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Abstract

Purpose of Review—This paper describes recent advances in understanding the mechanisms 

that drive fracture pain and how these findings are helping develop new therapies to treat fracture 

pain.

Recent Findings—Immediately following fracture, mechanosensitive nerve fibers that innervate 

bone are mechanically distorted. This results in these nerve fibers rapidly discharging and 

signaling the initial sharp fracture pain to the brain. Within minutes to hours, a host of 

neurotransmitters, cytokines, and nerve growth factor are released by cells at the fracture site. 

These factors stimulate, sensitize, and induce ectopic nerve sprouting of the sensory and 

sympathetic nerve fibers which drive the sharp pain upon movement and the dull aching pain at 

rest. If rapid and effective healing of the fracture occurs, these factors return to baseline and the 

pain subsides, but if not, these factors can drive chronic bone pain.

Summary—New mechanism-based therapies have the potential to fundamentally change the way 

acute and chronic fracture pain is managed.
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Introduction

Fractures and fracture pain are two of the most common and costly problems caused by bone 

injury or diseases [1, 2]. Fractures that are severe and/or do not heal appropriately can be 

highly debilitating and have a remarkably negative impact on an individual’s quality of life 
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and functional status [3–5]. Unlike the skin, where nonuse promotes healing, effective 

healing of a fractured load-bearing bone (i.e., femur, hip, vertebrae) demands the patient to 

move, use, and mechanically load the injured bone. To optimize bone healing, while 

minimizing loss of bone and muscle mass, minimal bed rest is recommended following 

fracture. Thus, in both young and old patients alike, the rehabilitation regimens require the 

patient to move and place weight on the fractured bone in the first day after fracture 

stabilization. The most common reason that many patients cannot fully participate in this 

rehabilitation is that we currently do not have effective side effect-free analgesics that can 

attenuate bone fracture pain [6••, 7, 8]. If this pain cannot be effectively attenuated, the 

necessary bone loading and bone healing can be delayed, or does not occur at all, resulting 

in loss of muscle and bone mass, loss of mobility, and a significant increase in morbidity and 

mortality [9].

Currently, the treatment of pain following skeletal fracture of a load-bearing bone involves 

stabilization of the fractured bone, minimal bed rest, and usually the use of nonsteroidal 

anti-inflammatory drugs (NSAIDs) and opiates to control the pain [6••, 10]. While NSAIDs 

can be effective in attenuating musculoskeletal pain, reports suggest that they can inhibit 

fracture healing in mice, rats, and humans [8, 11, 12]. Thus, NSAIDs and cyclooxygenase-2 

(COX-2) inhibitors can retard callus formation and bone formation at the fracture site. In 

turn, this can result in delayed bone healing, increased incidence of fracture non-union, and 

decreased bone strength [13••, 14, 15]. While this issue as to the extent to which NSAIDs 

inhibit human bone healing remains unclear, many orthopedic surgeons believe that the use 

of NSAIDs is contraindicated in patients with bone fracture [16–18].

Although opiates are commonly used to control significant bone fracture pain, compared to 

placebo, opioids are not very effective in controlling chronic skeletal pain and long-term 

opiate use in patients with chronic skeletal pain interferes with functional status and the 

ability of the patient to return to work [19, 20, 21••, 22]. In young individuals with painful 

bone fractures, long-term opiate use can result in dependence, reduced functional status, and 

are less likely to return to work [21••]. In light of the above listed problems with both 

NSAIDS and opiates, development of novel, mechanism-based therapies to attenuate 

fracture pain is a clear priority for young, adult, and aging patients with acute and chronic 

bone fracture pain [6••].

Models of Bone Fracture Pain

Given the enormous consequences that fracture pain can have in terms of human suffering 

and medical costs, it is surprising that until recently, there was not an established animal 

model for studying bone fracture pain. To develop such a model, the rodent closed femur 

fracture model [23–25] was used as a starting point, as this model had been successfully 

employed by the bone research community to explore the effects of various anabolic and 

anti-resorptive therapies on bone remodeling and bone healing (Fig. 1). To develop a fracture 

pain model, indices of fracture pain such as nocifensive behaviors and activity monitoring 

were added. Once these models of bone fracture pain were established [26, 27••, 28] and 

validated [29], in many ways, these models are similar to the sequence of events observed in 

humans following bone fracture. Thus, in rodents, pain behaviors were apparent 
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immediately following fracture which included increased guarding and flinching, reduced 

load bearing on the fractured bone, and an overall decrease in horizontal activity (Fig. 2). If 

rapid and effective healing occurred, these behaviors were generally extinguished by 14–28 

days post-fracture in young adult male and female rodents [26, 27••, 28–30, 31••, 32••]. 

However, if effective fracture healing did not occur, many of these fracture pain-related 

behaviors were still present at 6–9 months post-fracture [33•].

Mechanisms that Drive Bone Fracture

Fracture Activates Mechanosensitive Channels that Are Expressed by Sensory Neurons 
which Innervate Bone

Immediately following bone fracture, mechanosensitive nerve fibers that innervate bone are 

mechanically distorted resul ting in these nerve fibers rapidly discharging and signaling the 

initial injury to the spinal cord and brain [34–36]. Many of these mechanosensitive nerve 

fibers that detect and signal the initial fracture pain are located in the periosteum which is 

tightly opposed to the outer cortical wall of mineralized bone [36]. Previous studies have 

shown that many of the sensory nerve fibers that innervate the periosteum are 

mechanosensitive C and A-delta nociceptors [34, 37, 38, 39•] that rapidly respond to 

mechanical distortion of the adjacent bone or increased intraosseous pressure [37, 40, 41]. 

Following bone fracture, any movement or loading of the fractured bone would be expected 

to result in mechanical stimulation of mechanosensitive sensory nerve fibers that innervate 

the periosteum, mineralized bone, and marrow [27••, 28, 37, 42, 43]. Thus, normally, non-

noxious loading of the bone will distort the mechanosensitive nerve fibers so that even 

normally innocuous movement or loading of the fractured bone will now be perceived as a 

highly noxious event.

Activation and Sensitization of Bone Nociceptors

Within minutes of bone fracture, a wide variety of stromal and inflammatory cells release 

mediators that can directly activate or sensitize nociceptors that normally innervate the bone. 

These mediators include prostaglandins [6••, 44], bradykinin [45], endothelins [46], and 

nerve growth factor [27••, 31••] which have all been shown to excite and/or sensitize 

nociceptors that innervate the bone. Interestingly, therapies targeting these mediators have 

been shown to relieve a variety of human skeletal pains in animals and humans including 

osteoarthritis, low back pain, and bone cancer pain [47, 48••]. One molecule that appears to 

be particularly effective in sensitizing bone nociceptors is nerve growth factor (NGF) [32••, 

37]. When NGF binds to its cognate receptor tropomyosin receptor kinase A (TrkA), a 

variety of mechanotransducers, ion channels, receptors, and neurotransmitters expressed by 

nociceptors appear to be sensitized and/or upregulated [32••, 49] so that normally innocuous 

stimulation of a bone nociceptor is now per-ceived as a noxious event (Fig. 3).

Nerve Injury and Ectopic Nerve Sprouting Following Bone Fracture

Following bone fracture, mechanical injury to sensory or sympathetic nerve fibers that 

innervate the bone may occur generating a neuropathic pain state [27••, 28]. One other 

mechanism that may be involved in driving bone fracture pain is ectopic nerve sprouting 

(Fig. 4). Following bone fracture, several neurotrophic factors, including NGF, are released 
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by stromal and inflammatory cells, which can induce an exuberant and highly ectopic 

sprouting resulting in hyper-innervation of the marrow, mineralized bone, and periosteum 

[33•]. Importantly, NGF can not only induce ectopic nerve sprouting into areas of bone that 

are normally poorly innervated, but can also sensitize these newly sprouted nerve fibers so 

normal loading or movement of the fractured bone is perceived as a highly noxious event 

[6••, 37]. While ectopic sprouting of sensory/sympathetic nerve fibers probably occurs in the 

callus at most fracture sites [50], with rapid and effective bone healing, NGF levels decline 

and these newly sprouted nerve fibers are “pruned” back resulting in a normal innervation of 

the bone and non-sensitized nociceptors [51]. However, if normal and effective fracture 

healing does not occur, this ectopic nerve sprouting in the non-resorbed callus can persist 

[33•, 51] so that mechanical strain and/or distortion of still weak and non-healed bone may 

result in normally innocuous movement and loading of the fracture site now being perceived 

as a noxious event.

Central Sensitization

While the present review has focused on advances made in understanding the peripheral 

mechanisms that drive bone fracture pain, what is also clear is that following bone fracture, 

the brain will also undergo sensitization (i.e., “central sensitization”) that amplifies the 

perception and severity of pain [52••, 53]. Central sensitization is thought to occur when the 

chemical, electrophysiological, and pharmacological systems that transmit and modulate 

pain are altered in the spinal cord and brain so that normal use and movement of the bone is 

now perceived as a noxious event [54].

It should be emphasized that we do not yet know the specific mechanisms that generate 

central sensitization. However, what we do know is that injury to the skeletal system seems 

to be much more effective at inducing central sensitization as compared to injury to skin. For 

example, in 1986, Woolf and Wall noted “…a twisted ankle invokes relatively little 

destruction of tissue and elicits an abrupt localized stabbing pain that dies down quickly but 

is followed by a prolonged period of spreading, poorly localized deep pain, and tenderness 

that affects reflexes and gait. In contrast, localized skin damage produces an acute burst of 

pain that gradually dies down over minutes but is associated with a spatially restricted 

response of flair, wheal and surrounding tenderness” [55]. These authors also noted that 

small skin lesions produce comparatively less widespread and prolonged disturbances to 

sensation and reflex patterns than injuries to the skeleton [55].

Mechanism-Based Therapies to Control Bone Fracture Pain

Although bone fractures are a common cause of chronic pain and long-term physical 

disability (especially in the elderly where bone healing is slower and frequently incomplete), 

there are currently relatively few pharmacological therapies that can fully manage the pain 

and stimulate fracture repair without significant, unwanted side effects. However, in the last 

decade, significant progress has been made. Thus, in terms of bone fracture pain, we now 

know that the bone is innervated by a limited repertoire of sensory nerve fibers [37, 49, 56] 

(Fig. 5) and that many forms of skeletal pain have both a nociceptive and a neuropathic 

component [6••]. We also know that the majority of sensory nerve fibers that innervate the 
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bone express TrkA and thus respond to NGF that is released at the site of bone fracture. 

Furthermore, we know that sensory and sympathetic nerve fibers in an injured or diseased 

skeleton also display a remarkable neurochemical and morphological plasticity by 

upregulating neurotransmitters, cytokines, growth factors, and receptors and undergoing an 

exuberant nerve sprouting that is never observed in the normal skeleton [33•, 57]. 

Additionally, sequestration of NGF or inhibition of TrkA can result in significant attenuation 

of skeletal pain [27••, 29, 32••, 47, 48••, 57–62].

Progress has also been made in beginning to identify molecules that may speed up fracture 

healing. Thus, sclerostin has now been identified as a protein that is expressed and released 

by osteocytes [3, 63] and when it is present in high levels, it inhibits bone formation and 

slows down fracture healing [64••, 65]. With aging, the incidence of low-trauma fractures 

increases and the rate of rapid and effective bone fracture healing decreases. Inhibition of 

sclerostin (with antibodies that sequester sclerostin) may reduce the likelihood of fragility 

fractures, stimulate more rapid and effective fracture healing, and thereby reduce the 

incidence and duration of skeletal pain that frequently accompanies failed healing of bone 

fractures. Thus, preclinical and human studies suggest that inhibition of endogenous 

sclerostin builds bone and promotes fracture healing in the young and aging bone [3••, 64••].

Conclusions

We are only beginning to understand the mechanisms that drive fracture pain. Whether 

mechanism-based therapies such as anti-NGF, TrkA inhibitors, or anti-sclerostin receive 

approval for broad use in humans will depend on their safety profile. However, NGF and its 

cognate receptor TrkA clearly play major roles in driving bone fracture pain and sclerostin 

plays a major role in driving the age-related decline in fracture healing. A better 

understanding of the mechanisms that drive bone fracture pain as well as the factors that 

control bone healing in the young, adult, and aging bone has the potential to transform our 

ability to better manage fracture pain whether the bone fracture is due to injury, disease, or 

aging.
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Fig. 1. 
Representative radiographs showing the rodent model of bone fracture pain. Note that in the 

top image, a titanium pin has been placed in the intramedullary space of the right femur 

before the fracture (to stabilize the fractured bone) and a fracture has been made in the 

middle of the femur. Pain is immediately evident following bone fracture and with normal 

bone healing (callous formation, mineralization, resorption, and cortical union), the fracture 

pain subsides. These images are from a mouse but a nearly identical model has also been 

developed in rats
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Fig. 2. 
Quantification of pain-related behaviors following bone fracture. Bone fracture pain can be 

assessed by measuring spontaneous guarding (a) and spontaneous flinching (b) of the right 

hindlimb over a 2-min observation period during the day. Pain behaviors can also be 

assessed by using 20 h day/night activity monitoring of horizontal (c), vertical and velocity 

of movement of the mice following fracture. The pictographs in (c) show the spontaneous 

horizontal activity at baseline (1 day prefracture), day 3 post-fracture, and day 14 post-

fracture. In general, in young mice, if effective bone healing occurs, fracture-induced pain-

related behaviors peak at 1–4 days post-fracture and return to baseline by day 21 days post-

fracture. Note that in mice, placement of the stainless-steel pin or impactor-induced soft 

tissue injury (STI) alone with no bone fracture shows little change in either spontaneous 

guarding (a) or flinching (b)
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Fig. 3. 
Schematic illustrating the sensory nerve fibers that innervate the femur and some of the 

factors that may contribute to fracture-induced skeletal pain. Sensory nerve fibers that 

innervate the bone (a) are generally mechanosensitive and are present in the periosteum (the 

thin cellular and fibrous sheath that surrounds the outer surface of the mineralized bone), 

cortical bone, and bone marrow. Following bone fracture, a variety of factors are released at 

the fracture site including nerve growth factor (NGF), prostaglandins, endothelins, and 

bradykinin which activate and/or sensitize neurons that convey information from the bone to 

the spinal cord (b) in that NGF binds to its cognate receptor tropomyosin receptor kinase A 

(TrkA) and the NGF/TrkA complex is then retrogradely transported to the cell body of the 

sensory neuron where it induces upregulation of a variety of neurotransmitters, receptors, 

and ion channels involved in detecting and transmitting noxious stimuli from the bone to the 

spinal cord and brain. In sensory nerve fibers at the fracture site (c), NGF also directly 

sensitizes a variety of receptors, ion channels, and mechanotransducers expressed by sensory 

nerve fibers that innervate the bone so that normally innocuous stimulation of the bone is 

now perceived as noxious stimuli
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Fig. 4. 
Sprouting of sensory nerve fibers at an unhealed fracture site 6 months following bone 

fracture where desired healing of the fracture has not occurred. In these confocal images, 

sensory nerve fibers are labeled with an antibody raised against calcitonin gene-related 

peptide (CGRP, red). Note that in the normal uninjured femur (a, b), there are a few new 

fibers in the bone marrow (a) and in the periosteum (b). However, in the non-healed fracture, 

there is a marked increase in the density of sensory nerve fibers in both the callous (c) and in 

the periosteum (D). This “hyper-innervation” of the bone at the unhealed fracture site is 
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never observed in the normal femur and may contribute to the chronic limping and pain-

related behaviors observed in animals with non-healed fractures
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Fig. 5. 
Images showing that sympathetic nerve fibers (yellow), sensory nerve fibers (green), and 

blood vessels (red) are present and have a similar organization in the periosteum of the 

young, adult, and aging mouse femur. The periosteum is a thin cellular and fibrous sheath 

that is tightly opposed to the outer surface of all bones of the body and probably plays a 

major role in detecting bone fracture and the generation of acute and chronic fracture pain. 

These data would suggest that even in the very young and very old, the periosteum is richly 

innervated by sensory and sympathetic nerve fibers and these nerve fibers probably play a 

significant role in the detection and signaling of fracture pain throughout the lifespan. In 

these images, blood vessels are labeled with an antibody raised against CD-31, primary 

afferent sensory nerve fibers are labeled with an antibody raised against calcitonin gene-

related peptide (CGRP), and sympathetic nerve fibers are labeled with an antibody raised 

against tyrosine hydroxylase (TH)
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