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Abstract

Introduction: Six years have passed since Middle East respiratory syndrome (MERS) 

coronavirus (MERS-CoV), a newly emerging infectious virus, was first reported in 2012. 

Although MERS-CoV has had a consistently high mortality rate in humans, no vaccines have been 

approved to prevent MERS-CoV infection in humans. MERS-CoV spike (S) protein is a key target 

for development of MERS vaccines.

Areas covered: In this review, we illustrate the structure and function of S protein as a vaccine 

target, describe available animal models for evaluating MERS vaccines, and summarize recent 

progress on MERS-CoV S-based vaccines, focusing on their ability to elicit antibody and/or 

cellular immune responses, neutralizing antibodies, and protection against MERS-CoV infection 

in different models. Prospects for future MERS-CoV S-based vaccines are discussed.

Expert commentary: The majority of MERS vaccines under development are based on MERS-

CoV S protein, including full-length S, S1, and receptor-binding domain (RBD). While it is 

essential to evaluate the safety of full-length S and S1-based MERS vaccines, further improvement 

of the efficacy of RBD-based vaccines using novel strategies would be necessary. Overall, this 

review provides informative guidance for designing and developing safe and effective MERS 

vaccines based on viral S protein.
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1. Introduction

Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV), a newly emerging 

infectious virus, was first identified in Saudi Arabia in June 2012 [1]. Since then, MERS-

CoV has infected 2,229 humans, including 791 deaths (mortality rate ~35%), in at least 27 

countries, including Saudi Arabia, South Korea, Iran, Jordan, Qatar, United Kingdom, 

United States, China, and Thailand [2]. Of note, Saudi Arabia has the largest number of 

MERS cases, covering 80% of all cases, while in 2015, South Korea reported the largest 

outbreak of MERS-CoV infection in humans outside Saudi Arabia [3,4]. MERS-CoV has 

been added to the WHO Blueprint list of priority viruses that cause public health emergency 

but still lack efficacious drugs and vaccines [5].

MERS-CoV is a zoonotic viral pathogen. It likely uses bats as its natural host, but MERS-

CoV replicates in bats without showing clinical signs of disease [6,7]. Dromedary camels 

are evidenced as the intermediate host of MERS-CoV. The virus is able to transmit from 

camels to camels, and dromedary camels demonstrate high seropositivity to MERS-CoV [8–

10]. Transmission of MERS-CoV from camels to humans occurs, and a number of risk 

factors, such as direct contact with MERS-CoV-infected dromedary camels, have been 

identified in camel workers [11–13]. Although MERS-CoV is less able to cause human-to-

human transmission compared to severe acute respiratory syndrome coronavirus (SARS-

CoV), another coronavirus which led to the 2003 outbreak in humans [14] and is in the same 

β-genus as MERS-CoV, it does lead to human infections among healthcare workers and 

patients through healthcare or household-acquired infection [12,15,16]. MERS-CoV 

continues to cause cases and outbreaks in the Middle East, constituting an ongoing risk to 

global health security [13,17]. Therefore, effective medical countermeasures, such as 

vaccines and therapeutic agents, are urgently needed to block camel-to-camel and camel-to-

human transmission of MERS-CoV and to prevent and treat MERS-CoV infection in 

humans.

The MERS-CoV RNA genome encodes four structural proteins, including spike (S), 

membrane (M), nucleocapsid (N), and envelope (E) (Fig. 1A), as well as accessory open 

reading frame (ORF) proteins, such as non-structural proteins (nsp1–16) and ORF3, 4a, 4b, 

5, and 8b [18,19]. Although several MERS-CoV proteins still have unknown functions in the 

process of MERS-CoV life cycle, infection, or pathogenesis, progress has been made on the 

structures and/or functions of MERS-CoV accessory proteins, some of which are directly or 

indirectly related to MERS-CoV pathogenesis [20,21]. For example, MERS-CoV accessory 

ORF3, 4a, 4b, and 5, as well as nsp16, proteins are necessary for viral infection and 

pathogenesis. The deletion or attenuation of ORF3–5 proteins dysregulates host responses 

and augments inflammation, while mutation of nsp16 significantly attenuates MERS-CoV 

infection in cell cultures and in vivo [22,23].

2. MERS-CoV S protein

Located at the MERS-CoV surface, S protein engages with viral cellular receptor dipeptidyl 

peptidase 4 (DPP4, e.g., CD26), mediating viral attachment to host cells and subsequent 

virus-cell membrane fusion [24–26]. MERS-CoV S protein consists of S1 and S2 subunits. 

Zhou et al. Page 2

Expert Rev Vaccines. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The receptor-binding domain (RBD), a functional domain in S1, is divided into a core 

subdomain and receptor-binding motif (RBM), while the latter contains the motif and key 

residues to bind DPP4 receptor on the host cell membrane [27,28]. After binding to cellular 

receptor, MERS-CoV S protein undergoes significant conformational changes, exposing 

heptad repeat 1 (HR1) and 2 (HR2) regions in S2 subunit, further forming a 6-helix bundle 

fusion core, leading to membrane fusion [29]. Recent structural studies on MERS-CoV S-

trimer also suggest a potential mechanism for initiating the fusion process through receptor-

induced triggering which involves sequential activation of protomers [30]. The schematic 

structure of MERS-CoV S protein and its functional regions are described in Figure 1B.

Theoretically, MERS-CoV S1 and S2 subunits, as well as their functional regions, such as 

RBD, play different roles in MERS-CoV infection and pathogenesis. Therefore, S1, RBD, 

and/or full-length S protein all serve as good targets to develop MERS-CoV vaccines and 

anti-MERS-CoV therapeutic antibodies, while S2, particularly its HR1 region, is an ideal 

target to develop anti-MERS-CoV fusion inhibitors [18,19]. Indeed, MERS-CoV S protein is 

able to induce strong antibody responses and/or cellular immune responses in immunized 

animals, in which S-specific neutralizing antibodies play a key role in preventing MERS-

CoV infection [31–33]. It has been shown that an anti-MERS-CoV polyclonal antibody 

produced from S protein nanoparticle-immunized transchromosomic (Tc) cattle inhibits 

MERS-CoV infection in mice and demonstrates safety and tolerability in human Phase I 

trials [34,35]. Also, monoclonal antibodies or nanobodies targeting MERS-CoV S protein 

significantly protect against MERS-CoV infection in different animal models, including 

transgenic mice, rabbits, and non-human primates (NHPs) [18,36–38]. These studies 

highlight the importance of S protein-based vaccines and therapeutics in preventing and 

treating MERS-CoV infection. Previous reviews have summarized anti-MERS-CoV 

therapeutics targeting S protein [18]. This review will focus on the MERS-CoV S protein-

based vaccines. The key vaccine targets in MERS-CoV S protein are illustrated in Figure 

1C.

3. Animal models available for evaluating the efficacy of MERS vaccines

MERS vaccines, including those based on the S protein, must be evaluated in suitable animal 

models to prove their efficacy before moving to large-scale production and/or human clinical 

trials. Other than dromedary camels, MERS-CoV has shown susceptibility to llamas, pigs, 

and rabbits, but not to goats, sheep and horses [36,39–41]. MERS-CoV may infect NHPs, 

including rhesus macaques and marmosets [42–44], although the two appear to have varying 

degrees of histopathological changes and pneumonia in the lungs after MERS-CoV infection 

[45]. Thus, NHPs can be used as effective animal models to evaluate protective immunity of 

MERS candidate vaccines.

MERS-CoV does not naturally infect small animals, including mice, ferrets, and hamsters. 

Mice expressing human DPP4 (hDPP4), including adenovirus 5 (Ad5)/hDPP4-transduced 

mice, hDPP4-Tg mice (transgenic for expressing hDPP4), and humanized (HuDPP4) mice 

(replacing mouse DPP4 with hDPP4), have been developed accordingly and are susceptible 

to wild-type MERS-CoV strains [46–50]. In addition, a mouse model was generated by 

modifying the mouse genome encoding two mouse amino acids into corresponding human 

Zhou et al. Page 3

Expert Rev Vaccines. Author manuscript; available in PMC 2019 August 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



sequences in the DPP4 receptor, resulting in susceptibility to a mouse-adapted MERS-CoV 

and viral replication with lung symptoms and diseases [51]. Other mouse models, such as 

hDPP4-knock-in mice, were also developed, and they are susceptible to a mouse-adapted 

MERS-CoV clone, showing lung diseases [52]. Compared with large animal models, these 

small mouse models can be used as convenient and economical vehicles to evaluate the 

efficacy of MERS vaccines.

4. Advances in the development of MERS-CoV S protein-based vaccines

Like SARS and other viral vaccines, a good MERS vaccine should induce strong immune 

responses, elicit potent neutralizing antibodies, and demonstrate high protection in 

vaccinated animals and humans [14,19]. No MERS vaccine is approved for use in humans. 

Most currently developed vaccines against MERS-CoV are in preclinical stages, the 

majority of which are based on viral S protein [31,53–55]. These MERS-CoV S-targeting 

vaccines are summarized in Tables 1 and 2, and they are described later as vaccines based on 

the full-length S/S-trimer, S1, RBD, and other regions of MERS-CoV S protein, focusing on 

their ability to induce humoral and/or cellular immune responses and neutralizing 

antibodies, as well as protection against MERS-CoV infection, in different animal models.

4.1. MERS-CoV full-length S or S-trimer protein-based vaccines

A number of vaccines have been developed using full-length S protein of MERS-CoV as the 

target (Table 1). These vaccines are categorized as viral vector-, DNA-, nanoparticle-, virus-

like particle (VLP)-, and S-trimer protein-based subunit vaccines [30,31,56–60]. Many of 

the reported full-length S-based vaccines have been tested in suitable animal models, and 

they demonstrated efficacy against MERS-CoV infection [31,53,57,61,62]. Two of these 

vaccines, e.g., a full-length S-based simian adenovirus vector vaccine (ChAdOx1) and a 

DNA vaccine (GLS-5300), are scheduled for clinical trials (Phase I) to test their safety and 

immunogenicity [63,64].

Viral vector-based vaccines encoding full-length S protein of MERS-CoV have been studied 

extensively, among which human or simian Ad, modified Vaccinia Ankara (MVA), measles 

virus (MV), and vesicular stomatitis virus (VSV) can be employed as the vaccine vehicles. 

For example, MERS-CoV S/RBD-specific systemic, mucosal, and/or cellular immune 

responses, as well as neutralizing antibodies against pseudotyped and live MERS-CoV, are 

induced in mice after immunizing them with human Ad5-based and Ad41-based or simian 

adenovirus vector (ChAdOx1)-based MERS-CoV full-length S-encoding vaccines 

[56,61,65,66], protecting hDPP4-Tg mice against MERS-CoV infection [61]. Also, MERS-

CoV S-specific systemic and mucosal antibody responses and T cell responses, particularly 

neutralizing antibodies, are elicited in mice and/or camels immunized with MERS-CoV full-

length S-expressing MVA vaccines, protecting Ad5/hDPP4-transduced mice and dromedary 

camels against MERS-CoV infection [31,62,67]. It is noted that MERS-CoV S-specific 

immune responses and neutralizing antibodies are significantly improved by the Ad 

(ChAdOx1)-S vaccine priming and MVA-S vaccine boosting approach [65]. In addition, a 

full-length S-encoding MV vaccine induces MERS-CoV S-specific antibody and T cell 

responses, as well as MERS-CoV neutralizing antibodies, protecting Ad5/hDPP4-transduced 
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mice from MERS-CoV challenge [68]. Furthermore, a VSV-based MERS-CoV full-length S 

vaccine is shown to elicit MERS-CoV neutralizing antibodies and T cell responses in mice 

and/or NHPs [69].

Other types of MERS-CoV S-based vaccines, including those based on DNA, S-trimer 

protein, nanoparticle, and VLP, have shown immunogenicity and/or protective efficacy 

against MERS-CoV infection in mouse, camel, and NHP models [30,53,57–59]. For 

instance, an optimized DNA expressing full-length MERS-CoV S protein induces effective 

neutralizing antibodies and cellular immune responses in mice, camels and NHPs, protecting 

NHPs from MERS-CoV-caused disease [57]. Immunization of mice and NHPs with full-

length S-DNA priming followed by S1 protein boosting elicits sufficient neutralizing 

antibodies, which protect NHPs against MERS-CoV-induced radiographic pneumonia [58]. 

A full-length S-based VLP vaccine induces MERS-CoV S-RBD-specific antibody responses 

and neutralizing antibodies in NHPs in the presence of Alum adjuvant [59]. A baculovirus 

insect cell-derived full-length S nanoparticle vaccine with Alum or Matrix-M1 adjuvant also 

induces MERS-CoV neutralizing antibodies in mice and Tc bovines, protecting Ad5/hDPP4-

transduced mice from MERS-CoV infection [34,53,60].

Depending on antigen doses, injection doses, or immunization routes, MERS-CoV S/RBD-

specific antibody and cellular immune responses and MERS-CoV neutralizing antibody 

titers induced by viral vectored full-length S vaccines might vary [61,62], while the titer of 

neutralizing antibodies elicited by other vaccine types, such as nanoparticle vaccines, could 

be significantly affected by adjuvants, not by antigen doses [53,60]. It is shown that some 

MERS-CoV full-length S-based DNA (≤1:103) or viral vector (MVA) (≥1:103) vaccines 

elicit a relatively higher titer of serum neutralizing antibodies than VLP (<1:102) or 

nanoparticle (1:102–103) vaccines against live MERS-CoV infection [31,57,59,60,62,67]. 

Here, 50% tissue culture infectious dose (TCID50) or 50% fluorescence-reduction 

neutralization assay (FRNA50) is utilized to measure neutralizing antibodies (e.g. 50% or 

90% neutralization titers). Therefore, the difference of neutralizing antibody titers induced 

by the aforementioned vaccines might result from variant neutralization assays tested, in 

addition to different neutralizing immunogenicity of vaccines, MERS-CoV strains, or virus 

titers. Currently, it appears that there is no international antibody standard to harmonize the 

data obtained from different neutralization assays. Surely, the breadth and potency of 

MERS-CoV neutralizing antibodies are improved by a prefusion MERS-CoV S-trimer 

protein with proline substitutions in the S2-HR1 region [30]. Notably, in addition to 

inducing MERS-CoV-specific immune responses and neutralizing antibodies, viral vector-

based full-length MERS-CoV S vaccines generally elicit anti-vector immune responses 

and/or neutralizing antibodies [31,62,65,68], a phenomenon that can be easily eliminated by 

S-based other vaccine types, such as DNA, S-trimer protein, nanoparticle, and VLP, as 

described earlier.

4.2. MERS-CoV S1-based vaccines

The MERS-CoV S1 subunit has potential as a vaccine target. Several vaccines have been 

constructed based on this region, which are categorized as viral vectored (Ad and rabies 

virus: RABV), DNA, and protein vaccines (Table 2). An Ad vector encoding MERS-CoV S1 
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extracellular domain (Ad5.MERS-S1) and a RABV vector encoding S1 elicit antibody 

responses and neutralizing antibodies in mice, while the RABV vectored S1 also protects 

Ad5/hDPP4-transduced mice from MERS-CoV challenge [56,70]. In addition, DNA-based 

MERS-CoV S1 vaccines elicit antibody and cellular immune responses and neutralizing 

antibodies capable of protecting the above mouse model from MERS-CoV infection [55,71]. 

Particularly, S1 protein boost of a full-length MERS-CoV S-DNA or S1 protein elicits 

similar levels of MERS-CoV neutralizing antibodies in mice, protecting NHPs from MERS-

CoV challenge and pulmonary disease. However, a slightly lower titer of such antibodies is 

seen in S1/S1-vaccinated, compared to S-DNA/S1-vaccinated, NHPs, resulting in a higher 

peak volume of pulmonary disease in the S1/S1 group after MERS-CoV challenge [58]. 

Similar to MERS-CoV full-length S-based viral vectored vaccines, MERS-CoV S1-based 

viral vectored vaccines also induce a varying degree of anti-vector immune responses and 

neutralizing antibodies [70].

4.3. MERS-CoV RBD-based vaccines

As a short fragment inside the S1 subunit of MERS-CoV S protein, the RBD is applied as a 

key target for developing MERS vaccines in the categories of VLP and subunit vaccines, and 

their immunogenicity and efficacy have been tested in mouse, rabbits, and NHP models 

(Table 2).

One study indicates that a chimeric, spherical VLP (sVLP) expressing MERS-CoV RBD 

induces RBD-specific antibody and cellular immune responses in mice, neutralizing 

pseudotyped MERS-CoV entry into target cells [72]. Almost all other MERS-CoV RBD-

based vaccines reported thus far are based on recombinant proteins expressed in mammalian 

or insect cell expression systems [32,73–77]. It has been demonstrated that a mammalian 

cell-expressed recombinant RBD protein containing residues 377–662 of MERS-CoV S 

induces robust humoral systemic and mucosal immune responses and neutralizing antibodies 

in immunized mice [32,78]. Studies have also shown that residues 358–588 and 367–606 of 

MERS-CoV RBD expressed in mammalian and insect cells, respectively, elicit RBD-

specific antibody or cellular immune responses and neutralizing antibodies in mice and/or 

rabbits [79,80]. By optimizing and comparing five RBD fragments with different lengths, a 

RBD fragment containing residues 377–588 of MERS-CoV S protein is identified to induce 

the highest titer of antibody responses and neutralizing antibodies in immunized mice and 

rabbits with the capability of protecting Ad5/hDPP4 and hDPP4-Tg mice from MERS-CoV 

challenge with no evidence of immunological toxicity or eosinophilic immune enhancement 

[32,33,75,76,81]. In addition to its high immunogenicity and strong protection in mice and 

rabbits, MERS-CoV RBD is also immunogenic and protective in NHPs. This is evidenced 

by the induction of robust and sustained immune responses and neutralizing antibodies and 

protection against MERS-CoV challenge with minimal pathological effects in NHPs 

immunized with a RBD protein [73]. Importantly, MERS-CoV RBD protein-induced 

antibodies are shown to potently cross-neutralize multiple pseudotyped MERS-CoVs 

expressing S proteins of human and camel MERS-CoV strains, live human MERS-CoV 

strains, and mAb escape MERS-CoV mutants [74].
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It should be noted that the immunogenicity of MERS-CoV RBD-based subunit vaccines is 

not significantly affected by antigen dosage, but by injection doses and vaccination intervals. 

For example, RBD dosage down to one microgram is sufficiently immunogenic to elicit 

strong immune responses in animals, and a regimen of two doses of RBD at 4-week 

intervals elicits the strongest antibody responses and neutralizing antibodies against MERS-

CoV infection among one dose and two doses at 1-, 2-, and 3-week intervals tested, 

protecting hDPP4-Tg mice from MERS-CoV challenge [82,83]. Also, intranasal vaccination 

of the RBD protein induces much stronger local mucosal immune responses and neutralizing 

antibodies than subcutaneous immunization [84]. In particular, MERS-CoV RBD-elicited 

immune responses and neutralizing antibodies are significantly improved in the presence of 

suitable adjuvants, such as MF59, or fusion with appropriate immunopotentiators, such as Fc 

tag [32]. Compared with the wild-type RBD, a mutant RBD vaccine with a non-neutralizing 

epitope masked by a glycan probe provided 100% survival of hDPP4-Tg mice against lethal 

MERS-CoV infection [75]. These studies suggest that the RBD of MERS-CoV is a critical 

neutralizing domain and a strong immunogen for developing MERS vaccines.

4.4. Vaccines based on other regions of MERS-CoV S protein

As indicated earlier, most MERS-CoV vaccines under development focus on the full-length 

S protein, S1, or RBD. However, a few MERS vaccines are reported based on other regions 

of MERS-CoV S protein, such as truncated S, S-NTD, and S1/S2 regions (Table 2). For 

example, a MV-vectored MERS-S lacking the transmembrane domain (truncated S) is able 

to elicit MERS-CoV neutralizing antibodies, but the titer is slightly lower than that elicited 

by a full-length MERS-CoV S vaccine in the same viral vector [68]. Also, a MERS-CoV S-

NTD-based protein vaccine is shown to induce favorable antibody and cellular responses, as 

well as neutralizing antibodies, reducing lung abnormalities in Ad5/hDPP4-transduced mice 

after MERS-CoV challenge [54]. In addition, a peptide spanning the S1/S2 regions, i.e., 

residues 736–761, has neutralizing activities by inhibiting pseudotyped MERS-CoV entry 

and membrane fusion, pointing out the possibility of developing vaccines covering this 

neutralizing epitope [85]. Nevertheless, the protective efficacy of such vaccines needs to be 

further confirmed in a lethal challenge model. At present, no vaccines are reported solely 

based on the MERS-CoV S2 subunit, potentially because of its low immunogenicity and 

inability to induce strong neutralizing antibodies.

5. Summary and Conclusions

This review introduces the structure and function of MERS-CoV S protein, summarizes 

current animal models available for evaluating the efficacy of MERS vaccines, and describes 

recent advances in MERS vaccines based on viral S protein, including those on the full-

length S/S-trimer, S1, RBD, and other S regions. These S-based vaccines are further 

categorized as different types, including viral vector, DNA, VLP, nanoparticle, and protein-

based vaccines, and their ability to elicit antibody and/or cellular immune responses, 

neutralizing antibodies, and protective efficacy against MERS-CoV infection was compared 

in different models. Such data will provide useful information and important guidance for 

designing and developing safe and effective MERS-CoV S protein-based vaccines.
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6. Expert commentary

Although full-length S-based vaccines show protection against MERS-CoV infection and 

demonstrate promise for further development, no safety profile has been established. More 

specifically, some non-neutralizing immunodominant epitopes on the full-length S protein 

may compete with the neutralizing epitopes to attenuate neutralizing activity or even 

enhance MERS-CoV infection, potentially causing immunopathological effects or other 

harmful immune responses, as seen in the case of full-length S-based SARS vaccines [86–

88]. In addition, MERS-CoV S1 subunit, which is much longer than the RBD, also contains 

some non-neutralizing immunodominant epitopes. Such immunodominant epitope in SARS-

CoV S1 is shown to elicit epitope sequence-dependent enhancement of viral infection [89]. 

Therefore, evaluation of the safety and potential immunopathological consequences is 

essential for full-length S and S1-based MERS vaccines before moving them to large-scale 

development and beginning clinical trials.

Compared with vaccines based on other targets of MERS-CoV S, such as full-length S 

protein, RBD-based vaccines have a strong safety profile. The RBD does not contain non-

neutralizing epitopes that may cause harmful immune responses, and RBD-based vaccines 

do not show immunological toxicity and immunopathological effects in the animals tested 

[81]. Similar to the SARS-CoV RBD, which covers multiple conformation-dependent 

neutralizing epitopes [90], the RBD of MERS-CoV also contains a critical neutralizing 

fragment with major neutralizing epitopes capable of inducing highly potent neutralizing 

antibodies [76]. like SARS-CoV RBD-based vaccines that induce high titers of cross-

neutralizing antibodies against divergent strains of human and animal SARS-CoV [91], 

MERS-CoV RBD-based vaccines also elicit broad-spectrum neutralizing antibodies and 

cross-protective immunity against infections of divergent MERS-CoV strains from humans, 

camels, and antibody escape mutants [74]. Future strategies can be applied to improve the 

potency and breadth of MERS-CoV RBD candidate vaccines by using structure-based 

rational design to mask unfavorable non-neutralizing immunodominant epitopes and expose 

neutralizing epitopes within the RBD [75], or incorporating RBD with favorable neutralizing 

epitopes in the S2 or non-RBD S1 regions. Such vaccination approaches are also expected to 

improve the efficiency of vaccines against escape antibody mutant virus strains [92].

In some cases, viral vectored vaccines encoding MERS-CoV S1 or S protein, such as 

RABV-MERS-S1 or MVA-MERS-S vaccines, induce anti-vector responses helpful in 

preventing host-derived RABV and camelpox virus in immunized mice or camels [31,70]. 

However, viral vectored vaccines, such as those based on Ad, against other viruses, 

including HIV, may induce a rapid memory immune response against the vector, enhance 

virus infection, or elicit limited efficacy in immunized hosts, resulting in early halting of 

clinical trials [93–95]. Thus, in addition to investigating immunogenicity and protection of 

viral-vectored MERS-CoV S candidate vaccines against MERS-CoV infection, careful 

design and selection of suitable viral vectors, comprehensive investigation of the possibility 

of anti-vector immunity in preventing MERS-CoV-specific immune responses, as well as 

extensive evaluation of their safety and potential toxicity, are needed before moving such 

vaccines forward for trials in humans.
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Generally speaking, neutralizing antibodies are indispensable for preventing MERS-CoV 

infection, and the titers of neutralizing antibodies are correlated with protection [33,83]. 

Therefore, improvement of a vaccine’s neutralizing immunogenicity to induce highly potent 

neutralizing antibodies would be the key for further development of next-generation MERS-

CoV S-based vaccines. In addition to humoral immune responses, cellular immune 

responses or various cell populations may play different roles in fighting against MERS-

CoV infection or regulating pathogenesis. For instance, airway memory CD4+ T cells 

mediate protective immunity against MERS-CoV, while CD8+ T cells and macrophages 

regulate MERS-CoV-induced pathology and clinical symptoms of the disease [96,97]. In this 

regard, cellular immunity of MERS-CoV S vaccines may well complement their humoral 

immunity to increase the vaccine’s potency in preventing MERS-CoV infection.

As indicated earlier, MERS-CoV S protein serves as a key vaccine target. In addition to S-

based vaccines, MERS vaccines can be engineered by targeting other viral structural or non-

structural proteins, such as E, ORFs and nsp16, to generate mutant live virus vaccine 

platforms that lack E, delete ORF3–5, or mutate nsp16 [22,23]. These non-S-based vaccines 

could be applied as an alternative or complement of S-based vaccines to prevent MERS-CoV 

infection. Overall, in order to further improve immunogenicity and efficacy, S-based MERS 

vaccines can be used alone or combined with other types of S or non-S vaccines with 

complementary effects by priming-boosting vaccination approaches, or conjugating with 

different adjuvants, and optimizing for doses, routes, or intervals. Such vaccines should be 

tested in different animal models, including large animal models, such as NHPs and/or 

camels, to confirm immunogenicity, efficacy, toxicity, and immunopathology before 

processing to human clinical trials.

7. Five-year view

Six years have passed since MERS-CoV was first reported in 2012. In addition to two 

candidate vaccines that are scheduled for clinical trials, most MERS-CoV vaccines, 

including those based on viral S protein, are still in preclinical development or not even 

processed for testing in large animal models, such as NHPs. Lack of sufficient funds to 

support such studies is potentially one of the main reasons, in addition to regulations and 

other issues. A number of MERS-CoV S-based vaccine candidates, such as those based on 

the RBD, with strong safety profile, immunogenicity, and protective efficacy, but without 

inducing immunopathology in animals, are expected to also induce potent immune 

responses and efficacy, as well as maintain good safety profile, in humans. Therefore, it is 

anticipated that sufficient funds will be invested from governments, private entities, or big 

pharmaceutical companies and that an increasing number of MERS vaccines, particularly 

those based on the S and/or RBD proteins, can be tested in large animals, moved to clinical 

trials, and/or approved to prevent MERS-CoV infection in humans in the next five years.
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8. Key issues

• MERS-CoV, a newly emerging infectious coronavirus, continues to infect 

human populations, particularly in Saudi Arabia, with about 35% mortality 

rate. As a zoonotic virus, MERS-CoV transmits efficiently among camels and 

occasionally in people who are in close contact with infected camels and 

persons, constituting a continual threat to global public health and thus 

requiring effective medical countermeasures, such as vaccines, to prevent 

MERS-CoV infection.

• MERS-CoV genome encodes four structural proteins, including S, E, M and 

N, and a number of accessory proteins. The structures and/or functions of 

some of these proteins, such as S, ORF3–5, and nsp16, have been extensively 

studied.

• MERS-CoV S protein consists of S1 and S2 subunits. RBD in S1 is 

responsible for cellular receptor binding, while HR1 and HR2 regions in S2 

mediate virus fusion and entry into the target cell. Receptor binding to the 

RBD may trigger sequential activation of protomers.

• MERS-CoV can infect dromedary camels, but it does not naturally infect 

other large animals (e.g., sheep, horses) and small animals (e.g, mice, ferrets 

and hamsters). Large animal models, including non-human primate models, 

and small animal models, such as adenovirus/hDPP4-transduced mice, 

hDPP4-transgenic mice, and hDPP4-knock-in mice, have been developed for 

testing protective efficacy of MERS vaccines.

• S protein is the primary target for the humoral immune response during 

infection and thus a key target for developing MERS-CoV vaccines. S-RBD 

contains a critical neutralizing domain capable of inducing highly potent 

neutralizing antibodies. S- and RBD-specific neutralizing antibodies play an 

essential role in preventing MERS-CoV infection, and neutralizing antibody 

titers are correlated with protection.

• No MERS vaccines have been approved for use in humans. Two MERS-CoV 

S-based vaccines are scheduled for clinical trials, and all other MERS 

vaccines are in preclinical development.

• Most MERS vaccines under development are based on viral S protein, 

including the full-length S/S-trimer, S1, RBD, and other S regions. These 

vaccines induce MERS-CoV-specific antibody and/or cellular immune 

responses, in addition to neutralizing antibodies at varying titers, a number of 

which have been tested in mouse, camel, or NHP models with protective 

efficacy.

• Each vaccine category has advantages and potential limitations. By 

comparison, MERS-CoV RBD-based subunit vaccines elicit relatively higher 

titers of neutralizing antibodies against multiple virus strains, protecting 

transgenic mice from MERS-CoV challenge without causing 
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immunopathological effects, demonstrating strong safety profile. Clinical 

trials are warranted if sufficient funds are available.
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Figure 1. 
MERS-CoV and S protein structures and vaccine targets in MERS-CoV S protein. (A) 
Schematic structure of MERS-CoV and its key structural proteins, including S, N, M, and E 

proteins. (B) Schematic structure of MERS-CoV S protein and its functional regions. S 

protein is composed of S1 and S2 subunits. NTD, N-terminal domain. RBD, receptor-

binding domain. RBM, receptor-binding motif. FP, fusion peptide. HR1 and HR2, heptad 
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repeat 1 and 2 regions. TM, transmembrane. CP, cytoplasmic tail. (C) Key vaccine targets in 

MERS-CoV S protein and its fragments.
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Table 1.

Summary of vaccines based on MERS-CoV full-length S or S-trimer proteins
a

Vaccines Categories Antibody responses 
and neutralizing 
antibodies

Cellular immune responses Protection Ref.

Viral vector-based Ad (human 
Ad5/ Ad41; 
simian Ad: 
ChAdOx1)

Induces MERS-CoV S/
RBD-specific systemic 
and mucosal antibody 
responses and 
neutralizing antibodies 
in mice; neutralizes 
pseudotyped and live 
MERS-CoV 
(EMC2012, most 
<1:103) and vector Ad

Elicits MERS-CoV S-specific T 
cell responses in mice

Protects hDPP4-
Tg mice from 
MERS-CoV 
(EMC2012) 
challenge; Phase I 
trial (ChAdOx1)

[56,61,64–66]

MVA Induces MERS-CoV S- 
and/or vector MVA-
specific systemic 
and/or mucosal 
antibody responses in 
mice and camels; 
induces neutralizing 
antibodies against live 
MERS-CoV 
(EMC2012, ≥1:103), 
MVA, and camelpox 
virus

Elicits MERS-CoV S and vector 
MVA-specific T cell responses 
in mice

Protects Ad5/
hDPP4-transuced 
mice and camels 
from MERS-CoV 
(EMC2012) 
challenge; 
protection 
correlates with 
serum neutralizing 
antibodies

[31,62,65,67]

MV Induces MERS-CoV S- 
and vector MV-specific 
antibody responses and 
neutralizing antibodies 
in mice; neutralizes 
live MERS-CoV 
(EMC2012, <1:103)

Elicits MERS-CoV S- and 
vector MV-specific T cell 
responses in mice

Protects Ad/
hDPP4-transduced 
mice from MERS-
CoV (EMC2012) 
challenge

[68]

VSV Induces MERS-CoV S-
specific antibody 
responses and 
neutralizing antibodies 
in mice and NHPs; 
neutralizes 
pseudotyped MERS-
CoV

Elicits MERS-CoV S-specific T 
cell responses in NHPs

Not reported [69]

DNA-based DNA Induces MERS-CoV S-
specific antibody 
responses and 
neutralizing antibodies 
in mice, camels, and 
NHPs; neutralizes 
divergent pseudotyped 
and/or live MERS-CoV 
(human/1390, 
camel/31, camel/39, 
EMC2012, 1:102–103)

Elicits MERS-CoV S-specific T 
cell responses in mice and 
NHPs

Protects NHPs 
against MERS-
CoV (EMC2012) 
challenge, without 
demonstrating 
clinical or 
radiographic signs 
of pneumonia; 
Phase I trial

[55,57,63]

DNA/protein-based DNA prime/ 
protein (S1) 
boost

Induces persistent 
MERS-CoV S-
targeting antibody 
responses and 
neutralizing antibodies 
in mice and/or NHPs; 
neutralizes divergent 
pseudotyped and live 
MERS-CoV (Jordan-
N3)

Not reported Protects NHPs 
from MERS-CoV 
(Jordan-N3) 
challenge and 
virus-induced 
radiographic 
pneumonia

[58]
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Vaccines Categories Antibody responses 
and neutralizing 
antibodies

Cellular immune responses Protection Ref.

VLP-based VLP Induces MERS-CoV S-
RBD-specific antibody 
responses and 
neutralizing antibodies 
(1:40) in NHPs

Elicits MERS-CoV S-RBD-
specific T cell responses in 
NHPs

Not reported [59]

Nanoparticle-based Nanoparticle Induces MERS-CoV S-
specific antibody 
response and 
neutralizing antibodies 
(1:102–103) in mice 
and Tc bovines; 
neutralizes live MERS-
CoV (Jordan)

Not reported Protects Ad5/
hDPP4-transduced 
mice from MERS-
CoV (Jordan or 
EMC2012) 
challenge

[34,53,60]

S-trimer protein-based Subunit Induces neutralizing 
antibodies in mice; 
neutralizes variant 
pseudotyped MERS-
CoV

Not reported Not reported [30]

a
Ad, adenovirus; ChAdOx1, simian adenovirus vector; hDPP4, human dipeptidyl peptidase 4; hDPP4-Tg: hDPP4-transgenic; MERS-CoV, Middle 

East respiratory syndrome coronavirus; MV, measles virus; MVA, Modified Vaccinia Ankara; NHPs, non-human primates; RBD, receptor-binding 
domain; S, spike; Tc, transchromosomic; VLP, virus-like particle; VSV, vesicular stomatitis virus. MERS-CoV strains used for neutralization and 
challenge studies, as well as vaccine-induced neutralizing antibody titers, are shown in parentheses.
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Table 2.

Summary of vaccines based on MERS-CoV S fragments
a

Vaccines Categories Antibody 
responses and 
neutralizing 
antibodies

Cellular immune responses Protection Ref.

Vaccines based on MERS-CoV S1

Viral vector-based Ad (Ad5) Induces 
MERS-CoV S-
specific 
antibody 
responses and 
neutralizing 
antibodies 
(>1:103) in 
mice; 
neutralizes live 
MERS-CoV 
(EMC2012)

Not reported Not reported [56]

RABV Induces 
MERS-CoV S- 
and vector 
RABV-specific 
antibody 
responses and 
neutralizing 
antibodies 
(>1:103) in 
mice; 
neutralizes live 
MERS-CoV 
(Jordan-N3)

Not reported Protects Ad5/
hDPP4-
transuced 
mice from 
MERS-CoV 
(Jordan-N3) 
challenge

[70]

DNA-based DNA Induces 
MERS-CoV S/
RBD-specific 
antibody 
responses and 
neutralizing 
antibodies 
(1:102–104) in 
mice; 
neutralizes live 
MERS-CoV 
(EMC2012, 
human/1390, 
camel/31, and 
camel/39)

Elicits MERS-CoV S-RBD-
specific T cell responses in 
mice

Protects Ad5/
hDPP4-
transuced 
mice from 
MERS-CoV 
(EMC2012) 
challenge

[55,71]

Protein-based Subunit Induces 
MERS-CoV S-
targeting 
antibody 
responses and 
neutralizing 
antibodies in 
mice and 
NHPs; 
neutralizes 
divergent 
pseudotyped 
and live 
MERS-CoV 
(Jordan-N3)

Not reported Protects 
NHPs from 
MERS-CoV 
(Jordan-N3) 
challenge

[58]

Vaccines based on MERS-CoV RBD

VLP-based VLP Induces 
MERS-CoV S-
RBD-specific 

Elicits S-RBD-specific T cell 
responses in mice

Not reported [72]
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Vaccines Categories Antibody 
responses and 
neutralizing 
antibodies

Cellular immune responses Protection Ref.

Vaccines based on MERS-CoV S1

antibody 
responses and 
neutralizing 
antibodies in 
mice; 
neutralizes 
pseudotyped 
MERS-CoV

Protein-based (residues 358–588) Subunit Induces 
MERS-CoV-
specific 
antibody 
responses and 
neutralizing 
antibodies 
(>1:103) in 
rabbits

Not reported Not reported [79]

Protein-based (residues 377–588) Subunit Induces 
MERS-CoV S/
RBD-specific 
antibody 
responses and 
neutralizing 
antibodies in 
mice and 
rabbits; 
neutralizes 
divergent 
strains of 
pseudotyped 
and live 
MERS-CoV 
(EMC2012, 
London1–
2012, >1:103)

Elicits MERS-CoV S-RBD-
specific T cell responses in 
mice

Protects Ad5/
hDPP4-
transduced 
mice and 
hDPP4-Tg 
mice from 
MERS-CoV 
(EMC2012) 
challenge 
without 
causing 
immuno-
pathological 
effects

[32,33,74–76,81–83]

Protein-based (residues 377–662) Subunit Induces 
MERS-CoV S/
RBD-specific 
systemic and 
mucosal 
antibody 
responses and 
neutralizing 
antibodies in 
mice; 
neutralizes 
pseudotyped 
and live 
MERS-CoV 
(EMC2012, 
1:102–103)

Induces MERS-CoV S-
specific T cell responses in 
mice

Not reported [77,78,84]

Protein-based (residues 367–606) Subunit Induces 
MERS-CoV S-
RBD-specific 
antibody 
responses and 
neutralizing 
antibodies in 
mice and/or 
NHPs; 
neutralizes 
pseudotyped 
and live 
MERS-CoV 

Elicits MERS-CoV S-RBD-
specific T cell responses in 
mice

Partially 
protects 
NHPs from 
MERS-CoV 
(EMC2012) 
challenge

[73,80]
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Vaccines Categories Antibody 
responses and 
neutralizing 
antibodies

Cellular immune responses Protection Ref.

Vaccines based on MERS-CoV S1

(EMC2012, 
<1:103)

Vaccines based on other S regions of MERS-CoV, including truncated S, S-NTD, and S1/S2

Viral vector-based (truncated S) MV vector Induces 
MERS-CoV S- 
and vector MV-
specific 
antibody 
responses and 
neutralizing 
antibodies in 
mice; 
neutralizes live 
MERS-CoV 
(EMC2012, 
<1:103) and 
MV

Elicits MERS-CoV S- and 
vector MV-specific T cell 
responses in mice

Protects Ad/
hDPP4-
transduced 
mice from 
MERS-CoV 
(EMC2012) 
challenge

[68]

Protein-based (S-NTD) Subunit Induces 
MERS-CoV S-
NTD-specific 
antibody 
responses and 
neutralizing 
antibodies 
(1:40–102) in 
mice and 
rabbits; 
neutralizes live 
MERS-CoV 
(EMC2012)

Elicits MERS-CoV S-NTD-
specific T cell responses in 
mice

Protects Ad5/
hDPP4-
transduced 
mice from 
MERS-CoV 
(EMC2012) 
challenge

[54,79]

Protein-based (S1/S2: residues 
736–761)

Subunit Induces low-
titer 
neutralizing 
antibodies in 
rabbits; inhibits 
pseudotyped 
MERS-CoV 
entry and 
membrane 
fusion

Not reported Not reported  [85]

a
Ad, adenovirus; hDPP4, human dipeptidyl peptidase 4; hDPP4-Tg: hDPP4-transgenic; MERS-CoV, Middle East respiratory syndrome 

coronavirus; MV, measles virus; NHPs, non-human primates; RABV, rabies virus; RBD, receptor-binding domain; S, spike; S-NTD, spike protein 
N-terminal domain; VLP, virus-like particle. MERS-CoV strains used for neutralization and challenge studies, as well as vaccine-induced 
neutralizing antibody titers, are shown in parentheses.
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