in the presence of LUVs (Fig-

ure 4A). This confirms that the fuzzy complex is retained when c-Src is anchored to lipid bilayers.

Interestingly, the ULBR, which was named as such because of the interaction with lipid bicelles observed in

non-myristoylated USH3, showed no chemical shift changes, in spite of the fact that the myristoylated SH4

domain of the same molecule was anchored to DOPC:DOPG 3:1 liposomes in MyrUSH3 (Figure 4A).

If the ULBR does not provide an additional interaction with the membrane lipids, the question that arises is

what is its natural ‘‘lipid’’ target. To answer this question, we compared the effect of myristoylation of WT

USH3 with that of USH3 AAA, in which the ULBR is inactive.

The ULBR Contributes to the Interaction of the Myristoyl Group with the SH3 Domain

The assignment of the USH3 AAA construct was carried out in a 13C, 15N uniformly labeled myrUSH3 AAA

sample using the targeted acquisition strategy (Jaravine and Orekhov, 2006) based on co-processing of

HNCO, HNcaCO, HNCA, HNcoCA, HNCACB, and HNcoCACB spectra acquired using non-uniform sam-

pling in the NMR facility of the University of Goteborg (Sweden). The backbone chemical shifts were used to

calculate the neighbor-corrected structural propensity by comparison with a curated IDP chemical shift

database (Tamiola and Mulder, 2012) (see Figure S4). The introduction of the AAA mutation does not

induce a significant structure in USH3 AAA, suggesting that the observed effects result from the inactiva-

tion of the ULBR and not from additional structuring of the AAA region.

Figure 2B shows the CSP between the myristoylated and non-myristoylated forms of USH3 AAA in the

N-terminal (left panel) and SH3 (right panel) regions. As observed for native USH3, the largest CSPs outside
198 iScience 12, 194–203, February 22, 2019



the SH4 domain occur at the RT loop of the SH3 domain. However, the AAA mutation alters the way the

myristoyl group interacts with the SH3 domain, causing a distinct pattern of CSPs: residues F89 and L92

in the b1 strand were perturbed in the WT form but not in the AAA variant. In contrast, D102 was more

affected in the AAA variant than in WT USH3. Residues D94 and S97, part of the RT loop, were observable

in MyrUSH3 WT but were lost in the myristoylated AAA form. The duplicated signals observed for some of

the perturbed residues in MyrUSH3 were lost in MyrUSH3 AAA (Figure S3B).

The changes in the SH4 domain induced by the presence of the myristoyl group are very similar in MyrUSH3

AAA and MyrUSH3, suggesting that the observed effects arise frommodulation of the direct interaction of

the myristoyl group with the SH3 domain, rather than from changes in the interaction of the SH4 domain.

The native and AAA USH3 variants showed similar, but not identical, effects in the UD upon myristoylation

(Figures 2A and 2B left panels). H25 and H47 chemical shifts were not affected by myristoylation in the AAA

variant, and D45 showed a smaller effect. The hinge region residues (74–80) were similarly affected in the

AAA and native variants.

The NMR data on MyrUSH3 AAA show that although the myristoyl group interacts with the SH3 domain,

changes in the UD modulate this interaction resulting in different affected residues and the absence of

duplicated signals, suggesting changes in the exchange rates between alternative configurations of the

fuzzy complex in the myristoylated protein.

Using the isolated SH3 domain as a common reference, CSP of the AAA variants shown in Figures 3A–3C

(right panels) confirmed that the interactions with the RT loop are the most affected by the presence of the

myristoyl group in the absence of lipids and mostly disappear in the liposome-bound form, similar to the

observed effect in WT USH3. However, a large CSP is observed in residue D102 of MyrUSH3 AAA in

the presence of LUVs, but not in WT MyrUSH3. Additional differences were observed in the distal loop

showing smaller perturbations in the AAA mutant than in WT USH3 in the presence of liposomes.

Addition of LUVs to MyrUSH3 AAA caused only limited effects in the SH4 domain (Figure 4B), in contrast to

the extensive broadening or large shifts observed in MyrUSH3 (Figure 4A). In contrast, in the UD, addition

of LUVs resulted in the disappearance of residue A55 and a high CSP in T37, both of them involved in the

fuzzy complex with the SH3 domain. Thus a native ULBR contributes to preserve the fuzzy complex when

c-Src is bound to lipid bilayers.

The NMR results suggest that the AAA mutation affects the interaction of myristoylated c-Src with lipid

bilayers: a reduction of the interaction of the myristoylated SH4 domain with the SH3 domain in solution

facilitates membrane anchoring, and the modified CSP pattern suggests that the SH4-anchoring group

is presented to themembrane differently by the retained intramolecular complex involving the SH3 domain

and the WT or AAA-modified UD.
The Unique and SH3 Domains Modulate Lipid Binding by the Myristoylated SH4 Domain

To assess the effect of the UD and SH3 domain we compared the binding of MyrUSH3 to SLBs with that

of the isolated myristoylated SH4 domain (MyrGSNKSKPKDASQRRR noted MyrSH4). The role of ULBR in

the UD was tested using MyrUSH3 AAA. The importance of the RT loop in the SH3 domain was tested

using a mutant USH3 domain with key residues in the RT loop 98RTE100 replaced by QAQ (MyrUSH3

QAQ). The pair of oppositely charged residues was replaced by neutral glutamine, whereas the central

residue was mutated to alanine. We used SPR to measure the reversible binding kinetics and the affin-

ities to electrically neutral DOPC, negatively charged DOPC:DOPG (3:1), or DOPC:DOPG (2:1) SLBs ob-

tained from liposome immobilization on phytosphingosine-derivatized sensor chips (XanTec) (Figures

S5–S7 and Table S1).

MyrSH4 showed two orders of magnitude higher affinity than the USH3 construct toward neutral SLBs (Fig-

ure 5). The AAA mutation in the UD or the QAQ mutation in the SH3 RT loop resulted in increased lipid-

binding affinity caused by a faster association rate, suggesting a higher availability of the myristoyl group

in the mutated USH3 forms. In contrast, dissociation rates were very similar, suggesting that the mutated

sites do not directly interact with the lipid membrane. The lower dissociation rates of the isolated myristoy-

lated SH4 peptide suggest that the neighbor UD and SH3 domain not only modulate the way the
iScience 12, 194–203, February 22, 2019 199



Figure 5. The Unique and SH3 Domains Modulate the Binding of MyrSH4 to Lipids

SPR analysis of the binding of c-Src variants to immobilized DOPC (neutral) and DOPC:DOPG (3:1) and DOPC:DOPG (2:1)

(negatively charged) liposomes. Themain plot presents the association anddissociation rate constants, and the inset presents

the affinity constant. The affinity constants with neutral lipids are also represented in an expanded scale. Data were fitted to a

1:1 Langmuir model (see Supplemental Information). Data are expressed as mean G SD, n = 3. Significant differences in

binding constants with respect to MyrUSH3 are indicated by asterisks (t test: *p < 0.05; **p < 0.01; n.s. not significant).
myristoylated SH4 domain is anchored to the membrane but also may reflect its higher tendency to form

persistently bound oligomers (Le Roux et al., 2016a, 2016b).

These results are consistent with the NMR data indicating that the myristoyl group is interacting with the RT

loop of the SH3 domain assisted by the ULBR in the UD.

With negatively charged lipids all the affinities increased owing to the additional electrostatic interaction

with the positively charged SH4 domain, but the relative differences were reduced. A possible explanation

is that the dissociation of the myristoyl group from the SH3 domain is enhanced by the electrostatic inter-

action of the strongly charged SH4 domain when it is close to the negatively charged membrane.
DISCUSSION

Protein myristoylation contributes to c-Src membrane anchoring together with a cluster of basic residues

that interact with acidic phospholipids. Binding of c-Src to the membrane is mostly reversible, although

evidence for clustering and irreversible binding of a small population of c-Src molecules has been reported

(Le Roux et al., 2016a, 2016b; Smith et al., 2016; Owen et al., 2010). This is compatible with rapid exchange

between bilayers of different cellular compartments by ‘‘hopping’’ through short-term cytosolic release of

c-Src (Kasahara et al., 2007). Trafficking between plasma membrane and endosomes in the perinuclear re-

gion (Sandilands and Frame, 2008) may involve solubilizing proteins that recruit c-Src released from the

membrane (Konitsiotis et al., 2017). Donepudi and Resh reported that approximately 30% of intracellular

c-Src is not bound to membranes (Donepudi and Resh, 2008). This raises the question of possible interac-

tions of the myristoyl group in the non-membrane-bound form of c-Src. The existence of internal myristoyl-

binding sites may provide a modulating mechanism. A myristoyl-binding pocket is present in the C-lobe of

the kinase domain of c-Abl and contributes to maintain it in the inactive state (Pluk et al., 2002). The pres-

ence of a similar binding pocket in c-Src has been suggested by Patwardhan and Resh (2010) on the basis of

previous results by Cowand-Jacob et al. (2005) showing the interaction of free myristate with Tyr527-phos-

phorylated c-Src, although the binding site could not be identified.

Our results show that there is a myristoyl-binding site in the SH3 domain. The interaction of the myristoyl

group with the SH3 domain restricts the availability of the fatty acid chain to bind to lipids and could

similarly prevent its interaction with the kinase domain of another c-Src molecule.
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Recently, N-terminal-bound myristoyl group has been suggested to mediate c-Src dimerization by interac-

tion with the kinase domain (Spassov et al., 2018). Mutation of residues predicted to be part of the

myristoyl-binding site in the kinase domain affected the observed dimers, giving support to the existence

of a myristoyl-binding site also in this domain.

Thus the myristoyl group can interact with the same c-Src molecule to which it is bound (through the SH3

domain) or the kinase domain of a second c-Src protein. The two binding events may be linked. In fact,

Spassov et al. showed that Y419 phosphorylation of the kinase domain, which changes its interaction

with the SH3 domain, was required in cis, i.e., in the same molecule containing the myristoyl group for

myristoyl-SH1-mediated dimerization to occur.

The AAA mutation prevents lipid binding by the UD in non-myristoylated constructs. However, this

mutation results in an increase in the association rate of themyristoylated constructs with lipids. Thus the effect

of the AAAmutation cannot be explained by changes in the direct lipid-binding capacity of the UD, but prob-

ably involves an indirect effect of the ULBR on the interaction of the myristoylated SH4 domain with the

SH3 domain.

The AAA mutation in full-length c-Src has a dramatic effect on the invasive capacity of c-Src-dependent

colorectal cancer cells. At the molecular level, myristoylation resulted in duplicated NMR signals only in

the presence of the native ULBR sequence, suggesting that the native ULBR contributes to the interaction

between the myristoyl group and the SH3 domain. A functional role of the ULBR is also suggested by the

very different dynamics leading to distinct broadening of SH4 NMR signals of myristoylated constructs

containing either the native ULBR sequence or the AAA mutation in the presence of liposomes.

Although our data do not provide any precise structural model, we can speculatively suggest that the ULBR

contributes to modulating the balance between the lipid-bound and free forms of c-Src or the way by which

MyrSH4 is anchored to the membrane while preserving the fuzzy intramolecular complex. This role of the

UD would be in line with the notion that this intrinsically disordered region, exquisitely sensitive to the

cellular environment and tunable, for example, by post-translational modifications or alternative splicing

(Arbesú et al., 2018; Teixeira et al., 2018), could modulate the key events controlling the activation and

localization of Src family kinases.

Our results have uncovered a myristoyl-binding site in the SH3 domain of c-Src and have shown that the

fuzzy complex previously characterized in non-myristoylated proteins is retained in the myristoylated

forms, either free or bound to lipid bilayers. From the structural point of view, it implies that the structured

part of c-Src, including the SH3 domain, is located closer to the membrane surface than implied with earlier

models in which the UD was considered a long spacer.

Limitations of the Study

The interaction between the myristoyl group and the SH3 domain has been demonstrated in vitro. The

interaction sites contributing to the fuzzy complex have been shown to be compatible with the known

X-ray structure of full-length c-Src. As the myristoylated SH4 and SH3 domains are known to independently

participate in other regulatory interactions, the known effects of preventing myristoylation, changing the

acyl group, or mutating the SH3 domain do not provide additional insight. The disordered UD is not

observed in X-ray structures. Direct observation of full-lengthmyristoylated c-Src by NMR, in vitro or in vivo,

is not yet technically possible but is the goal of our future research.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
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Supplementary information. 
 

  

Supplementary Figure S1. MyrUSH3 characterization. Related to Figure 2. 
A) HPLC and B) MS analysis of MyrUSH3 WT. The observed molecular weight 
is in agreement with the theoretical molecular weight 16628 Da. 
 

 

 

A 
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Supplementary Figure S2. Overview NMR spectra. Related to Figures 1-3 
(A) 1H-15N bestTROSY at 278 K  (left) and at 298 K (right) of native MyrUSH3 in 
the absence (black) or presence (red) of DOPC:DOPG (3:1) LUVs. (B) 1H-15N 
SOFAST-HMQC of MyrUSH3 WT at 278 K (left) and 298 K (right). (C) 1H-15N 
SOFAST-HMQC of MyrUSH3 AAA at 278 K (left) and 298 K (right).  
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Supplementary Figure S3. Expanded NMR plots of duplicated signals. 
Related to Figure 2. Duplicated signals observed in the close environment of 
the RT-loop indicated in green in Figure 2 are shown here for the native 
MyrUSH3 (A) or MyrUS3 AAA (B).  Only one of the duplicated signals remains 
observable in the presence of LUVs (red). 
 
 
 
 
 
 
 
 



 
 
	
	

	
 
Supplementary Figure S4. Lack of secondary structure of AAA mutant. 
Related to Figure 2. Neighbor corrected structural propensity derived from the 
backbone chemical shifts of MyrUSH3 AAA at 278 K using ncSPC (Tamiola and 
Mulder, 2012). Structural propensities below 0.25 indicate that the introduction 
of three alanine residues in positions 63-65 in the AAA variant does not induce 
a significant ordering of the Unique domain.   
 



 

Supplementary Figure S5. SPR with neutral LUV. Related to Figure 5. SPR 
responses (blue curves) after 60 s association of the myristoylated c-Src 
variants to DOPC LUVs. Best fit with the 1:1 Langmuir model (black curves) 
analyzed using the Biacore T200 3.0 Evaluation. The residuals plot shows the 
accuracy of the fit. Result plots are one representative experiment of the 
triplicate data. 
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Supplementary Figure S6. SPR with 25% charged LUV. Related to Figure 5. 
SPR responses (blue curves) after 60 s association of the myristoylated c-Src 
variants to DOPC:DOPG (3:1) LUVs. Best fit with the 1:1 Langmuir model 
(black curves) analyzed using the Biacore T200 3.0 Evaluation. The residuals 
plot shows the accuracy of the fit. Result plots are one representative 
experiment of the triplicate data. 
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Supplementary Figure S7.  SPR with 33% charged LUV. Related to Figure 5. 
SPR responses (blue curves) after 60s association of the myristoylated c-Src 
variants to DOPC:DOPG (2:1) LUVs. Best fit with the 1:1 Langmuir model 
(black curves) analyzed using the Biacore T200 3.0 Evaluation. The residuals 
plot shows the accuracy of the fit. Result plots are one representative 
experiment of the triplicate data. 
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Table S1. SPR derived constants. Related to Figure 5. Kinetic parameters 
obtained from the fitting of myristoylated c-Src variants to the different LUVs 
applying the 1:1 Langmuir model using the Biacore T200 3.0 Evaluation. These 
values are plotted in Figure 5. 
 

LUVs c-Src variant ka (M-1s-1) kd (s-1) KD (M) KA(M-1) 

DOPC 

MyrSH4 3.24·104 ± 2.2·103 0.293 ± 0.018 9.76·10-6 ± 6.8·10-7 1.03·105 ± 6.9·103 
MyrUSH3 WT 3.46·103 ± 7.3·102 1.050 ± 0.210 3.07·10-4 ± 5.2·10-5 3.32·103 ± 5.2·102 

MyrUSH3 QAQ 5.6·103 ± 2.8·103 0.870 ± 0.035 1.56·10-4 ± 6.98·10-6 6.44·103 ± 2.9·102 
MyrUSH3 AAA 1.09·104 ± 6.1·103 0.896 ± 0.278 9.27·10-5 ± 2.8·10-5 1.16·104 ± 4.1·103 

DOPC:DOPG 
(3:1) 

MyrSH4 3.76·104 ± 2.36·103 0.119 ± 0.016 3.16·10-6 ± 2.51·10-7 3.18·105 ± 2.47·104 
MyrUSH3 WT 6.33·104 ± 4.9·103 0.368 ± 0.040 5.80·10-6 ± 2.65·10-7 1.73·105 ± 7.73·103 

MyrUSH3 QAQ 8.56·104 ± 9.7·103 0.462 ± 0.036 5.43·10-6 ± 5.9·10-7 1.86·105 ± 2.1·104 
MyrUSH3 AAA 8.59·104 ± 2.34·104 0.379 ± 0.042 4.60·10-6 ± 1.04·10-6 2.25·105 ± 4.93·104 

DOPC:DOPG 
(2:1) 

MyrSH4 5.64·104 ± 2.3·104 0.111 ± 0.037 2.02·10-6 ± 1.9·10-7 4.98·105 ± 5.1·104 
MyrUSH3 WT 1.06·105 ± 1.9·104 0.328 ± 0.044 3.12·10-6 ± 1.6·10-7 3.21·105 ± 1.6·104 

MyrUSH3 QAQ 1.44·105 ± 2.03·103 0.394 ± 0.023 2.75·10-6 ± 2.6·10-7 3.65·105 ± 3.6·104 
MyrUSH3 AAA 8.09·104 ± 3.2·104 0.214 ± 0.056 2.73·10-6 ± 3.5·10-7 3.70·105 ± 4.8·104 

 
 
Transparent methods 
Myristoylated c-Src variants expression and purification 

The myristoylated c-Src variants were obtained by the co-expression of the N-
myristoyl transferase enzyme and the USH3 of c-Src substrate in a pETDuet-1 
(Novagen) plasmid. The USH3 construct of c-Src, contains the SH4, Unique 
and SH3 domains, followed by a His6 purification tag. The mutations were 
introduced using the QuickChange II XL Site Directed Mutagenesis Kit (Agilent). 

Plasmids were transformed in Escherichia coli RosettaTM (DE3) pLysS 
(Novagen) and the bacteria cells were grown in Luria Broth (LB) medium 
supplemented with chloramphenicol (25 µg/mL) and ampicillin (100 µg/mL) at 
37 ºC until an OD600nm of ~0.6 was reached. Before induction with 1mM of 
isopropyl-β-D-thiogalactopyranoside (Nzytech), 6 g/L of glucose and a freshly 
prepared solution of myristic and palmitic acid (Sigma) (200 µM final 
concentration for each) and fatty acid free Bovine Serum Albumin (BSA) 
(Sigma) (600 µM final concentration), were added to the cell culture.  The lipid 
solution was prepared by adding one equivalent of NaOH, heating at 65 oC and 
adjusting the final pH to 8. The protein expression was performed for 5 h at 28 
oC. For 15N-labeled protein the Marley method was used (Marley et al., 2001). 
After growing the cells in LB medium as previously described, cultures were 
harvested by centrifugation at 1000 g for 30 min and resuspended in M9 
medium containing 1 g/L 15N NH4Cl (Cambridge Isotope Laboratories). Before 
inducing the expression, 3 g/L of glucose and a freshly prepared solution of 
myristic and palmitic acid (Sigma) at 50 µM final concentration for each, with 
fatty acid free BSA (Sigma) at 600 µM final concentration, were added to the 
cell culture. The expression was performed as above. 

Cells were harvested at 4000 rpm for 20 min and resuspended in lysis buffer 
(20 mM Tris·HCl, 300 mM NaCl, 10 mM Imidazole, pH 8) supplemented with 



Protein Inhibitor Cocktail (Sigma) and 1 mM Phenylmethanesulfonyl fluoride 
(PMSF) (Sigma). Cells were sonicated on ice and centrifuged at 25000 rpm for 
45 min. The myristoylated protein was extracted from the pellet using lysis 
buffer supplemented with 1 % Triton X100 (Sigma).  Subsequently, Ni-NTA 
affinity chromatography was performed using a 1 mL-Ni-NTA cartridge (GE 
Healthcare). The protein was eluted with lysis buffer supplemented with 400 
mM imidazole and 0.02 % Triton X100 (Sigma). The final purification step 
consisted of a size exclusion chromatography in a Superdex 75 26/60 (GE 
Healthcare), in phosphate buffer (50 mM NaP, 150 mM NaCl, 0.2 mM EDTA, 
pH 7.5). For NMR, samples buffer was exchanged to 50 mM NaP pH 7.0 using 
a P10 column (GE Healthcare). The purity of the protein was established by 
HPLC in a BioSuite pPhenyl 1000RPC 2.0 x 75 mm; 10 µm column coupled to 
mass spectrometry, confirming the absence of lauroylated protein. The protein 
was concentrated either using Vivaspin 20, 5 kDa MWCO concentrators (Sigma 
Aldrich) or dialyzing the sample against double distilled water with a subsequent 
lyophilization and resuspension with buffer. Myristoylated SH4 (MyrSH4) was 
synthesized by SynPeptide Co., Ltd (Shangai, China). 

 

Preparation of Large Unilamellar vesicles (LUVs)  

1,2-dioleoyl-sn-glycero-3-phosphocoline (DOPC) (TebuBio) and 1,2-dioleoyl-sn-
glycero-3-phospho(1’-rac-glycerol) (sodium salt) (DOPG) (Sigma) were 
dissolved in chloroform. Three lipid compositions were used: DOPC, 
DOPC:DOPG (3:1) and DOPC:DOPG (2:1).  The organic solvent was 
evaporated under a nitrogen stream. The lipid films were rehydrated with 
phosphate buffer (50 mM NaP, 150 mM NaCl, 0.2 mM EDTA, pH7.5) with 
vortexing. LUVs were prepared by extrusion using a Mini-extruder (Avanti Polar 
Lipids). The lipid suspension was extruded 15 times through a 100 nm-
polycarbonate filter. The mean diameter of the LUVs was verified by Dynamic 
Light Scattering (Zetasizer Nanoseries S, Malvern instruments). LUVs were 
used within two days to avoid lipid oxidation. 

 

NMR Experiments 

NMR experiments were performed in a Bruker 600 MHz Avance III 
spectrometer equipped with a TCI Cryoprobe. 1H-15N best-TROSY (Solyom et 
al. 2013) or 1H,15N SOFAST-HMQC experiments (Schanda et al. 2005) were 
measured at 278 K or 298 K.  The samples contained 0.075-0.2 mM protein 
concentration in 50 mM NaP, pH 7.0 with 10 % D2O. NMR data was processed 
with nmrPipe (Delaglio et al. 1995) and analyzed with Sparky (Lee et al. 2015), 
ccpNmr (Vranken et al. 2005). Plots were generated with Farseer-NMR 
(Teixeira et al. 2018) and R. CSP were computed as 

𝐶𝑆𝑃 𝑝𝑝𝑚 = !
!
𝛿!! + 0.2 · 𝛿!! ! . The threshold line in the plots represent the 

mean value of the lowest 10% CSP plus five standard deviations. 

The assignment of the MyrUSH3 AAA construct was carried out in a 13C, 15N 
uniformly labeled sample using an automatic assignment strategy (Jaravine & 
Orekhov, 2006) based on co-processing of HNCO, HNcaCO HNCA, HNcoCA, 
HNCACB and HNcoCACB spectra acquired using non-uniform sampling in the 



NMR facility of the University of Goteborg (Sweden). The assignments have 
been deposited in BMRB:27708. 

 

Surface Plasmon Resonance binding assays 

SPR experiments were performed in a Biacore T200 instrument (GE 
Healthcare). The temperature was set to 25 C in all the experiments. The 2D-
carboxylmethyldextran sensor chip (Xantec) was used. All the channels, except 
for the reference, were modified by the covalent attachment of 
phytosphingosine (TebuBio) to allow the capture of LUVs. An amine-coupling 
procedure was performed with 1 mM of phytosphingosine in acetate buffer pH 
6.7. Phosphate buffer (50 mM NaP, 150 mM NaCl, 0.2 mM EDTA, pH 7.5) was 
used as running buffer for all the experiments. DOPC, DOPC:DOPG (3:1) and 
DOPC:DOPG (2:1) LUVs at 1 mM concentration were coated over the three 
different channels (maintaining this order to avoid anionic lipid migration 
towards the neutral LUVs through the flow cells) by a 20 s injection at 10 
µL/min. The reference cell and possible uncovered surface in the LUVs 
channels were blocked with 1 mg/ml of BSA at 50 µL/min for 20 s. To minimize 
mass transport effects, the myristoylated c-Src variants were injected at 50 
µL/min. Protein concentration ranged from 1.5 µM to 20 µM. For each c-Src 
construct three protein concentrations were injected with one in duplicate and in 
randomized order. The protein was allowed to associate for 60 s while the 
dissociation lasted 120 s. Triplicate experiments were performed for each c-Src 
variant. The surface was regenerated with two pulses (30 s at 100 µL/min) of 
Isopropanol:50 mM NaOH (2:3) solution followed by a 20 mM CHAPS pulse. 
Each binding experiment was started with freshly captured LUVs. LUV coating 
was reproducible, obtaining an average value of 7958.8 ±172.6 RU for DOPC 
LUVs, 6093.3 ±153.4 RU for DOPC: DOPG (3:1) and 5613.5 ±145.3 RU for 
DOPC: DOPC (2:1) (± standard deviation). 

The myristoylated c-Src variants binding to LUVs were analyzed using the 
Biacore T200 3.0 Evaluation software (GE Healthcare). The protein 
concentration was corrected by subtracting any degradation present using SDS 
PAGE. All data was double referenced (reference channel and baseline 
subtraction) and globally fitted using a simple 1:1 Langmuir model. The kinetics 
of binding and dissociation were measured at three concentrations with one of 
them duplicated. The curves were fitted globally. Each experiment was 
repeated three times (Figures S5-S7 and Table S1). 
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