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Abstract

Motivation: The biological pathways linking exposures and disease risk are often poorly understood.

To gain insight into these pathways, studies may try to identify biomarkers that mediate the exposure/

disease relationship. Such studies often simultaneously test hundreds or thousands of biomarkers.

Results: We consider a set of m biomarkers and a corresponding set of null hypotheses, where the

jth null hypothesis states that biomarker j does not mediate the exposure/disease relationship. We

propose a Multiple Comparison Procedure (MCP) that rejects a set of null hypotheses or, equiva-

lently, identifies a set of mediators, while asymptotically controlling the Family-Wise Error Rate

(FWER) or False Discovery Rate (FDR). We use simulations to show that, compared to currently

available methods, our proposed method has higher statistical power to detect true mediators. We

then apply our method to a breast cancer study and identify nine metabolites that may mediate the

known relationship between an increased BMI and an increased risk of breast cancer.

Availability and implementation: R package MultiMed on https://github.com/SiminaB/MultiMed.

Contact: joshua.sampson@nih.gov

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mediation analysis can be used to study how an exposure, E, affects

a disease, Y (Baron and Kenny, 1986; MacKinnon, 2008; Ten Have

and Joffe, 2012). In the simplest scenario, there is only a single puta-

tive mediator, M. In this scenario, mediation analysis tests whether

M is a true mediator and, if so, decomposes the total effect of E on

Y into a direct and indirect (i.e. via M) effect (Pearl, 2012; Robins

and Greenland, 1992; VanderWeele and Vansteelandt, 2014). In

other scenarios, there may be more than one possible mediator

(Daniel et al., 2015; Nguyen et al., 2015; Taguri et al., 2015). We

consider the scenario where a large number of biomarkers may po-

tentially mediate an exposure/disease association (Boca et al., 2014;

Chen et al., 2017; Huang and Pan, 2016) and we introduce proced-

ures for selecting a subset of those biomarkers to be designated as

probable mediators. The key is that the proposed procedures, devel-

oped for replicability analyses (Bogomolov and Heller, 2018), can

asymptotically control the Family-Wise Error Rate (FWER) or the

False Discovery Rate (FDR). Our motivation is a 836-person case/

control study of ERþbreast cancer where the goal is to identify the

subset of the 478 measured metabolites that are likely to be medi-

ators of the well-known association between higher BMI and an

increased risk of breast cancer (van den Brandt et al., 2000).

Although mediation analysis initially focused on scenarios with a

single mediator, mediation analysis has recently been extended for

scenarios with a small number of mediators. In this setting, the pos-

sible causal paths (e.g. E ! M1 ! M2 ! Y) can be fully enumer-

ated, the various indirect effects can be well defined using the

language of causal inference, and the assumptions needed to obtain
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unbiased estimates can be formulated (Daniel et al., 2015; Taguri

et al., 2015; VanderWeele and Vansteelandt, 2014). The next step is

to extend mediation analysis to scenarios where there is a large num-

ber of mediators, such as when the potential mediator is a high-

dimensional vector of voxels in an fMRI image (Chen et al., 2017;

Zhao and Luo, 2016), serum metabolite levels (Boca et al., 2014),

gene expression levels (Huang and Pan, 2016) or methylation levels

(Zhang et al., 2016). Towards this aim, methods have been designed

to test whether a set of biomarkers, considered together, mediate an

exposure/outcome association (Huang and Pan, 2016), to identify

the Direction of Mediation or the linear combination of biomarkers

that best captures the mediating effect (Chen et al., 2017), and to

model the relationship between exposure, biomarkers and outcome

(Zhang et al., 2016). Here, our objective is to add to this growing

body of literature by introducing a new multiple testing procedure

that identifies probable mediators, while controlling for false posi-

tive findings.

Our paper proceeds as follows. In Section 2, we start by describ-

ing our newly proposed procedures for identifying probable medi-

ators and competing procedures. We continue by describing the

simulations used to compare the procedures and then finish by

describing the motivating breast case cancer study. In Section 3,

we assess the performance of these procedures on the simulated

datasets and identify possible mediators in our motivating study.

In Section 4, we summarize our findings, describe the novelty of our

method in the context of the current literature, and explain why our

method can only identify ‘probable’ mediators.

2 Materials and methods

2.1 Definitions
Let us consider n individuals. For individual i, let Ei be the exposure,

Yi be the outcome, and ~Mi� ¼ fMi1; . . . ;MimgT be a vector of m po-

tential mediators. For this paper, our potential mediators will al-

ways be biomarkers and we will use the terms interchangeably. We

will say that a biomarker j is a mediator if Ei is associated with Mij

and, conditional on Ei, Yi is associated with Mij. To formalize this

statement, we define two null hypotheses

Að Þ Hj
01 : Ei??Mij (1)

Bð Þ Hj
02 : Yi??MijjEi (2)

We therefore say that biomarker j is a mediator if and only if the

two null hypotheses, Hj
01 and Hj

02, are false. We note that, in our

primary discussion, we are not considering the stricter null hypoth-

esis that outcome and biomarker j are independent conditional on

the exposure and the set of all other biomarkers, as defined by

B�ð Þ Hj�
02 : Yi??MijjEi; ~Mi �jð Þ (3)

where ~Mi �jð Þ ¼ fMi1; . . . ;Mi j�1ð Þ;Mi jþ1ð Þ;Mimg.
Let the combined data for individual i be denoted by

~Di ¼ Ei;Yi;Mi1; . . . ;Mim½ �T , and let the complete dataset be denoted

by the n� mþ 2ð Þ matrix D ¼ ~D1; . . . ; ~Dn

h iT
. The arrows (e.g. ~D)

indicate the corresponding variable is a vector. Furthermore, let

x� ¼ f1; . . . ;mg and let X be the 2m possible subsets of x�. Then we

define a Multiple Comparison Procedure (MCP) to be a function,

from <n mþ2ð Þ to X, that inputs the data and outputs the set of bio-

markers that are likely to be mediators.

Let x1 be the set of m11 biomarkers that are mediators and x0 be

the set of m0 ¼ m�m11 biomarkers that are not mediators. For a

set x 2 X, we let C xð Þ be the number of elements in x and we let

V xð Þ be the number of elements in x \ x0. We next define the

Family-Wise Error Rate (FWER) of an MCP to be E 1 V > 0ð Þ½ �
and the False-Discovery Rate (FDR) to be E V=max C; 1ð Þ½ �,
where the expectation is over D and we have used the abbreviations

C ¼ C MCP Dð Þð Þ and V ¼ V MCP Dð Þð Þ.

2.2 Models and assumptions
We will first assume that the biomarkers and outcome are continu-

ous variables that can be expressed as

Mij ¼ b0j þ bjEi þ �Mij (4)

Yi ¼ c�0 þ c�EEi þ
X

j

c�j Mij þ ��Yi (5)

where �Mij and ��Yi are random error terms with �Mij??Ei 8 j and

��Yi??f ~Mi�;Eig. Equation 5 further implies

Yi ¼ c0 þ cEEi þ cjMij þ �Yij (6)

Assuming Equations 4 and 6 are true, the two null hypotheses can

be restated as

Að Þ Hj
01 : bj ¼ 0 (7)

Bð Þ Hj
02 : cj ¼ 0 (8)

For each biomarker, we can test the two hypotheses by first fitting

Equations 4 and 6 using linear regression to estimate bb j and bc j and

their standard errors brbj and brcj. We can next calculate their Wald

test statistics, Z1j ¼
ffiffiffi
n
p bbj=brbj and Z2j ¼

ffiffiffi
n
p bc j=brcj. We can then cal-

culate the corresponding P-values assuming, if appropriate, that the

test statistics follow a t-distribution with the appropriate degrees of

freedom or, more generally, that the asymptotic normal approxima-

tion holds, P1j ¼ 2U �jZ1jj
� �

and P2j ¼ 2U �jZ2jj
� �

where U �ð Þ is the

cumulative normal distribution. We note that that the estimated par-

ameters from linear regression are consistent estimates for bj and cj

even if Mij and Yij are not normally distributed (Lumley et al.,

2002). Furthermore, we note that stating the marginal relationship

between a single biomarker and the outcome can be described by

Equation 6 does not preclude a more complex relationship where

multiple correlated biomarkers affect the outcome, as shown in our

simulations.

We will also relax the assumptions and allow the outcome to be

a binary variable. We will assume that a probit model holds, where

Yi ¼ 1 Y
†

i > 0
� �

and

Y
†

i ¼ c�0 þ c�EEi þ
X

j

c�j Mij þ ��Yij (9)

which implies

Y
†

i ¼ c0 þ cEEi þ cjMij þ �Yij (10)

We now let bcj be the estimate from fitting model 10. In this scenario,

the two null hypotheses can, again, be restated by Equations 7

and 8. In fact, the requirement that the probit model holds is un-

necessary, and we only require that the E bcj

h i
¼ 0 for biomarkers

satisfying assumption Hj
02. Then, the only changes for a prospect-

ively collected binary outcome is that we would obtain bc j and P2j by

probit regression. For retrospective sampling (i.e. case/control stud-

ies), we must also perform weighted regressions to estimate bEj

where a sample’s weight is inversely proportional to the probability
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of being sampled. In practice, epidemiologists will often choose to

use logistic regression instead of probit regression for estimating the

conditional association between biomarker and outcome. We have

chosen to present our theoretical results using the probit link since

the multi-variable model (i.e. Equation 9) and the marginal model

(i.e. Equation 10) are consistent with each other in probit regression

and cj ¼ 0 implies the null hypothesis of Equation 2. However, in

practice, and as further discussed in the Supplementary Material, we

have found that MCP’s still perform well when using the logit link.

With the above assumptions, by a combination of theoretical

and empirical results, we are able to show that FWER and FDR for

our proposed procedures are maintained in practical settings.

2.3 Multiple comparison procedures
We first describe two existing MCPs that are designed to achieve a

specified FWER: MCPB and MCPP, where the subscripts ‘B’ and ‘P’

abbreviate ‘Bonferroni’ and ‘Permutation’, respectively. We then

introduce three new MCPs, MCPS, MCPWY
S and MCPMV

S that are

designed to achieve, asymptotically, a specified FWER, where the

subscript ‘S’ abbreviates ‘Subset’ and the superscripts ‘WY’ and

‘MV’ abbreviate ‘Westfall-Young’ and ‘Multivariate’, respectively.

Finally, we introduce an MCP, MCPD, that is designed to achieve,

asympotically, a specified FDR in realistic scenarios, where the ‘D’

abbreviates ‘false Discovery rate’.

2.3.1 MCP—Bonferroni MCPBð Þ
We claim biomarker j to be a mediator if P1j � a=m and

P2j � a=m, where a is the targeted FWER. MCPB Djað Þ ¼
fj : P1j � a=m;P2j � a=mg. We further define a Bonferroni-ad-

justed P-value PBj ¼ m�max P1j;P2j

� �
and restate the definition as

MCPB Djað Þ ¼ fj : PBj � ag:

2.3.2 MCP—permutation MCPPð Þ
We claim biomarker j to be a mediator if PPj � a, where a is a con-

stant and PPj is the P-value calculated by our prior permutation ap-

proach (Boca et al., 2014). MCPP Djað Þ ¼ fj : PPj � ag. Briefly, in

this approach, we focus on the product jbq E;Mj

� �bq Mj;YjE
� �

j, where

bq E;Mj

� �
is the Pearson correlation between E and Mj, and bq

Mj;YjE
� �

is the Pearson correlation between Mj and Y given E. We

then use permutations to estimate the distribution of the maxj

jbq E;Mj

� �bq Mj;YjE
� �

j
� �

under the hypothesis that there is no medi-

ator and define PPj to be the probability of observing a value larger

than jbq E;Mj

� �bq Mj;YjE
� �

j under this distribution.

2.3.3 MCP—subset MCPSð Þ
For the Bonferroni procedure, MCPB, each P-value must meet the

strict threshold of a=m. Here, we suggest a different method,

described in Figure 1, and based on work by Bogomolov and Heller

(2018) restricts the testing of each hypothesis to a subset of bio-

markers and therefore requires dividing a by a number smaller than

m. We let t1 be a threshold (i.e. scalar value) for a significant expos-

ure/mediator relationship, and define xS1 ¼ fj : P1j � t1g and S1

¼ C xS1ð Þ where C �ð Þ is the cardinality of a set. Similarly, let t2 be a

threshold for a significant mediator/outcome association, and define

xS2 ¼ fj : P2j � t2g and S2 ¼ C xS2ð Þ. We then claim biomarker j

to be a mediator if P1j � 0:5a=S2; P2j � 0:5a=S1 and j 2 xS1 \ xS2.

MCPS Djt1; t2; að Þ ¼ fj : P1j � min t1;0:5a=S2ð Þ;P2j � min t2; 0:5a=ð
S1Þg . We further define a subset-adjusted P-value PSj ¼ 2max

S2P1j; S1P2j

� �
if P1j � t1 and P2j � t2, 1 otherwise. Note that MCPS

Djt1; t2; að Þ ¼ fj : PSj � ag: In practice, we set t1 ¼ t2 ¼ a=2 because

in order to be discovered by this procedure, P1j;P2j

� �
� a=2; a=2ð Þ.

We stress that our use of a Bonferroni-type threshold on a set of pre-

screened metabolites is only valid because the P-values used for screen-

ing (e.g. P-values assessing exposure/metabolite association) are

effectively independent of the P-values used in the second step (e.g. P-

values assessing the metabolite/outcome association). Furthermore, we

gain statistical power, compared to traditional Bonferroni approaches

by eliminating tests that are irrelevant (e.g. testing for exposure/bio-

marker associations for biomarkers not associated with the outcome).

2.3.4 MCP—subset, Westfall-Young MCPWY
S

� �
In the previously defined version of MCPS, the P-values must meet

Bonferroni-type thresholds, 0:5a=S2 and 0:5a=S1, in the second step.

However, we note that when the S2 metabolites in xS2 are highly

correlated, the threshold 0:5a=S2 would be conservative. A similar

statement applies to xS1 and 0:5a=S1. To construct an alternative

threshold, we borrow ideas from Westfall and Young (1993). We es-

timate the null distribution of minj2S2
P1j

� �
by a permutation proced-

ure, and then replace S2 by the approximate number of independent

biomarkers SWY
2 ¼ 0:5a=q2;0:5a where q2;0:5a is the 0:5� að Þth quan-

tile of this distribution. We similarly define a SWY
1 and denote the re-

sulting procedure by MCPWY
S Djt1; t2; að Þ ¼ fj : P1j � min t1;ð 0:5

a=SWY
2 Þ;P2j � min t2; 0:5a=SWY

1

� �
g.

2.3.5 MCP—subset, multivariate MCPMV
S

� �
For MCPS and MCPWY

S , we aim to detect mediators as defined by

Hj
01 and Hj

02. However, we might also consider replacing Hj
02 by

Hj�
02. Unfortunately, we have no procedure that offers theoretical

guarantees under the null Hj
01 and Hj�

02. Instead, we offer an ad-hoc

procedure that performs well in practice. Instead of modeling each

biomarker/outcome association marginally, we use stepwise regres-

sion. Specifically, we define P�2j as the P-value for biomarker j when

it is added to the multivariable biomarkers/outcome model (i.e. if

biomarker j is the third biomarker added, then P�2j is the P-value for

biomarker j when there are three biomarkers in the model). We then

define xMV
S2 ¼ fj : P�2j � t2g; SMV

2 ¼ C xMV
S2

� �
and MCPMV

S Djð t1; t2;

aÞ ¼ fj : P1j � min t1; 0:5a=SMV
2

� �
;P�2j � min t2;0:5a=S1ð Þg.

Fig. 1. Diagram of the MCPS approach showing that the procedure first se-

lects two sets of biomarkers and then selects the shared subset that meet

additional criteria
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2.3.6 MCP—subset, other modifications

Here, it is worth commenting on two other possible modifications

to MCPS, although neither will be further discussed in this paper.

First, we could claim biomarker j to be a mediator if P1j � ca=S2;

P2j � 1� cð Þa=S1 and j 2 xS1 \ xS2, where c is any value in (0, 1).

For example, letting c<0.5 could be advantageous if exposure/

mediator associations were far stronger and would be easily detect-

able at more stringent thresholds. Second, instead of prespecifying t1
and t2, we could choose thresholds so that the selected sets coincide

with the rejected hypotheses in the second step.

2.3.7 MCP—FDR (MCPD)

This procedure, based on work by Bogomolov and Heller (2018),

builds on the adjusted P-values of MCPS. For a given dataset, we

calculate our subset-adjusted P-values fPS1; . . . ;PSmg as in Section

2.3.3. We then claim biomarker j 2 xS1 \ xS2 to be a mediator if

PDj ¼ minj0 :PSj0 �PSj

PSj0

rank PSj0
� � � a; (11)

where PDj is the FDR-adjusted P-value and rank PSj

� �
is the rank of

PSj for biomarker j 2 wS1
\wS2

. Note that MCPD Djt1; t2; að Þ ¼
fj : pDj � ag.

2.4 Theoretical properties
We show that the asymptotic FWER for MCPS is less than or equal

to a (see Appendix for details):

THEOREM 1: For MCPS �jt1; t2; að Þ, if A1 holds and fMi1; . . . ;Mim;

Yig follow Equations 4 and either 6 or 10, then limn!1FWER � a.

where Assumption A1 is defined by

ASSUMPTION A1: If Yi??Mij† jEi then Yi??Mij† jfEi;Mij0 g 8
fj†
; j0 : cj† ¼ 0; bj0 ¼ 0g.

We note that A1 is satisfied by many parametric models.

Moreover, in the Appendix, we show that the asymptotic FDR of

MCPD is less than or equal to a:

THEOREM 2: For MCPD �jt1; t2; að Þ, if Mij0 ??Mij† jE 8 j0; j
† 2 f1;

. . . ;mg holds, limn!1FDR � a.

We note, without proof, that a similar claim will also hold if

blocks of putative mediators are conditionally independent and we

let the number of blocks go to infinity.

In Section 3.1 of the Results and in the Supplementary Material,

we show in simulations that the FWER and FDR are controlled at

the nominal level for finite n and dependent mediators.

2.5 Simulations
We compare the performance of the MCPs in variations of the fol-

lowing simulated study. We consider a study with 500 individuals

and m biomarkers, where m 2 f110; 1010g. In the first set of simu-

lations, we let Ei 	 N 0; 1ð Þ, Mij follow Equation 4 with

�Mij 	 N 0;r2
Mj

� �
, and

Yi ¼ c�0 þ c�EEi þ
X

j

c�j Mij þ ��Yi (12)

with �Yij 	 N 0; r2
Y

� �
where r2

Mj and r2
Y were chosen so

var Mij

� �
¼ var Yið Þ ¼ 1. We chose to fix the marginal variance at 1

because we believe that it reflects real datasets, where bio-

markers and outcome are normalized. We let m00 be the number

of biomarkers with bj ¼ c�j ¼ 0, m10 be the number with

bj ¼ 0:18; c�j ¼ 0, m01 be the number with bj ¼ 0; c�j ¼ 0:18 and m11

be the number with bj ¼ c�j ¼ 0:18 (i.e. m11 is the number of true

mediators). We vary the chosen values fm00;m10;m01;m11g, allow-

ing m10 to be large to reflect our motivating example where many

biomarkers were likely associated with the exposure. For the pri-

mary analysis, all biomarkers are independent conditional on E. For

the secondary analyses, with the exception of true mediators, blocks

of biomarkers were correlated. We let R0 be block diagonal, with

blocks of size 5 (m¼110) or 20 (m¼1010), and let the off-diagonal

elements be either 0, 0.5 or 0.9. If the correlation would result in

var(Y) exceeding 1, we reduced c�j . Biomarkers associated with E or

Y were maximally spread across blocks with the rule that no block

contained biomarkers associated with both E and Y. This restriction

prevents the creation of ‘potential mediators’, where hypotheses 1

and 2 are both false, that would not qualify as ‘true mediators’ (see

Section 4 for details). In a second set of simulations, we consider a

binary outcome, Y�, with Y�i ¼ 1 if Yi > 0, 0 otherwise. For each

scenario, defined by outcome type, m and fm00;m10;m01;m11g, we

run 1000 simulations. In null simulations, we let m11 ¼ 0 and calcu-

late the FWER as the proportion of simulations where our MCP se-

lects at least one biomarker at a ¼ 0:05. In non-null simulations, we

calculate power as the average proportion of the 10 true mediators

that are selected by our MCP set to a ¼ 0:05 and we calculate the

observed FDR when the FDR threshold is set to 0.2. Note, with

1000 simulations, the standard error of our estimated FWER should

be no larger than 0:007 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:05� 1� 0:05ð Þ=1000

p
.

2.6 Breast cancer study
This study, nested inside the Prostate, Lung, Colorectal and Ovarian

Cancer Screening Study (PLCO), includes 418 estrogen-receptor

positive (ERþ) breast cancer cases and 418 controls matched on

study entry age (62 years), date of blood collection (63 months)

and hormone therapy use at baseline (Moore et al., 2017).

Non-fasting serum samples were collected at the first follow-up visit,

one-year post-baseline. Serum metabolites (<1 Kilodalton mo-

lecular weight) were measured by Metabolon Inc. using liquid

chromatography-tandem mass-spectrometry. Of the 1057 serum me-

tabolites measured, 478 were identified and present in at least 90% of

the population. Metabolite peaks were normalized by dividing by

batch median and then log transformed. All models were adjusted for

age at serum collection, race, hormone use, age of menarche, parity,

age of menopause, smoking and diabetes status. For purposes of sam-

ple weighting, the prevalence of ERþbreast cancer was 0.016.

3 Results

3.1 Simulations
The simulations demonstrate that the newly proposed MCPs have

good operating characteristics. First, under the null scenarios with

m11 ¼ 0, most MCPs achieved their targeted FWER of 0.05. These

results are summarized in Table 1 for conditionally independent bio-

markers and in Supplementary Tables for blocks of dependent bio-

markers. The exception is that the FWER for the permutation

approach could be as high as 0.07, an undesirable consequence of

not having theoretical guarantees on the error rate. In general, the

FWER was smallest for MCPB, which relied on Bonferroni correc-

tion for determining significance. Second, under all scenarios,

MCPD achieved its targeted FDR (Supplementary Tables).

The newly proposed MCPs tended to have higher power for de-

tecting true mediators. These results are summarized in Table 2 for

conditionally independent biomarkers and in Supplementary Tables
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for blocks of dependent biomarkers. In the majority of scenarios,

among all univariate approaches, MCPS and MCPWY
S slightly out-

performed MCPP despite having lower FWER in the null simula-

tions, but their relative performance depended on the exact

scenario. The MCPP test can select biomarkers with a single strong

association (i.e. the m10 and m01 biomarkers with one true associ-

ation) and biomarkers with two non-significant, but still modest, as-

sociations (i.e. the m00 biomarkers with P1j;P2j 
 0:1). Note, we

omit MCPWY
S from Tables 1 and 2, where biomarkers are independent,

because it yields identical results to MCPS. Furthermore, we found that

the multivariate approach resulted in higher power, as compared to the

univariate approaches, with MCPMV
S having the highest power in all

scenarios. We emphasize that there is no equivalent to the multivariate

approach, and no means for obtaining the corresponding increase in

power, using a permutation based method. As expected, MCPWY
S only

increased power, compared to MCPS, when there was significant cor-

relation (e.g. 0.9) among biomarkers and the total number of bio-

markers was large (e.g. 1010) (Supplementary Material). Given its

limited benefit and its failure to strictly control FWER in two

simulations (m ¼ m00 ¼ 110) with higher correlation (Supplementary

Tables S3 and S7), we do not recommend using MCPWY
S in practice. In

general, results were similar for the binary and continuous outcome.

In an attempt to mimic our Breast Cancer study, we simulated

data with a large number of exposure/metabolite associations.

When m¼1010 and m10 ¼ 310, we found that the benefit of our

newly proposed MCPS approach, as compared to the Bonferroni ap-

proach, was less pronounced. Intuitively, this decline occurs because

when S1 is large, P2j will have to achieve near Bonferroni-level sig-

nificance for the biomarker to qualify as a mediator.

3.2 Breast cancer study
The 478 metabolites were strongly associated with both BMI and

breast cancer status, with 218 of the BMI/metabolite associations

having a P-value below 0.05 and 103 of the breast cancer/metabolite

associations having a P-value below 0.05. We found 24 metabolites,

listed in Table 3, which were potential mediators connecting BMI

and breast cancer risk (FDR<0.2). Of those 24, only 2, 16-a-

Table 2. Power from four multiple comparison procedures MCPB, MCPP, MCPS and MCP MV
S

Continuous outcome Binary outcome

m00 m10 m01 m11 MCPB MCPP MCPS MCPMV
S MCPB MCPP MCPS MCPMV

S

100 0 0 10 0.54 0.68 0.72 0.81 0.30 0.49 0.49 0.58

85 15 0 10 0.54 0.61 0.68 0.80 0.28 0.37 0.40 0.49

60 40 0 10 0.55 0.54 0.64 0.79 0.28 0.30 0.34 0.43

85 0 15 10 0.54 0.58 0.68 0.77 0.28 0.42 0.44 0.65

70 15 15 10 0.54 0.54 0.64 0.77 0.25 0.33 0.36 0.66

45 40 15 10 0.55 0.50 0.60 0.76 0.29 0.30 0.33 0.66

1000 0 0 10 0.28 0.69 0.61 0.77 0.11 0.47 0.34 0.44

985 15 0 10 0.28 0.60 0.58 0.74 0.10 0.37 0.31 0.41

690 310 0 10 0.27 0.33 0.45 0.66 0.10 0.15 0.18 0.23

985 0 15 10 0.27 0.57 0.57 0.77 0.11 0.43 0.35 0.65

970 15 15 10 0.26 0.53 0.54 0.75 0.11 0.36 0.32 0.63

675 310 15 10 0.27 0.33 0.44 0.76 0.08 0.12 0.16 0.42

Note: The first four columns show the number (m00) of biomarkers associated with neither exposure nor outcome, the number (m10) associated with only the

exposure, the number (m01) associated with only the outcome and the number (m11) associated with both exposure and outcome. The remaining columns show

the power, defined to be the mean proportion of true mediators identified, when a ¼ 0:05. Details of the simulation can be found in Section 2.

Table 1. FWER from four multiple comparison procedures MCPB, MCPP, MCPS and MCP MV
S

Continuous outcome Binary outcome

m00 m10 m01 m11 MCPB MCPP MCPS MCPMV
S MCPB MCPP MCPS MCPMV

S

110 0 0 0 0.00 0.03 0.01 0.01 0.00 0.01 0.00 0.00

95 15 0 0 0.00 0.04 0.01 0.01 0.00 0.03 0.01 0.01

70 40 0 0 0.01 0.07 0.03 0.03 0.02 0.06 0.02 0.02

95 0 15 0 0.00 0.04 0.02 0.03 0.00 0.07 0.01 0.02

80 15 15 0 0.01 0.05 0.04 0.04 0.01 0.08 0.05 0.08

55 40 15 0 0.02 0.04 0.05 0.04 0.01 0.02 0.03 0.02

1010 0 0 0 0.00 0.02 0.00 0.00 0.00 0.02 0.00 0.00

995 15 0 0 0.00 0.04 0.00 0.01 0.00 0.05 0.01 0.01

700 310 0 0 0.00 0.06 0.01 0.01 0.00 0.04 0.00 0.00

995 0 15 0 0.00 0.04 0.00 0.01 0.00 0.05 0.00 0.00

980 15 15 0 0.00 0.03 0.01 0.01 0.00 0.03 0.01 0.03

685 310 15 0 0.02 0.05 0.04 0.05 0.00 0.07 0.00 0.06

Note: The first four columns show the number (m00) of biomarkers associated with neither exposure nor outcome, the number (m10) associated with only the

exposure, the number (m01) associated with only the outcome and the number (m11) associated with both exposure and outcome. The remaining columns show

the FWER, defined to be the mean proportion of simulations with at least one biomarker identified as a mediator, when a ¼ 0:05. Details of the simulation can be

found in Section 2.
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hydroxy-DHEA-3-sulfate and 3-methyl-glutaryl carnitine 1, were

significant at FWER¼0.05. We note that the P-values from our

new methods were lower than the P-values produced by alternative

methods. However, as seen in the simulations with a large number

number of exposure/biomarker associations, the P-values from these

methods were not dramatically smaller.

4 Discussion

We introduced a new method for testing multiple putative medi-

ators. This computationally efficient method can maintain specified

family-wise error rates (FWER) and false discovery rates (FDR), and

should be very useful in modern studies evaluating high dimensional

biomarkers. We then applied this new method to a study evaluating

the mechanistic relationship between increased BMI and an

increased risk of breast cancer.

We note that MCPS and MCPWY
S test each biomarker individu-

ally. Therefore, we can only use these methods to claim that margin-

ally, when considered in isolation, each selected biomarker has the

defining characteristics of a mediator. We neither claim that expos-

ure nor the outcome is correlated with the selected biomarker, con-

ditional on all other biomarkers. We aim only to reject Hj
01 and Hj

02.

Hence, the markers selected by these procedures may not all be true

biological mediators. Consider the following example. Let E ~M1
~Y

and M1
~M2. Our MCP is designed to select M2, but M2 is not a true

biological mediator. For this reason, we opted to call our selected

biomarkers as ‘probable mediators’ and not ‘true mediators’. Given

this limitation, when using either MCPS or MCPWY
S , we suggest a se-

cond step, following variable selection, that builds a graphical model

containing the exposure, outcome and selected variables. A second

option is to use MCPMV
S , which identifies biomarkers marginally

associated with the exposure and, to some extent, conditionally

associated with the outcome. The caveat is that association is only

conditional on those biomarkers that were included in the stepwise

regression and this method does not carry theoretical guarantees.

The newly proposed MCP is an important contribution to the

current literature on multivariate mediation analysis. First, the new

methods improve upon our previous permutation approach in four

ways. The new MCP is more powerful, provides theoretical guaran-

tees on FWER, requires less computational time and can easily be

extended to a multivariable analysis. Moreover, this new MCP pro-

vides a means for controlling FDR, in addition to FWER. Second,

this MCP compliments those procedures that fit mediation models

where the majority of putative mediators are presumed to be true

mediators. Our MCP can be considered a preprocessing step to

model fitting. Third, this paper brings the mathematical theory de-

veloped for the field of replicability to mediation analysis. The

proofs guaranteeing asymptotic FWER and FDR control extend the

theory to mediation analysis where the P-values, fP11; . . . ;P1mg and

fP21; . . . ;P2mg, are calculated from a common dataset.

The theory developed here builds upon the theory developed by

Bogomolov and Heller (Bogomolov and Heller, 2018) for demon-

strating replicability. In their work, the pair of P-values p1j; p2j

� �
summarize the association between biomarker and outcome (e.g.

SNP and disease) in two distinct study populations. Then, showing

that their MCP selects biomarker j would be equivalent to stating

that the biomarker/outcome association is replicable (i.e. the associ-

ation is significant in both datasets). The common feature in their

application and ours is that the two sets of P-values can be con-

sidered independent. This requirement limits further extensions, pre-

venting, for example, its use in cases where the P-values are for two

correlated traits in a common population.

In our breast cancer study, we identified 16a-hydroxy DHEA

3-sulfate and 3-methylglutarylcarnitine-1 as potential mediators

of the BMI and ERþbreast cancer association. 16a-hydroxy DHEA

3-sulfate is the 16a-hydroxylated metabolite of DHEA and has

been found in laboratory studies to be estrogenic and to be capable

of binding and activating the ER�b estrogen receptor. However,

it has not been previously linked with breast cancer risk.

3-Methylglutarylcarnitine-1 is a marker indicative of incomplete

degradation of leucine. Specifically, when the 3-hydroxy-3-methyl-

glutaryl-coenzyme A lyase enzyme, which catalyzes the final step in

leucine catabolism, is insufficiently active, 3-methylglutarylcarnitine-1

accumulates in the blood. For this reason, 3-methylglutarylcarnitine-1

is sometimes used in clinical settings to diagnose errors in leucine

metabolism. No prior studies have examined this metabolite in

relation to breast cancer risk. These findings point toward poten-

tially new metabolic pathways that may link a high BMI with

breast cancer risk.
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