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Abstract
The role of raremissense variants in disease causation remains difficult to interpret.We explorewhether the clustering pattern
of rare missense variants (MAF < 0.01) in a protein is associated with mode of inheritance. Mutations in genes associated with
autosomal dominant (AD) conditions are known to result in either loss or gain of function, whereas mutations in genes
associatedwith autosomal recessive (AR) conditions invariably result in loss-of-function. Loss-of-functionmutations tend to be
distributed uniformly along protein sequence, whereas gain-of-function mutations tend to localize to key regions. It has not
previously been ascertained whether these patterns hold in general for rare missense mutations. We consider the extent to
which rare missense variants are located within annotated protein domains and whether they form clusters, using a new
unbiased method called CLUstering by Mutation Position. These approaches quantified a significant difference in clustering
between AD and AR diseases. Proteins linked to AD diseases exhibited more clustering of rare missense mutations than those
linked toARdiseases (Wilcoxon P = 5.7 × 10−4, permutation P = 8.4 × 10−4). Raremissensemutation in proteins linked to eitherAD
or AR diseases was more clustered than controls (1000G) (Wilcoxon P = 2.8 × 10−15 for AD and P = 4.5 × 10−4 for AR, permutation
P = 3.1 × 10−12 for AD and P = 0.03 for AR). The differences in clustering patterns persisted even after removal of the most
prominent genes. Testing for such non-random patterns may reveal novel aspects of disease etiology in large sample studies.

Introduction
Hermann Muller was the first geneticist to posit the existence of
different classes of functional mutations effective at the protein
level, mutations that he termed nullomorphs (complete loss-
of-function), hypomorphs (reduced function), hypermorphs (in-
creased function), antimorphs (antagonistic to wild-type) and
neomorphs (new function) (1,2). These classes of mutation can

cause human disease, as well as phenotypic variability in gen-
eral. Nullomorphs and hypomorphs are generally referred to
today as loss-of-functionmutations, and there has been specula-
tion that they are not preferentially located at specific amino acid
residue positions (2–4). This is because loss-of-function is often
caused by destabilization of the hydrophobic protein core (5),
or by frameshifts and premature stop codons that lead to the
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nonsense-mediated decay of truncated transcripts (6). On the
other hand, hypermorphic, antimorphic and neomorphic muta-
tions are generally referred to as gain-of-functionmutations and
are more likely to occur at specific amino acid residue positions,
such as at sites of post-translational modification, ligand binding
or protein–protein interaction (5). To our knowledge, we present
the first study to systematically assess and quantify the extent
to which these clustering patterns are also applicable to rare
missense mutations causing human inherited disease.

Single-gene diseases in which the causal mutations lie in
genes residing on the autosomes are generally recognized to dis-
play either dominant (one copy required) or recessive (two cop-
ies) inheritance. These diseases can be caused by mutations in
any of the classes mentioned earlier. There is a unique set of
autosomal dominant (AD) diseases that are recognized to exhibit
mutations in a highly restricted set of amino acid residue posi-
tions with very specific effects on protein function. In contrast,
with autosomal recessive (AR) diseases, mutations are often
loss-of-function and result in no or little usable protein product.
Examples of specific protein functional effects include the AD
diseases Cherubism (SH3BP2 mutations) (7) and Achondroplasia
(FGFR3 mutations) (8). In Cherubism, mutations occur at a bind-
ing site required for proper ubiquitylation and subsequent pro-
teolytic degradation of SH3BP2 (9,10). In Achondroplasia, a
mutation at residue 380 causes FGFR3 to become constitutively
activated (11).

Based on the realization that mutations are often loss-of-
function in recessive disease but can be either loss-of-function
or gain-of-function in dominant diseases, we hypothesized
that: (i) rare missense mutations within AD disease genes
might be more clustered than those in AR disease genes; and
(ii) rare variants in controls might be less clustered than either.
In this work, we define clustering, for a given set of mutations,
as an event when mutations are closer to each other in primary
protein sequence than would be expected by chance. We rea-
soned that if these mutation patterns generally held true, non-
random clustering of rare missense mutations might provide
key insights into the molecular mechanisms underlying inher-
ited diseases. The search for new Mendelian disease genes
based on whole exome sequencing is often focused on loss-
of-function variants and deleterious missense variants (12). By
examining non-random clustering, it becomes possible to detect
regions that are critical to protein function, regardless of whether
the clustered mutations are deleterious or result in gain-
of-function.

To test the first hypothesis, we used data from the Human
Gene Mutation Database (HGMD) (13), which comprises a collec-
tion of inherited mutations causing human genetic disease. To
our knowledge, these data have not been previously assessed
for a relationship between patterns of rare missense mutation
clustering and mode of disease inheritance. To test the second
hypothesis, we compared the rare missense mutations in these
AD and AR genes to rare missense variants in these genes
found in individuals from the 1000 Genomes Project.

First, we applied a biased approach that considered the frac-
tion of missense mutations (or variants) in a given protein that
occurred within annotated protein domains from the Human
Protein Reference Database (HPRD) (14) (domain occupancy score).
However, the assumption that rare missense mutations of large
effect will only occur in protein domains, regions of regular sec-
ondary structurewhose function is known and that occur paralo-
gously in multiple proteins, is potentially problematic. Thus, we
developed a new unbiased clustering method to score clustering
of missense mutations in protein sequence. The method makes

no a priori assumptions about the importance of these positions
or the number of clusters.

We performed statistical testing to assess whether rare mis-
sensemutations in AD genes and AR genes exhibit different clus-
tering patterns than in controls and from each other. AD genes
were found to exhibit significantly higher protein domain occu-
pancy than AR genes and controls, and both AD and AR genes
had significantly higher occupancy than controls. When we re-
moved the domain bias from our analysis by applying an un-
supervised clustering algorithm we developed [CLUstering by
Mutation Position (CLUMP)], we found that collectively AD
genes exhibited significantly lower CLUMP scores (associated
with greater clustering) than AR genes and that AD genes and
AR genes had significantly lower CLUMP scores than controls.
These trends persisted even after 18 outlier genes with the high-
est statistical significance were removed from the analysis, sup-
porting the generality of the clustering patterns.

Results
Generation of high-quality mutations dataset and AD/AR
annotations

By searching the HGMD and using a customized pipeline (Fig. 1),
we generated a rare missense mutation dataset for AD genes

Figure 1. Workflow of this study. Included are details on the generation of high-

quality inheritance datasets for all missense variants in AD and AR diseases.

Also depicted are our two main approaches to assess mutation clustering

within proteins.
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(6337 mutations underlying 162 diseases involving 181 genes)
and AR genes (6493 mutations underlying 195 diseases involving
159 genes). A rare missense mutation was defined by a minor al-
lele frequency <0.01 in European controls from the 1000Genomes
Project.

Known disease-causing mutations are more likely to fall
in domains

The general trends observed in our domain occupancy analysis
are evident in Figure 2A. The empirical cumulative distribution
functions (CDFs) of domain occupancies for AD disease, AR dis-
ease and controls (1000GP) show that the three sets are distinct
and that the trend for AR disease lies midway between AD dis-
ease and controls. These trends can be further quantified by
means of a non-parametric Wilcoxon test. Rare missense muta-
tions associated with AD diseases are significantly more likely to
occurwithin domains than are raremissense variants seen in the
1000 Genomes (P = 2.8 × 10−15, Wilcoxon test, AD median = 55%,
AD mean = 55%, 1000G median = 23%, 1000G mean = 31%). Rare
missense mutations associated with AR diseases also exhibit
this pattern (P = 4.5 × 10−4, Wilcoxon test, AR median = 40%, AR
mean = 41%) although significantly less so than those associated

with AD diseases (P = 5.7 × 10−4, Wilcoxon test). In addition to
these tests of mutations in individual proteins, a global analysis
of all mutations shows that rare missense mutations more often
reside in domains inADdiseases (total ADmutations in domains
= 2728, total AD mutations = 6337, percent AD mutations in
domains = 43.0%) than in AR diseases (total AR mutations in
domains = 1771, total ARmutations = 6493, percent ARmutations
in domains = 27.3%) (Fisher one-sided P = 9.2 × 10−79). Generally,
as previously documented (15–17) disease mutations (AD union
AR) more often reside in domains than in controls (total control
mutations in domains = 24 663, total control mutations = 113 547,
percent control mutations in domains = 21.7%) (Fisher one-sided
P = 6.7 × 10−233).

Disease versus control comparison of domain occupancy
reveals proteins with significant differential clustering

Next, we considered whether domain occupancy could be ap-
plied to analysis of individual proteins to differentiate clustering
patterns of rare missense disease mutations and control var-
iants. We applied Fisher’s exact test to each protein in the AD
and AR sets and compared mutation clustering patterns in dis-
ease versus controls (1000G). We identified four genes with a

Figure 2. Statistical test of raremissense variant ormutation clustering within proteins. (A) Empirical CDF of proportion of mutations residing in a domain per protein. (B)
QQ plot of raw P-values for Fisher’s exact testing to examine enrichment ofmutationswithin domains in disease versus in controls. (C) Empirical CDF of CLUMP scores per

protein. (D) QQ plot of raw P-values for permutation testing to examine lower CLUMP scores in disease versus controls. Genes listed are those that attained a level of

significance after BH correction.
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significant number of domain mutations in the AD dataset and
two genes in the AR dataset (Table 1), and these genes appear
as outliers in a quantile–quantile (QQ) plot of raw P-values
(Fig. 2B). AD genes were NOTCH3 in cerebral AD arteriopathy
with subcortical infarcts and leukoencephalopathy [CADASIL, P
= 2.77 × 10−3, Benjamini-Hochberg (BH) correction], KRT14 in epi-
dermolysis bullosa simplex (P = 4.24 × 10−3, BH), TP63 in ankylo-
blepharon-ectodermal defects-cleft lip/palate (AEC syndrome,
P = 6.29 × 10−3, BH) and RUNX2 in cleidocranial dysplasia (P = 6.57
× 10−3). AR genes were EYS in retinitis pigmentosa (P = 3.9 × 10−3,
BH) and CFTR in cystic fibrosis (P = 0.03, BH) (Fig. 2B). The general
trends seen in the Wilcoxon test persisted even after these out-
liers were removed (AD versus 1000G P = 9.4 × 10−14, AR versus
1000G P = 1.0 × 10−3 and AD versus AR P = 1.0 × 10−3).

CLUMP analysis reveals increased clustering
of AD disease mutations

Whereas rare missense variants that occur in domains are more
likely to have more influence on protein activity than those oc-
curring outside of domains, many proteins do not have complete
domain annotations (18). We further considered whether the
mutation clustering trends defined by domain occupancy
would persist if clustering was defined by an unbiased approach.
To this end,we generated CLUMP scores for all proteins in theAD,
AR and 1000 Genomes data. The empirical CDFs of CLUMP scores
for AD disease, AR disease and controls (1000G) show a similar
trend to the domain occupancy scores, although the three sets
are not as well separated across the full range of CLUMP scores
(Fig. 2C). However, the differences between the three sets re-
mained statistically significant. Proteins with AD mutations ex-
hibited lower scores (more clustering) than 1000 Genomes
(P = 3.1 × 10−12) and AR (P = 8.4 × 10−4, Wilcoxon) proteins and AR
proteins are themselves more localized than 1000 Genomes
(P = 0.03, Wilcoxon).

Disease versus control comparison of CLUMP scores
reveals proteins with significant differential mutation
clustering

To assess the statistical significance of CLUMP scores, we applied
permutation testing to each protein in the AD and AR sets and
compared CLUMP scores in disease versus controls (1000G). This
analysis identified nine genes with significantly lower CLUMP
scores (increased clustering) in the AD dataset and five genes in
theARdataset (Tables 2). Twoof theADgeneswere also identified
in the domain occupancy analysis (TP63 and RUNX2). All signifi-
cant genes appear as outliers in a QQ plot of raw P-values
(Fig. 2D). AD genes were RUNX2 in cleidocranial dysplasia,
SH3BP2 in cherubism, TP63 in ectrodactyly, ectodermal dysplasia,
clefting (EEC) syndrome, SCN9A in primary erythermalgia, NOD2
in Blau syndrome, CHD7 in CHARGE syndrome, FBN1 in aortic
aneurysm, APOB in hypercholesterolemia and GJB2 in keratitis-
ichthyosis-deafness syndrome. AR geneswereDYSF in limb girdle
muscular dystrophy, USH2A in Usher Syndrome, CRB1 in Leber
congenital amaurosis, SMARCAL1 in Schimke immuno-osseous
dysplasia and PAH in phenylketonuria (Fig. 2D). For CLUMP scores,
the general trends seen in the Wilcoxon test also persisted after
outliers were removed (AD versus 1000G P = 2.5 × 10−10, AR versus
1000G P = 0.06, AD versus AR P = 2.3 × 10−3).

For some of these AD genes, evidence of specific protein func-
tion affected by a mutation cluster has been previously recog-
nized. In cleidocranial dysplasia, mutations in the transcription
factor RUNX2 cluster in the Runt domain, interfering with DNA

binding (19); in EEC syndrome,mutations in the transcription fac-
tor TP63 cluster in the DNA binding domain, disrupting DNA
binding (20); and in Blau syndrome, mutations in NOD2 cluster
at its ATP-binding site and within its helical domain, dysregulat-
ing hydrolysis and autoinhibition, respectively (21).

Proteins exhibiting increased clustering in Mendelian
diseases

Of the genes whose protein products were identified to have sig-
nificantly increased clustering when compared with controls,
therewere some that were already known to either localize in do-
mains or cluster in a specific region of the protein. This included
RUNX2 in Clediocranial dysplasia (MIM 119600), the TP63 gene in
the AEC and EEC syndromes (MIM 603273), SH3BP2 in Cherubism
Figure 3 (MIM 118400) and KRT14 in Epidermolysis bullosa
simplex (MIM 148066). Our results also support the presence of
a clustering pattern in the first 60 amino acid residues of the
Keratitis-ichthyosis-deafness syndrome GJB2, which was previ-
ously observed in a small study of 10 patients (22).

AD mutations are bioinformatically predicted to be more
pathogenic than AR

Wehave developed and published a bioinformatic variant patho-
genicty classifier called the Variant Effect Scoring Tool (VEST),
which outperformed SIFT or PolyPhen2 on a carefully curated
benchmark set (5-fold gene holdout cross-validation cite) by a
small margin (23). VEST scores range from 0 to 1 with the most
having a score of 1. When we ran VEST on AD and AR variants,
we found that AD variants were overall more pathogenic than
AR variants (Wilcoxon one-sided P = 4.2 × 10−10). In addition, we
found the clustered/domain variants to be more pathogenic
than non-clustered/non-domain variants (Wilcoxon one-sided
P = 3.2 × 10−3).

Discussion
Avery large number of raremissense variants are now being dis-
covered by high-throughput sequencing in an assortment of
human disease studies. Identifying those that are pathogenic or
which contribute to disease remains very challenging. We have
previously shown that visualizing the distribution of missense
variants in a given protein sequence can be informative in rela-
tion to identifying potentially causal variants (24). However,
such visualization does not provide quantitative assessment of
clustering patterns and it cannot be applied in a high-throughput
setting. In this work, we present twomethods for the rapid deter-
mination ofmutation clustering patterns and their statistical sig-
nificance. The first method is a domain occupancy score, which
considers the fraction of variants in a protein that occur within
annotated domains. This score is necessarily biased, because it
depends on existing knowledge of those protein regions consid-
ered to comprise functional domains, and it may miss function-
ally important regions that occur outside of domains. The second
method is the CLUMP score, which performs unsupervised clus-
tering of amino acid residue positions where variants occur,
without any prior knowledge of their functional importance.
Interestingly, we observed remarkably similar results with both
methods: proteins linked to AD diseases harbor significantly
more clustering of diseasemutations than those linked to AR dis-
eases, and both AD and AR disease proteins exhibit more cluster-
ing of thesemutations than controls from 1000G.Moreover, these
trends are not driven by a few outliers, as they persist even when
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the 18 genes with the most significant P-values in our Fisher’s
exact test and permutation test were removed.

It has been shown in some cases, that loss-of-function muta-
tions (nullomorphs and hypomorphs) exhibit less clustering in
protein sequence than hypermorphs and neomorphs (3,4), but
to our knowledge, this is the first study to systematically assess
these patterns with respect to rare missense mutations causing
human inherited disease. The search for new Mendelian genes
throughwhole exomeor genome sequencing of patients has gen-
erally been focused on loss-of-function mutations (25), which
have the advantage of beingmore readily interpretable. Bioinfor-
matics scoring of missense mutation deleteriousness is also
widespread in analysis pipelines, and features such as inter-
species evolutionary conservation at a given mutation position
implicitly identify amino acid substitutions that are damaging
to that protein (26,27). Often, researchers are faced with multiple
rare missense variants in a gene of interest, none of which have
been assessed to be damaging by popular bioinformatics tools.
Our results support the idea that many of these variants may
be important to Mendelian disease, but could be mutations that
cause a protein gain-of-function and are inherited in an AD
inheritance pattern.

We have confirmed that the clustering patterns of rare mis-
sense mutations are systematically associated with mode of in-
heritance, and this pattern was robust with respect to whether
clustering was defined by occurrence in protein domains of
known functional importance or by an unbiased clustering
approach. Our results are consistent with the notion that AD dis-
ease genes harbor a mixture of deleterious and gain-of-function
rare missense mutations, whereas AR disease genes harbor only
deleterious rare missense mutations.

Further, these results suggest that sequencing studies of spe-
cific disease genes could benefit by testing for non-random clus-
tering of rare missense variants. These clusters may provide
insights into the molecular basis of inherited diseases, and
such testingwill becomemorepowerful as sample sizes increase.

Materials and Methods
Generation of a high-quality list of diseasemutations and
mode of inheritance

A list of 61 537 missense mutations causing inherited disease
(DM) and occurring on autosomes was downloaded from the

Table 2. Proteins with significantly lower CLUMP scores in AD and recessive rare, missense mutations than in controls

Protein Gene Differential CLUMP score Dataset P-Value (BH corrected P-value)

NP_001139328.1 SH3BP2 2.86 Cherubisma <1 × 10−4 (<1 × 10−4)
NP_001019801.3 RUNX2 2.38 Cleidocranial dysplasiaa <1 × 10−4 (<1 × 10−4)
NP_003713.3 TP63 1.72 EEC syndromea <1 × 10−4 (<1 × 10−4)
NP_002968.1 SCN9A 3.5 Erythermalgia, primarya 3.00 × 10−4 (4.73 × 10−3)
NP_071445.1 NOD2 3.62 Blau syndromea 4.00 × 10−4 (5.04 × 10−3)
NP_060250.2 CHD7 2.6 CHARGE syndromea 1.70 × 10−3 (0.02)
NP_000129.3 FBN1 −0.4 Aortic aneurysma 2.10 × 10−3 (0.02)
NP_000375.2 APOB 3.72 Hypercholesterolemiaa 2.60 × 10−3 (0.02)
NP_003995.2 GJB2 1.52 Keratitis-ichthyosis-deafness syndromea 5.40 × 10−3 (0.04)
NP_996816.2 USH2A 3.81 Usher syndromeb <1 × 10−4 (<1 × 10−4)
NP_001124459.1 DYSF 3.05 Muscular dystrophy, limb girdleb <1 × 10−4 (<1 × 10−4)
NP_957705.1 CRB1 1.44 Leber congenital amaurosisb 1.10 × 10−3 (0.03)
NP_001120679.1 SMARCAL1 2.3 Schimke immuno-osseous dysplasiab 1.20 × 10−3 (0.03)
NP_000268.1 PAH −0.32 Phenylketonuriab 2.00 × 10−3 (0.03)

Shown are differential CLUMP scores between controls and disease variants of rare (minor allele frequency <0.01 based on controls) missense variants. The control data

are from the 1000 Genomes European ancestry data.
aAutosomal dominant.
bAutosomal recessive.

Table 1. Proteins with significant enrichment of AD and recessive rare, missense mutations in domains

Protein Gene Total controlmutations
(% in domain)

Total diseasemutations
(% in domain)

Disease P-Value (BH corrected P-value)

NP_000426.2 NOTCH3 20 (25%) 209 (99%) CADASILa 5.78 × 10−5 (2.77 × 10−3)
NP_000517.2 KRT14 5 (0%) 24 (92%) Epidermolysis bullosa

simplexa
1.77 × 10−4 (4.24 × 10−3)

NP_003713.3 TP63 5 (0%) 25 (88%) AEC syndromea 3.93 × 10−4 (6.29 × 10−3)
NP_001019801.3 RUNX2 6 (17%) 52 (88%) Cleidocranial dysplasiaa 5.48 × 10−4 (6.57 × 10−3)
NP_001136272.1 EYS 17 (18%) 20 (85%) Retinitis pigmentosab 5.56 × 10−5 (3.89 × 10−3)
NP_000483.3 CFTR 31 (48%) 533 (77%) Cystic fibrosisb 9.68 × 10−4 (0.03)

Shown are counts in annotated HPRD domains or not in domains of rare (minor allele frequency <0.01 based on controls) missense variants. The control data are from

the 1000 Genomes European ancestry data.
aAutosomal dominant.
bAutosomal recessive.
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HGMD Professional version 2014.2 on June 10, 2014. In this study,
we focused on autosomal diseases and not X-linked due to the
lack of information on sample sex in this dataset. For eachmuta-
tion, we first parsed all abstracts in PubMed (http://www.
ncbi.nlm.nih.gov/pubmed/) to identify the mode of inheritance
associated with the gene in which the mutation occurred, using
a custom script and BioPython libraries (28). For each entry, we
generated a Boolean query of the architecture geneName AND dis-
easeName AND autosomal (example: CFTR AND cystic fibrosis AND
autosomal). Abstracts that matched the query were then parsed
for the keywords ‘autosomal dominant’ and ‘autosomal reces-
sive’. We counted the number of abstracts containing ‘autosomal
dominant’, ‘autosomal recessive’ or which did not contain either
of these terms. An initial assignment of each entry to the AD
class, the AR class or as ‘not determined’ (ND) was performed
by a vote of abstracts matching these keywords, so that

ei¼
AD if #fADg>#fARg
AR if #fARg>#fADg
ND if #fADg¼#fARg;

8<
: ð1Þ

where ei is an entry consisting of a gene/disease pair, #{AD} is the
number of abstracts that contained the keywords ‘autosomal
dominant’ and #{AR} is the number of abstracts that contained
the keywords ‘autosomal recessive’. Because our study focuses
on Mendelian disease, we filtered out any entries with a cancer
disease association (containing the keywords cancer, sarcoma,
carcinoma, leukemia, lymphoma, blastoma, glioma, melanoma,
myeloma, tumor, metastasis, adenoma, neoplasia or cytoma). At
this stage, 3539 abstracts remained. To obtain high confidence
calls, we further required that an entry’s classification [Eq. (1)]
was supported by at least 12 or more abstracts and that the clas-
sification was supported by a sizeable majority (75%) of the ab-
stracts. These criteria filtered out 80% of abstracts identified by
our initial queries, yielding a high-quality set of 706 abstracts
that were tractable for manual inspection. Next, every entry
was manually checked for correctness of our class assignment.
For each entry, we first checked for confirmation in GeneReviews
(GeneTests 1999–2014), followed by OMIM (http://omim.org/) and
the primary literature.Manually confirmed entrieswere retained.

Control dataset

The 1000 Genomes Project dataset was obtained from ftp://ftp-
trace.ncbi.nih.gov/1000genomes/ftp/ on July 18, 2014. We se-
lected only unrelated individuals of European ancestry from the
CEU, FIN, GBR, IBS and TSI populations.

Statistical tests for clustering of mutations and variants

To ascertain mutation clustering patterns in a gene product, we
adopted two approaches; the first was designed to look at the
fraction of mutations occurring in annotated protein domains
from the HPRD (domain occupancy score) and the second was the
unbiased CLUMP score.

For a protein p, its domain occupancy count is

Cp ¼
Xn

i¼1

wiXiZi; ð2Þ

where Xi is amutated amino acid residue position,wi is the count
of unique amino acid substitutions at that position in the data of
interest, Zi is binary random variable that is set to 1 when Xi is in
an annotated protein domain, and 0 otherwise, and the sum is

over the n mutated amino acid residue positions in the protein.
Likewise,

CControls
p ¼

XnControls

i¼1

wControls
i XControls

i Zi; ð3Þ

CDisease
p ¼

XnDisease

i¼1

wDisease
i XDisease

i Zi; ð4Þ

and all variables have the same meaning as in Eq. (2) but are
assigned values based only on either variants in the control set
or mutations in the disease set.

For a protein p, its domain occupancy score (the fraction of
mutations occurring in domains) is

Dp ¼ Cp

n
; ð5Þ

and likewise

DControls
p ¼ CControls

p

nControls
; ð6Þ

DDisease
p ¼ CDisease

p

nDisease
: ð7Þ

We compute DControls
p for all proteins in the control set and

DDisease
p for all proteins in the disease set, and we apply a one-

sided Wilcoxon test to ascertain whether the scores of proteins
in the disease set are significantly higher than those in the
control set. Next, to assess whether domain occupancy is signifi-
cantly higher in the disease set than in the control set, for each
protein we compute a one-tailed Fisher’s exact test, comparing
counts of CDisease

p , ðnDisease � CDisease
p Þ, CControls

p and ðnControls�
CControls
p Þ. Multiple testing correction was performed with the BH

algorithm and corrected P-values <0.05 were considered
significant.

The CLUMP score applies the partitioning around medoids
(PAM) clustering algorithm (29) to a list of (integer-indexed)
amino acid residue positions. We use the pamk implementation
in the fpc package in R. The number of clusters k is not specified
in advance but is estimated by varying k over multiple PAM runs
and selecting the k* that yields the maximum average silhouette
width. Thus, both the number of clusters and a ‘medoid’ or repre-
sentativemember of each cluster are estimated by the algorithm.
Next, for each cluster i, we compute the distance between each
member of the cluster and its medoid and take a log sum of
these distances over all clusters. The final CLUMP score Sp for a
protein p is

Sp ¼
Xk�

i¼1

Xni

j¼1

lnðjXij �mij þ 1Þ
ni

; ð8Þ

whereXij is the position ofmutation j in cluster i,mi is the position
of themedoid of cluster i, ni is thenumberofmutations in cluster i
and k* is the total number of clusters in the gene. The maximum
clustering possible is when all observed mutations in all clusters
occur at the same position as the cluster medoid, yielding a score
of 0. In general, a protein with highly localized mutations will
have a low score, whereas a proteinwithmutations spread across
its protein sequence will have a high score.
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To assess the statistical significance of Sp [Eq. (8)], we compute
for each gene’s protein product p, SControlsp and SDiseasep as

SControlsp ¼
Xk�Controls

i¼1

Xni
Controls

j¼1

lnðjXControls
ij �mControls

i j þ 1Þ
nControls
i

; ð9Þ

SDiseasep ¼
Xk�Disease

i¼1

Xni
Disease

j¼1

lnðjXDisease
ij �mDisease

i j þ 1Þ
nDisease
i

; ð10Þ

where all variables have the same meaning as in Eq. (8) but are
assigned values based only on either variants in the control set
or mutations in the disease set, i.e. nControls

i is the total number
of variants observed in the protein in the control set, nDisease

i

is the total number of mutations observed in the protein in the
disease set etc.

We compute SControlsp for all proteins in the control set and
SDiseasep for all proteins in the disease set, and we apply a one-
sided Wilcoxon test to determine if the scores of proteins in
the control set are significantly higher than those in the disease
set. Next, to assess whether SControlsp is significantly higher

than SDiseasep for individual proteins, we use the test statistic
ΔSp ¼ SControlsp � SDiseasep .

We simulate a null distribution of values ΔS∅p that would be
expected when the difference between SControlsp and SDiseasep is
due to random chance, by repeatedly samplingwith replacement
nControls
i positions in protein p (assuming that each position is

equally likely under the null hypothesis) and computing
ΔS∅1

p ;ΔS∅2
p ; : : :;ΔS∅N

p , where in this work N = 10 000. The esti-
mated P-value for ΔSp is then the fraction of times a value equal
to or greater than ΔSp is seen under the null. Finally, we use the
BH method (30) to correct for multiple testing.
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