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Abstract

The adaptive immune response generates a large repertoire of T cells with T-cell receptors 

(TCRalpha and TCRbeta) and B cells with immunoglobulins (Ig). The repertoire changes in 

response to antigen stimulation both through amplification of specific cells (clonal expansion) as 

well as somatic hypermutation of immunoglobulins. Alterations of the immune repertoire have 

been observed in response to acute disease, such as external pathogens, or chronic diseases, such 

as autoimmunity and cancer. Here we establish experimental and analytical protocols for 

quantifying the peripheral blood of healthy human individuals by profiling the immune repertoire 

for the Complementarity determining region 3 (CDR3) of the variable regions of TCRbeta 

(CDRβ3) and the IgG heavy chain (CDRH1, CDRH2, CDRH3). The results demonstrate that 40 

ml of blood are sufficient to reliably capture the 10,000 most common TCRbeta and 1000 most 

common IgG and determine their relative frequency in the circulation. We conclude that by using 

an accessible sample size of human PBMC one is able to robustly monitor alterations in the 

immune repertoire.
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Introduction:

The efficacy of the adaptive immune response depends on the diversity and flexibility of its 

immune repertoire. The diversity is represented by a large number of different sequences for 

critical receptors and the flexibility is from the ability to amplify the representation of 

selective receptors. Two of the key cell types contributing to this flexible diversity are T 

cells, with their T cell receptor (TCR) and the B cells with their B cell receptor (BCR) also 

known as the immunoglobulins (IGs). In individual B and T cells the genomic sequence for 

each of these receptors, during development, undergoes a rearrangement through 

recombination of variable (V), diversity (D) and joining (J) genes, also known as VDJ 

recombination (Tonegawa, 1983; Tonegawa, 1988). Each individual B or T cell expresses 

only a single sequence. Each of its offspring are clones from it, expressing essentially the 

same BCR or TCR sequence referred to as a clonotype.
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The BCR, is composed of a heavy chain and one of two different light chains (𝜅 and 𝜆). The 

heavy chain undergoes a recombination in a gene locus of different segments of V, D and J 

genes. (Li et al., 2004; Tonegawa, 1983; Tonegawa, 1988). Additionally, there are different 

constant (C) genes (M, D, G1–4, E, A1–2). The light chain, independently of the heavy 

chain, recombines from an analogous collection of V, J and C genes. The TCR undergoes a 

similar pattern. Instead of a heavy and light chain they have α and β chains, although a 

subset have γ and δ chains. The TCR also undergoes recombination. The α chain, like the 

light chain, undergoes a rearrangement of V, J and C gene segments and the β chain, like the 

heavy chain, undergoes a rearrangement of V, D. J, and C gene segments. The variable 

regions which engage the antigen in the BCR and antigen and the major histocompatibility 

complex (MHC) molecule in TCR are made of three domains referred to as 

Complementarity Determining Regions (CDR), or CDR1, CDR2 and CDR3. The CDR1 and 

CDR2 are contained within the V segment. The CDR3 is encoded by the junction between 

the V, (D), and J segments, of the TCR and BCR (Janeway, 2005).

The initial diversity of the BCR and TCR, through the VDJ recombination, is established 

during development. Many subsequent events then affect the distribution of these to generate 

what is called the immune repertoire. During development, cells that express BCR or TCR 

that can bind to self-antigens can undergo clonal deletion, a negative selection. Both the T 

cells and B cells also undergo positive selection. When a T cell is activated, it rapidly 

divides, which alters the distribution of the TCR in body. B cells also undergo positive 

selection usually in secondary lymphoid organs such as the spleen or lymph nodes. B cells 

that are activated can enter into the germinal centers of the secondary lymphoid organs and 

undergo two additional changes (Tas et al., 2016). First is somatic hypermutation, which is 

the consequence of point mutations predominantly in the V-region of circulating B cells. 

This increases the diversity of BCR in the population. The second is isotype or class-

switching. The BCR, also known as immunoglobulin (IGs), exists in different classes (IgM, 

IgD, IgA, IgG, IgE). Early in the development, through their constant region, they are all 

membrane bound, predominantly IgM and IgD. Upon activation, usually with the assistance 

of activation by T cells, they can switch part of their constant region so they can form 

different classes of IGs such as IgA and IgG. The variable regions are unaltered and thus the 

binding specificity is the same. All isotypes can also be alternatively spliced so as to lose 

their transmembrane domain, so that they can be secreted. At this point they are no longer 

referred to as BCR, implying a receptor, and instead, at are usually referred to as IGs.

Based on the potential recombinations as well as the insertion of nontemplated nucleotides 

in the junctions between V, (D), and J segments, the estimates for the diversity of TCR or 

BCR, depending on the assumptions made, range considerably with estimates from 1012 to 

1018 (Elhanati et al., 2015; Murugan et al., 2012; Robins et al., 2009) with a further 

diversification as a result of somatic hypermutation (Janeway, 2005). The extent of the actual 

diversity of the TCR and BCR in the human body has been speculated to be 1014 (Schroeder, 

2006). It has proven problematic to quantitatively determine the actual diversity and 

distribution of that diversity. One study came to the conclusion that the actual VDJ 

recombinations were not random, and thus the actual diversity was much smaller (Pasqual et 

al., 2002).
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The diversity and distribution of the immune repertoire varies with acute disease, e.g. 

infection, or chronic pathologies such as cancer or autoimmune disease (Hoehn et al., 2016; 

Hou et al., 2016; Jiang et al., 2013; Wendel et al., 2017). The ability to characterize the 

extent of the diversity, but also the representation of the different TCR and BCR could 

provide a valuable tool for understanding both the normal dynamics of the immune response 

and the pathologies during autoimmune disease, infection and cancer. Equally important, 

they could provide useful diagnostics for following pathogenesis or provide insides on 

immunotherapy (Georgiou et al., 2014; Miho et al., 2018; Robinson, 2015).

Recent advances in next generation sequencing methods have allowed new ways of studying 

the immune system in great depth. The mass sequencing of the repertoires of BCR and TCR 

could potentially provide valuable information on the workings of these systems as well as 

the state of the patient’s health. Like all genomic and RNA sequencing processes, the 

methods for preparing the cDNA libraries are critical to obtaining meaningful data. For a 

library to be robust and reproducible, but also be an accurate reflection of the distribution of 

the TCR and BCR repertoires present in situ, various forms of error must be prevented and 

corrected. Data errors, bottlenecks, contamination, and bias can all occur in many of the 

processing steps and confound analysis (Greiff et al., 2015b). For limitations that cannot be 

completely remedied, it is useful to quantify the extent to which they can be managed. Thus, 

any analysis must evaluate the various forms of error that can occur during processing and 

quantify the extent to which the sequenced cDNA library represents the total diversity and 

distribution of the patient’s immune repertoire.

The goal of this work is to quantify the required blood volume draw for characterizing the 

immune-repertoire of an individual evaluate the robustness and reproducibility of 

sequencing the repertories for the immunoglobulin IgG from B cells (CDRH1, CDRH2 and 

CDRH3) and the TCRbeta (CDR3) from T cells from whole peripheral blood mononuclear 

cells (PBMCs). For this analysis we focused on determining the number of distinct 

clonotypes at the amino acid level (100% amino acid identity) (Greiff et al., 2015a; Greiff et 

al., 2017). Thus, offspring from a common B cell that diverge in sequence due to somatic 

hypermutation will be considered discrete clonotypes. We used the amino acids because we 

wanted to determine how many different functional clonotypes were present in the 

peripheral circulation. Using the amino acids would allow for convergent development of 

clonotypes during somatic hypermutation. If a study is interested in the development of the 

different clonotypes, then it might be better to use the nucleotides to allow the mapping of 

somatic hypermutation.

We will define three clonotype populations. The “Total RNA-pool” are all those contained in 

the entirety of the human circulation. The “Sample RNA-pool” are those in the pool of RNA 

that have been collected from a specific patient sample. And lastly, the “Library RNA-pool” 

are clonotypes present in the sequenced and processed library. The overlap of different 

RNA-populations taken from different samples drawn at the same time, biological replicates, 

informs the extent to which saturation of the Total-population is occurring across clonotype 

abundance levels. First, we confirm that individual libraries are fully sampled, and therefore 

their coverage is not improved with additional sequencing depth. Second, we examine if a 

library is a good representation of a sample by quantifying the overlap of two libraries made 
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independently from RNA taken from the same sample. Finally, having validated that a 

sample population is well measured, we compare the overlap of multiple RNA-populations 

drawn at the same time to measure coverage of the Total-population.

Methods:

During processing of patient-derived samples to evaluate the repertoires for the BCR and 

TCR, the four sources of error that should be examined are: data errors, sampling errors, bias 

errors and contamination.Data Errors: Errors which alter sequences and typically arise 

during PCR synthesis or sequencing. These errors are a particular concern for immune 

repertoire sequencing where single base pair mutations must be distinguished from errors to 

avoid to erroneous repertoire diversity. Sampling Error: An exhaustive characterization of 

the repertoire in the circulation can currently not be accomplished without a drawing an 

impractical volume of blood. To start such a determination of the extent of the immune 

repertoire, the starting material must be fully sampled to allow quantification of its 

biological undersampling. Bottlenecks which lead to under sampling can occur at any of the 

steps from blood draw to sequencing depth. Resampling can then be used to measure the 

degree of saturation within a volume of blood and between blood draws. The distribution of 

the different clonotypes are known to follow a Zipf’s-law which describes a specific power-

law probability distribution (Burgos and Moreno-Tovar, 1996; Greiff et al., 2015a; Mora et 

al., 2010). The challenge of ensuring that one has saturated the detection of all possible 

clonotypes is greatest with those that are most scarce. Bias errors: In addition to capturing 

all existing clonotypes, the accuracy of their quantification depends on removing sources of 

bias during reverse transcription and PCR cycles. Differences in the efficiency of annealing 

of different primers would compromise the quantification. Contamination: Another 

challenge in any sequencing experiment is cross sample contamination during batch 

processing. For differential analysis, small amounts of contamination can significantly affect 

statistical significance, especially if these occur prior to PCR amplification. Contamination 

is also relevant to reproducibility studies since will also cause artificial similarity in the 

sequenced libraries (Greiff et al., 2017).

There are a number of ways to control for these errors. Basic library analysis methods can 

inform if the sequencing depth is sufficient; however, they cannot say if a library is an 

accurate representation of the original blood draw or, more importantly, of the full diversity 

in the circulation. While it is true that it is not possible to sequence every rare clonotype of a 

human, there are levels of reproducibility that should be achievable. Most evaluations of 

biological saturation come from the perspective of estimating total size of the population of 

the complete repertoire of TCR or IGs. These results agree with past work that the complete 

population size cannot be achieved without sampling the entire body (Qi et al., 2014). In 

depth sequencing of T-cells has indicated at total size of well over 1 million (Warren et al., 

2011) and such approaches are also providing insights into the degree to which there is 

overlap of the repertoire on successive samples (Galson et al., 2015).

There were at least three approaches that we could have used to quantify the distribution of 

the IgG and TCRbeta repertoire: DNA sequencing, macroscopic RNA-seq or single cell 

RNA-seq. The single cell RNA-seq would allow a matching of the heavy and light chains, 
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but would not have allowed us to sample as many cells. Quantifying the DNA would have 

the potential advantage of reporting the fraction of cells for each IgG or TCRbeta clonotype, 

independent of relative levels of expression per cell. We chose to quantify the IgG and 

TCRbeta by mRNA levels. This had a few advantages. The mRNA does not have introns. The 

full length of the variable region in IgG is less than 600 nucleotides making it possible to 

determine the entire variable domain using the Illumina MiSeq 2×300 paired-end 

sequencing workflow. Further, a sequence found in the DNA is not necessarily functional – 

it may not be expressed. It has been previously shown that if simultaneous sequencing is 

done on RNA and DNA, if one then excludes DNA reads which are not found in the RNA, 

then the subsequent reads from the DNA strongly correlated with the RNA (Bashford-

Rogers et al., 2014).

An additional advantage of examining the RNA is the ability to quantify the repertoire using 

a template switch with a barcode, a unique molecular identifiers (UMI). The template used 

in this protocol attaches a universal priming region and unique molecular identifier or 

barcode to the 5’ region during cDNA reverse transcriptase (Egorov et al., 2015; He et al., 

2014; Khan et al., 2016; Mamedov et al., 2013; Vollmers et al., 2013) (Supplemental Table 1 

- Primers Used). Two subsequent PCR reactions amplify the library and attach Illumina 

sequencing adapters. The template switch offered the potential of alleviating several major 

possible sources of error in the pipeline. Some of the key advantages offered are as follows:

Quantification:

By attaching unique UMI to each cDNA molecule during reverse transcriptase, abundance is 

defined by counts of unique UMI per clonotype rather than number of raw sequence reads. 

This avoids the stochastic and variable nature of PCR amplification which confounds precise 

quantification.

Consensus Reads:

The primary form of Illumina sequence error is nucleotide substitutions. This can be greatly 

alleviated by forming consensus reads out of all reads that contain the same barcode and 

only using UMI which are above a defined sequence-abundance.

Provides tests for Contamination:

If there are two identical barcode sequences identified in different samples that also share 

the same clonotype, they can safely be assumed to be a result of contamination. This allows 

quantifying the exact number of sequences and clonotypes contaminated per library.

Universal PCR Primer:

A universal forward priming region solves the challenge of optimizing dozens of V-gene 

forward primers at the minor cost of also sequencing the 5’ UTR region. Additionally, new 

V gene alleles can be sequenced.

The results from the template switch were analyzed to determine the determine the key 

constraints and limitations in obtaining an immune repertoire and evaluating the extent to 
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which a particular library population reflects the total population for the RNA for the IgG 

and TCRbeta.

Blood Collection.

Samples were collected into ethylene diamine tetraacetic acid (EDTA) tubes each with a 

capacity of 10 ml from a healthy donor (Figure 1 Experimental Setup) under Rockefeller 

University IRB protocol SSI-0725 in accordance the recommendations of the Adaptive 

Immune Receptor Repertoire (AIRR) community (Breden et al., 2017). The EDTA tubes, 

right after blood collection, were spun at 10,000 rpm for ten minutes at 4°C to separate out 

the plasma, the buffy coat with the B and T cells and the red blood cells. The buffy coat was 

then collected by manual extraction into Trizol and processed using the Direct-zol RNA 

MiniPrep Plus (cat #R2070 - Zymo Research).

cDNA Synthesis

Synthesis of the cDNA with template switching was performed using SMARTScribe reverse 

transcriptase to attach a custom template switch oligo at the 5’ region. The template switch 

oligo (Supplemental table 1 - 5’ adapter with molecular identifier) contains a common 

forward primer sequence, twelve random nucleotides, deoxyuridine (U), two riboguanosines 

(rG) and one LNA-modified guanosine (+G) to improve template switching (Picelli et al., 

2014). Reverse primers were added to isolate the IgG or TCRbeta RNA of interest,. 

Additionally, uracyl DNA glycosylase treatment was employed to remove residual template 

switch adapters. The cDNA was purified using Qiagen MinElute PCR Purification Kit and 

used in the first PCR amplification.

Amplification and Indexing

Each sample was split into four 50ul PCR tubes and amplified using KAPA HiFi HotStart 

ReadyMixPCR Kit (Sigma, St. Louis, MO, US) for 23 cycles. This contained a step-out 

universal 5’ primer, (in which the non-matching 5’ end of the primer is added to the end, 

resulting in an extension of the amplified region) and sample-type specific step-out reverse 

primers both of which contained adapters for the sequencing adapters. These were then 

pooled and half (100ul) were run across an agarose gel before excising and purifying the 

band of interest (Zymoclean Gel DNA Recovery Kit. Catno: D4007). This sample was then 

used in a second 8-cycle PCR to attach Illumina Nextera Adapters (Nextera XT DNA 

Library Preparation Kit. Catno: FC-131–1024). Finally, the samples were purified and 

pooled for sequencing (Zymo DNA Clean & Concentrator-5. Catno: D4013).

Sequencing.

Two approaches were taken to sequencing the PCR products. MiSeq was used for 

sequencing of the IgG. The use of 300 basepair paired-end sequencing allowed complete 

coverage of the full variable region including CDRH1, CDRH2 and CDRH3. Hi-Seq was 

used for the TCRbeta using only 150 nucleotide single end sequencing from the 3’ end to 

cover the CDR3 region and 50 nucleotide 5’ forward to cover the barcode. The IgG 

sequences of B cells in the germinal cells undergo somatic hypermutation, which can occur 
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throughout the V-region. Since human TCRs do not undergo hypermutation, we sequenced 

only 150 nucleotides which was sufficient to include the full CDR3 region.

Analysis Pipeline:

Sequencing reads were processed and merged by their barcode using the MIGEC Toolkit 

(Shugay et al., 2014) which provides utilities for working with barcode tagged reads. The 

overlap of shared RNA libraries was used as an empirical method to decide pipeline 

parameters. After forward and reverse end consensus reads were merged by barcode, they 

were aligned using PEAR (Zhang et al., 2014) (Paired end Alignment) to produce the final 

reads. Comparison of multiple alignment tools (unpublished data) showed PEAR to produce 

the best results. A custom script (available https://github.com/joel-simon/decontaminate) 

filtered all libraries processed in batches to control for contamination between batches. We 

found that in different batches the same barcode matched to the same RNA 0.07% of the 

time (see results). Thus, when the same cDNA sequence was found in two different batches 

with the same bar code, it was assumed to be the consequence of cross-contamination during 

sample preparation. The final step of processing was using a wrapper of IgG-Blast called 

MIGMAP (Turchaninova et al., 2016) to obtain a V(D)J mapping of each BCR and TCR 

read containing CDR regions. The output of MIGMAP was then used in final analysis. IgG 

sequences were considered the same if they had the same V-gene, J-gene as well as CDR1, 

CDR2 and CDR3 amino acid sequences. TCR comparison was done the same way but 

without CDR1 and CDR2 which were not sequenced.

Results & Discussion:

Library Saturation Analysis

The validation of the sequencing and analysis pipeline was done in three steps. First, the 

overlap of independently processed libraries taken from the same biological sample was 

evaluated. These replicates test for the extent to which our pipeline is robust, including 

factors such as: i) were there sufficient reads from the libraries, ii) if a sufficient amount of 

RNA or cDNA was used; iii) if the PCR reactions were introducing a bias. Then, the degree 

of overlap was analyzed for a number of independent blood draws taken from the same 

patient. By assaying the extent to which increasing the number of libraries lead to a 

saturation number of clonotypes, this would test the extent to which any specific biological 

sample was reflecting the full population in the adult or the extent to which different size 

biological samples would cover the full population in the circulation. Finally, samples from 

independent donors were compared. This would test the extent to which there was 

commonality either in the identity of different clonotypes, or the distribution of different 

clonotypes of different patients with similar or different phenotypes.

Technical Replicates: Analysis of two assays from the same Sample RNA 
pool: In order to measure the overall error in the pipeline, two replicate cDNA libraries of 

mRNA encoding TCRbeta and IgG were made from the same sample RNA pool from the 

buffy coat isolated from a 10 ml blood sample collected into an EDTA tube. Library overlap 

can be defined in many different ways and there are many indexes of overlap from ecology 

that take into account species abundance (Rempala and Seweryn, 2013). However, any 
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single index for overlap must merge distinct concepts including: count of overlapping 

species, abundance of those overlapping species and the correlations of abundances. In this 

work we choose to consider overlap as a distribution with respect to abundance. An 

investigator may only be interested in the acutely expressed sequences for their experiment: 

Two libraries might have a low level of total overlap, as a consequence of a large number of 

low abundance transcripts, but still have a high overlap of abundant sequences. Additionally, 

if an experiment is looking for certain, lower abundance sequences, probabilities can be 

assigned to potential false negatives.

In the pair of IgG libraries generated from the same sample RNA pool, one had 45,258 

clonotypes and the other had 64,084 with 13,851 in common (Figure 2, upper left, Table 1 - 

Library Overlaps). For the analysis of the mRNA reads for the TCRbeta, the libraries had 

184,674 and 170,250 clonotypes with 39,950 shared (Figure 2, lower left). IgG libraries of 

four or more UMI had a Jaccard Index (size of intersection divided by size of union) of 

84.8% and TCRbeta replicates had overlap of 54.0%. When the analysis is restricted to the 

top 10,000 most abundant clonotypes, 94.6% of the IgG and 94.8% of the TCRbeta 

sequences from one library were present in the other (Table 1). Thus, this procedure has 

saturated the reads for these 10,000 most common TCRbeta in the immune repertoire.

An alternative way of looking at the library overlap (and ensuring sufficient read depth) is to 

use a pairwise rarefaction plot of union and intersection between two libraries (figure 3 

Plotting pairwise library overlap). New libraries are created from random subsamples of the 

original library at increasing sizes. Then, the union and the overlap (intersection) of the two 

libraries are plotted with increasing numbers of subsamples of the original libraries. Plotting 

union and intersection can, like rarefaction curves, be used to explore the extent of saturation 

of the number of clonotypes in a library, providing one view of library saturation. A 

plateauing of union and intersection indicates that the library has been sequenced 

thoroughly. A plateau of intersection, but not the union, indicates that either there are a 

disproportionate many low-abundant clonotypes that are unlikely to overlap, or erroneous 

sequences are arising in the pipeline. When both lines plateau, but there is a large 

discrepancy in the level between them, indicates that the library is being sequenced 

thoroughly but that starting population is being under sampled. Note that this analysis is 

only based on the presence of a particular clonotype, but does not take into account the 

distribution of the clonotypes. If a clonotype is appears once, or if it accounts for 99% of the 

population, it gets equal representation.

A rarefaction plot analysis was applied to two IgG libraries generated from the sample 

biological sample (Figure 3, upper left). With increasing number of subsamples, both the 

union and the intersection of the two populations plateau at a similar level. This indicates 

that with increasing samples, the types of clonotypes were saturated. Increasing number of 

samples or increasing number of read within each sample would increase the diversity of 

clonotypes. With increasing numbers of subsamples of the TCRbeta neither the union nor the 

intersection fully plateaued, and not at the same value (Figure 3, lower left). This could be 

the consequence of under-sequencing or a disproportionate amount of low abundance 

sequences which are difficult to cover.
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It is important to determine if this failure to saturate is the consequence of a large population 

of very low abundance clonotypes, or due to errors in the processing pipeline, a 

methodological skew to low abundance sequences, or insufficient reads of the sequences in 

each sample. Extra sequencing is costly and may yield diminishing returns. For the first of 

the three possible explanations, increased numbers of reads would not help. It is our 

expectation that there is an extremely large population of low abundance clonotypes and our 

interest is in ensuring we cover all of the activated B and T cells. If there were 1011 −1012 

clonotypes which were represented just once in the circulation, deeper sequencing would not 

be helpful. Thus, before proceeding, it is important to determine the minimum number of 

reads that is sufficient to identify and sequence a clonotype that is more than a singleton in 

the peripheral circulation. To validate these methods, all IgG sequences which were initially 

sequenced in 300 paired-end Mi-Seq were re-sequenced at higher depth. This was done by 

repeating the sequencing of just the CDR3 region of the IgG with a five-fold increase in 

read-depth. This increase had no significant increase in independent CDR3 clonotypes 

(Figure 4).

These results validated that the pipeline we used produces a thorough and reproducible 

sampling of a specific sample RNA pool of the IgG or TCRbeta from a single blood draw. 

The results further demonstrate that the results are not meaningfully improved by more 

reads.

Biological replicates: Saturation of reads from independent samples of the 
same donor: We next applied our analysis to quantify the overlap of clonotypes from 

different blood draws taken at the same time from the same donor. To do so, it was important 

to determine the extent to which different volumes of blood accurately report the diversity of 

the immune repertoire (how many different clonotypes) and depth of the immune repertoire 

(the distribution in number of different clonotypes). We quantified the clonotypes of IgG and 

TCRbeta in ten independently drawn samples (Figure 2, middle column and right column, 

figure 3 right column), and then, by examining different subsets, quantified the degree to 

which they overlapped the total population from all ten tubes (Figure 5). To examine both 

the diversity and the distribution we quantified the overlap as a function of representation in 

the population. For the TCRbeta the aggregate top 1000 clonotypes were found in every 

sample. Coverage for the top 10,000 most represented was close to saturated by combining 3 

or 4 samples, 30 or 40 ml of blood (figure 5). The top one thousand IgG required three 

samples (30 ml) to saturate coverage, but the top 10,000 failed to saturate even with ten 

tubes.

A complementary perspective on the overlap is obtained by considering the overlap of 

different merged libraries as a function of the abundance of the clonotype (Figure 6). We 

calculated a Jaccard index of overlap for different combinations of tubes. For example, every 

combination of two tubes against every combination of two tubes or every combination of 

three tubes against every other combination of three tubes (Figure 6A). Then we plotted the 

e+xtent of the overlap between the two groups, with a value of 1 being complete overlap, as 

function of the number of UMI which mapped to a particular clonotype. The number of 

UMI is a measure of the abundance of that clonotype in the population. In the analysis of the 

TCRbeta clonotypes from different samples, the overlap increased monotonically with 
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increasing abundance of the barcode for a particular clonotype (Fig 6A, triangles). This 

means that the more common a clonotype, the more likely it is to be in multiple different 

samples. All clonotypes with abundances of eight or greater overlapped completely between 

all combinations of tubes. This indicates that all clonotypes of that abundance and greater 

are sequenced. The overlap of clonotypes of lower abundant clonotypes is not improved by 

pooling 1 to 5 samples. This suggests that for these rare clonotypes, a much larger sampling 

of blood would be necessary. Similar results were observed with samples from a second 

donor with three samples (Figure 6B, triangles). With any combination of 1 vs 1 or 2 vs 2 

the TCRbeta clonotypes overlapped with abundance of 8 or higher.

Some aspects of the immune repertoire of the IgG were similar. The high abundant 

clonotypes (>256 UMI) were found in all samples whether contrasting single tubes or five 

against five. However, at lower abundant clonotypes there were two differences in the IgG 

repertoire. First, for the clonotypes with low representation, increasing the number of tubes 

combined from one to five increased the overlap. Overlap of the IgG 8–16 barcode 

sequences improves from 20% to 43% when pooling five samples. This corresponds to an 

increase from 10ml to 50ml of starting sample volume. Second, the overlap did not increase 

monotonically with increasing representation of the clonotype in the population. There was a 

population of clonotypes that were represented 4–8 times per sample that showed a great 

deal of overlap, and then there was a slight decrease in overlap for clonotypes of 

intermediate representation (8–32 bar codes), and then, with greatly increased representation 

(>64 UMI), there was increased overlap between the biological samples until complete 

representation across the samples at >256 reads per clonotype. Again, similar results in the 

overlap of the IgG clonotypes were seen with a second blood donor (Figure 6B).

To further explore the characteristics of the repertoire we quantified the histogram of 

abundances (Figure 7: Clonotype Abundance Distributions). The number of clonotypes of 

the TCRbeta decreases roughly linearly on a log-log plot with increasing abundance of the 

clonotype. In contrast, the distribution of the IgG repertoires shows a greater abundance of 

more middle abundant clonotypes (represented by 8– 64 bar codes) and no clonotypes that 

are as highly abundant as the most abundant TCRbeta clones. There are more clonotypes of 

16–31 abundance than those of 4–8. These characteristics of the repertoire is most likely the 

product of sequencing multiple merged B-cell populations with varying RNA expression 

levels. An RNA population highly concentrated in few expressing cells would require more 

material to saturate than the same total population evenly spread out among many cells. This 

could very well be the case for B cells where plasma blasts express much more Ig mRNA 

than naïve B cells. This may contribute the large differences in TCR and IgG repertoire 

saturation. Additionally, the hypermutation that occurs upon stimulation of a B cell may put 

a limit on the maximum representation of any IgG and may prevent the appearance of very 

highly abundant clonotypes.

There is a differential distribution of the frequency of different clonotypes across the 

libraries for both IgG and TCRbeta (figure 8: Histograms of libraries Occurrence). For IgG 

the clonotypes for which there is only one read, the most are found in one library, with a 

decrease in the number of singletons found in 2, 3, 4 up to 10. However, since there are more 

singletons of the IgG, they are found distributed throughout. As one examines, clonotypes 
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that appear with two reads, there is a similar distribution. Then with four or eight 

independent reads per clonotype, the number of total clonotypes decreases, but one starts to 

see an increase in the number found in all ten libraries. As one increases to clonotypes that 

have 8, 16, and 64 reads, they are found with increasing frequency in all ten libraries.

The effect on distribution of TCRbeta iis even more dramatic. For the clonotypes for which 

there is only one read, the frequency of appearance decreases as one goes to 2, 3, or more 

libraries. However for clonotypes with even two reads, they increase even more frequently in 

many librareis, and even more dramatically for clonotypes with four separate reads. With 

clonotypes of 32 and 64 reads, they are almost exclusively found in all ten libraries.

Quantifying Contamination.

We used a barcode that was 12 nucleotides long which has 16.7 million possible 

combinations and each of our libraries used a range of 300,000 to 700,000 different UMI. 

Some reuse of UMI is expected so we tested the frequency with which any bar code was 

coupled to the same RNA. This was done by comparing the frequency with which a barcode 

in one library was found in another library and then percentage of time that the shared bar 

code matched to the same RNA (figure 9). The comparison was done by taking all pairs of 

matching bar codes and then comparing the similarity of their RNA sequences using a 

normalized edit distance, a measure of string similarity normalized from 0 to 1, as a 

quantification of similarity. A distance of zero means that they are identical. A comparison 

of completely random sequences, shows some discrete peaks in similarity, which represent 

some common regions in the VDJ genes, but only 0.003% of the RNA had the identical 

sequence (Figure 9, blue). Since the UMIs were randomly mixed, we think that the 0.003% 

commonality is due to a random selection.

In most pairings of libraries, when comparing sequences with the same bar code, only 

0.074% of these had common RNA sequences (Figure 10). This puts an upper limit on the 

probability of two different RNA mapping to the same bar code by chance. However, in two 

of the pairings of libraries, we found that a much higher percentage of the shared bar codes 

mapped to the same RNA. In one pair of TCRbeta we found 0.9% of one samples bar codes 

had the same RNA as 0.2% of another libraries bar codes. In the analysis of the shared bar 

codes between one pair of IgG libraries, we found 5.8% reads in one were the same as 7.2% 

of the other. We decided that these two examples were likely due to the sensitivity of the 

PCR to cross contamination, potentially for aerosolization during batch processing. It is 

possible that two different individuals might have the same clonotype due to affinity 

maturation.However, the results indicate that the chances that the some clonotype is matched 

to the same bar code is very low. Since we cannot resolve whether a common bar code with 

a common RNA is due to a random match, or cross contamination during our processing, all 

occurrences of pairings of identical UMI with the same RNA were considered contamination 

and removed. Thus, the presence of the UMI allows us to identify when there was cross-

contamination between libraries, potentially due to aerosolization of droplets and the high 

sensitivity of the PCR reaction. While the fraction of contamination counts was always less 

than 0.1%, it gave further reassurance to the results.
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We tested if the presence of the UMI had other impacts on the analysis by comparing the 

same libraries with and without the use of the UMI. When the same IgG library was 

processed with and without the UMI we found a large divergence with fewer clonotypes 

being shared in the absence of UMI. The non-UMI library contained significantly more 

clonotypes, most of which did not occur in the library with UMI. This supports the view that 

merging reads on UMI is critical to remove erroneous reads which hurts abundance count 

accuracy and inflate species size (figure 11).

Donor Comparison

As a means of validation, the procedure was repeated in a second donor using three samples 

of ten ml each. Each library was processed for TCRbeta and IgG. Shared RNA libraries were 

not repeated. The trends of the saturation and overlap curves for IgG and TCR were 

congruent with those of the first donor and within generally expected levels of variance. 

Overlap of the top 10,000 IgG clonotypes between different-RNA libraries was 2526 for 

donor A and 2975 for donor B (Table 1). Donor B also exhibited a peak, although much less 

pronounced, in overlap of low-mid (8–32) range IgG’s (figure 6). There was a higher 

average overlap of high abundance IgG clonotypes in donor B across RNA (689 vs 310 of 

top 1,000 and r2=0.897 vs r2=0.627 - Table 1 - Library Overlaps). This reinforces how 

variability in donor health, specifically clonal expansion and overall diversity, are 

contributing factors to the ability to saturate.

Conclusion

Next generation sequencing and UMI have made it possible to quantitatively evaluate 

immune populations (Egorov et al., 2015; He et al., 2014; Mamedov et al., 2013). However, 

the ability to saturate a population is dependent on a variety of its characteristics as well as 

the overall health status of the immune system. This work presents a paradigm for 

collecting, processing and analyzing clonotypes for IgG and TCRbeta. The results 

demonstrate the conditions for ensuring that the complete immune repertoire in a particular 

sample is captured as well as how to evaluate the extent to which blood samples of various 

sizes capture the complete immune repertoire in the circulation.

All of these measurements were done on presumably healthy donors. Patients of 

compromised health might have a lower density of lymphocytes, which would decrease the 

size of the immune repertoire, or an altered immune repertoire, which might increase the 

size (Hoehn et al., 2016; Hou et al., 2016; Jiang et al., 2013; Wendel et al., 2017). Thus, for 

those patients it will be necessary to repeat analysis similar to this work to validate the 

measurement. i.e. ability to cover >90% of the 10,000 most abundant clonotypes. 

Differences were observed in the distribution of the clonotypes between TCRbeta and IgG. 

Greater sample was required to cover more of the clonotypes of the IgG. In this particular 

study we treated each amino acid sequence as a separate clonotype. Thus, the increased 

number of clonotypes for the IgG, and the requirement of great sample to cover them, likely 

represents the increased diversity as a consequence of somatic hypermutation. If one were 

interested in the evolution of the clonotypes, then with an examination at the nucleotide level 

it should be possible to follow the development of the diversity and classify the discrete 
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clonotypes based on originating B cells (DeWitt et al., 2018). One advantage of using the 

EDTA tubes is that the blood can be fractionated and the resulting RNA was only from the B 

and T cells, thus none of the RNA was from the red blood cells (RBC). However, a 

disadvantage of the EDTA tubes is that they had to be processed immediately. This would be 

a particular problem if it was necessary to process samples from many different collection 

sites. Some locations many not have the facilities or time to fractionate the blood. Further, 

doing the fractionation at different locations could add variability in the quality of the 

extraction. For these kinds of applications it may be worth switching to collection blood in 

tubes that can preserve the RNA, such PaxGene Tubes (BD Biosciences), or an equivalent, 

even though it means that the RNA from all of the cells in the circulation will be mixed.

The results demonstrate that relatively little blood is required to capture the most abundant 

species. Quantifying what saturation is needed is dependent on how important it is to capture 

sequences of mid range abundance. For TCR 10ml is sufficient for the top 1000 sequences 

and for IgG, it may be necessary to have a blood draw of 40 ml to capture the top 1000 

different clonotypes. The results demonstrate that with 40 ml it is possible to cover >90% of 

all circulating T Cell clonotypes and > 60% of all circulating IgG clonotypes (Figure 6: 

Library Saturation Curves). With 80mls, which is not a large draw for an individual, >95% 

of the TCRbeta clonotypes are captured and >75% of the IgG clonotypes. With this kind of 

information, it should be possible to test how the distribution of the clonotypes of an 

individual varies over time or changes with infection or vaccination.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1 - Experimental Setup:
An overview of sample processing. Donor-A gave ten 10ml draws of blood and Donor-B 

gave three. All blood draws were taken at the same time and each processed into a 

corresponding sample RNA pool. Aliquots of the RNA are used to create the amplified PCR 

product, aliquots of which are used to make multiple sequence libraries. Multiple libraries 

from the same sample RNA pool are compared to evaluate the coverage of the RNA-

populations and multiple libraries from different sample RNA pools are compared to 

evaluate the Total-population.
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Figure 2. Comparison of the abundance of clonotypes in samples.
The log of the abundance of the clonotypes from different libraries was plotted as a heat 

map. Top row: Comparison of two samples if IgG. Bottom row: Comparison of two samples 

of TCRbeta. Left column: Two libraries generated from the same RNA pool. Middle column: 

Two libraries generated from different pools of RNA from donor A. Right column: Two 

libraries generated from different RNA pools of donor B.
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Figure 3. Plotting pairwise library overlap:
The clonotype overlap and intersection of randomly subsampled library reads. Only 

clonotypes of abundance greater than five are visualized. Upper left, IgG from the same 

RNA sample, upper right, IgG from two different RNA samples. Lower left, TCRbeta from 

the same RNA sample, lower right, TCRbeta from two different RNA samples.
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Figure 4. Number of reads and clonotypes in all libraries:
The number of clonotypes and the number of reads for the IgG and the TCRbeta was 

quantified, from left to right, for all IgG (left), TCRbeta, only the CDR3 region of IgG, or 

increasing the number of reads for CDR3 four-fold. Increasing the number of reads of the 

CDR3 region of IgG (IgG-SE-CDR3) had an insignificant effect on the total number of 

clonotypes.
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Figure 5: Library Saturation Curves.
Groups of libraries of varying sizes are compared to the merger of all libraries. The percent 

of clonotypes from the total pool that exist within a merged sub-group is measured for each 

group size. For each group size all possible combinations are averaged. On the plot of 

TCRbeta saturation the top 100 (green) and top 1000 (orange) completely overlap.
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Figure 6: Group Overlap Saturation Curves.
The overlap is measured at each range of UMI with exponentially increases ranges.</p>The 

overlap at a range is the percent of clonotypes in that range that are present in the other 

library. If an overlap between ranges was taken exclusively it would miss some clonotypes 

with abundances differing by one. For varying subset sizes, all possible library subsets of 

that size are merged. Error bars indicate standard deviation.
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Figure 7: Clonotype Abundance Distributions:
A histogram of the number of clonotypes that are found within each barcode abundance 

range. Displayed for IgG and TCRbeta clonotypes and averaged across all ten libraries. The 

IGG clonotype distribution is skewed towards those of mid-range abundance, with 

significantly fewer high abundance. Error bars correspond to standard deviation.
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Figure 8: Histograms of libraries Occurrence.
A histogram showing the distribution of clonotypes of a single read, or 2, 4, 8, 16, 32 or 64 

reads per clonotype as a function of the number of libraries in which they were found. For 

the TCRbeta, at 8 reads per clonotype and above, they were almost all found in all ten 

libraries.
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Figure 9 - Shared barcode Sequence Similarity Histograms:
Identical Bar codes from two different libraries were compared for the similarity of the 

coding sequence of their RNA. Similarity was quantified with a histograms of the 

normalized edit distance. If the normalized sequence distance is 0, then the sequences are 

identical. If identical bar codes from two different libraries also have identical coding 

sequences (peak at 0), those bar codes were characterized as contamination and discarded. 

As a control, when a matching was done of randomly matched bar codes (blue histogram), 

there were no values at 0. The other peaks correspond to sequences that share common 

regions of the V, D or J genes. The libraries that showed the highest degree of contamination 

(peak at 0) are shown for (Left) the pair of TCRbeta libraries (B3 & B10) and (Right) the pair 

of IgG library (B6 & B9). The fraction of each pairing of libraries that has values at zero is 

shown for the complete set of matches between libraries in Figure 10.
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Figure 10. Pairwise contamination.
A heat map showing the percentages of sequences of IgG (left) or TCRbeta (right) believed 

to be contamination between different libraries. A read is considered contaminated between 

libraries if has the same barcode and full sequences nucleotide normalized edit distance of 

less than 0.05 (histogram values at zero, see Figure 9). The heat map is the percentage of the 

reads in a library on the horizontal access that were viewed as contamination from the 

library on the vertical access. The percentage of total sequence varies since each library has 

a different number of reads. All reads deemed contamination, by this criteria, where 

removed from the library and not used in the analysis.
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Figure 11: A paired overlap comparison with and without UMI.
To further view the effect of UMI during the data processing stage of analysis, an IgG 

library processed with UMI was compared to itself without them. This was done by simply 

ignoring the UMI and jumping directly to the merge reads step in data processing pipeline. 

Instead of filtering UMI by number of reads, each read was passed through the default 

quality check. A large divergence was observed, only 37.6% of the clonotypes were shared 

(Jaccard index).
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Table 1 -

Library Overlaps Various different metrics of overlap and similarity between repertoires. For Donor A the 

average is also taken between all separate RNA libraries. The r^2 value is given for the entire library.

Number of 
Overlapping 
Clonotypes

Overlap of top 
10K Clonotypes

Overlap of top 1K 
Clonotypes

Jaccard Overlap r^2

Donor A- IgG shared RNA 13851 8919 816 0.1450 .971232

Donor A- TCR shared RNA 39950 6882 835 0.1268 .953215

Donor A- IgG different RNA 
pairwise Average

6831.18 2526.28 310.2142 0.0444 .627296

Donor A- TCR different RNA 
pairwise average

38207.107 6973.32 825.0 0.09533 .924420

Donor B - IgG different RNA 
pairwise Average

4936.66 2975.33 689.33 0.064564 0.897276

Donor B - TCR different RNA 
pairwise Average

20960.0 4397.33 455.66 0.0740642245 0.933248
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