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ABSTRACT Nontyphoidal Salmonella species are the leading bacterial cause of
foodborne disease in the United States. Whole-genome sequences and paired anti-
microbial susceptibility data are available for Salmonella strains because of surveil-
lance efforts from public health agencies. In this study, a collection of 5,278 nonty-
phoidal Salmonella genomes, collected over 15 years in the United States, was used
to generate extreme gradient boosting (XGBoost)-based machine learning models
for predicting MICs for 15 antibiotics. The MIC prediction models had an overall av-
erage accuracy of 95% within �1 2-fold dilution step (confidence interval, 95% to
95%), an average very major error rate of 2.7% (confidence interval, 2.4% to 3.0%),
and an average major error rate of 0.1% (confidence interval, 0.1% to 0.2%). The
model predicted MICs with no a priori information about the underlying gene con-
tent or resistance phenotypes of the strains. By selecting diverse genomes for the
training sets, we show that highly accurate MIC prediction models can be generated
with less than 500 genomes. We also show that our approach for predicting MICs is
stable over time, despite annual fluctuations in antimicrobial resistance gene con-
tent in the sampled genomes. Finally, using feature selection, we explore the impor-
tant genomic regions identified by the models for predicting MICs. To date, this is
one of the largest MIC modeling studies to be published. Our strategy for develop-
ing whole-genome sequence-based models for surveillance and clinical diagnostics
can be readily applied to other important human pathogens.

KEYWORDS antimicrobial susceptibility testing, deep learning, diagnostics, genome
sequencing, machine learning

Nontyphoidal Salmonella species are the leading bacterial cause of foodborne
disease in the United States (1, 2), causing over 1 million illnesses per year (3) and

an estimated 80 million illnesses annually worldwide (4). Nontyphoidal Salmonella
causes acute gastroenteritis and is usually contracted via fecal contamination of food
sources (5). Although these infections are usually self-limiting and typically do not
require antibiotic treatment (6), severe infections can occur (7). Antimicrobial resistance
(AMR) is prevalent in Salmonella isolates, and infections caused by highly antimicrobial-
resistant Salmonella strains result in worse outcomes than infections caused by sus-
ceptible strains (8–11).

In 1996, the National Antimicrobial Resistance Monitoring System (NARMS) was
established as a collaboration between the U.S. Centers for Disease Control and
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Prevention (CDC), the U.S. Food and Drug Administration (FDA), the U.S. Department of
Agriculture (USDA), and state and local health departments. A primary goal of NARMS
is to monitor antimicrobial resistance in Salmonella and other foodborne bacteria,
including Campylobacter, Escherichia, and Enterococcus (12). The data collected by
NARMS are used to inform public health decisions aimed at identifying contaminated
food sources and reducing the spread of AMR through enhanced stewardship. In recent
years, NARMS has adopted whole-genome sequencing (WGS) as a routine monitoring
tool. The WGS data are used to determine the source of outbreak strains and the
virulence factor and AMR genes carried by each strain. As a result, a large collection of
bacterial whole-genome sequences with extensive metadata is available for down-
stream research efforts (13).

Whole-genome sequencing is now routinely used for public health surveillance and
to guide diagnostic and patient care decisions (14–18). For routine surveillance, WGS
provides the highest possible resolution for individuating traits in bacteria, assessing
phylogenetic relationships, conducting outbreak investigations, and predicting viru-
lence and epidemicity. From the clinical perspective, rapid diagnostics are key to
improving patient care. For a conventional microbiology laboratory diagnosis, the total
time for organism growth, isolation, taxonomic identification, and antimicrobial MIC
determination may exceed 36 h for relatively fast-growing bacteria and several days for
slower-growing organisms (19–21). Since reducing the time to optimal antimicrobial
therapy significantly improves patient outcomes (22–24), rapid sequencing-based ap-
proaches that predict MICs may have clinical utility. The extensive WGS data sets
generated by health agencies and the scientific community, such as those for nonty-
phoidal Salmonella strains, provide the necessary training sets required for building
predictive models.

Several investigations have recently built models for predicting AMR phenotypes
from WGS data. To date, the most common approach has relied on using a curated
reference set of genes and polymorphisms that are implicated in AMR (25–33). This
reference-guided approach best predicts susceptibility and resistance when organisms
are well studied and the AMR mechanisms are known. As larger collections of genomes
have become available, several studies have used machine learning algorithms to
predict susceptible and resistant phenotypes (27, 29, 31, 34–38). By using WGS and
AMR phenotype data to train a machine learning model, predictions without a priori
information about the underlying gene content of the genome or molecular mecha-
nism for resistance to each agent are possible. Although this reference-free approach
requires many genomes, it is unbiased and can potentially be used to enable the
discovery of new genomic features that are involved in AMR (36, 37). These two general
approaches have also been used to predict MICs for Streptococcus, Neisseria, and
Klebsiella (35, 38–40). When a curated reference collection of genes and single nucle-
otide polymorphisms (SNPs) is used for predicting MICs, a rules-based or machine
learning algorithm is required for determining how much a given feature contributes
to the MIC. Thus, for MIC prediction, both reference-guided and reference-free ap-
proaches are expected to have similar advantages and disadvantages if the collection
of genes and SNPs used by the reference-guided method is sufficient for predicting all
MICs, including those that are in the susceptible range. For example, in previous work,
we built a machine learning model to predict MICs for a comprehensive population-
based collection of 1,668 Klebsiella pneumoniae clinical isolates (38). For each genome,
we used nucleotide 10-mers and the MICs for each antibiotic as features to train the
model. Extreme gradient boosting (XGBoost) was chosen as the machine learning
algorithm (41). The model could rapidly predict the MICs for 20 antibiotics with an
average accuracy of 92%. This demonstrated that it is possible to successfully predict
MICs without using a precompiled set of AMR genes or polymorphisms.

In this study, we build models that use whole-genome sequence data to predict
MICs for nontyphoidal Salmonella based on the strains collected and sequenced by
NARMS from 2002 to 2016. Our strategy can be used to guide responses to outbreaks
and inform antibiotic stewardship decisions.
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MATERIALS AND METHODS
Genomes and metadata. A total of 5,278 nontyphoidal Salmonella genome sequences were used in

this study. All strains were collected and sequenced as part of the NARMS program. The strains were
recovered either from raw retail meat and poultry or directly from livestock animals at slaughter.
Antimicrobial susceptibility testing was performed using broth microdilution on a Sensititre system
(Thermo Scientific) for 15 antibiotics, ampicillin (AMP), amoxicillin-clavulanic acid (AUG), ceftriaxone
(AXO), azithromycin (AZI), chloramphenicol (CHL), ciprofloxacin (CIP), trimethoprim-sulfamethoxazole
(COT), sulfisoxazole (FIS), cefoxitin (FOX), gentamicin (GEN), kanamycin (KAN), nalidixic acid (NAL),
streptomycin (STR), tetracycline (TET), and ceftiofur (TIO), at FDA and USDA NARMS laboratories (13).
Clinical breakpoints are based on CLSI and FDA guidelines (42). Whole-genome sequencing was
performed using the Illumina HiSeq and MiSeq platforms and standard methods (25). Accession numbers
and MICs for each isolate are listed in Table S1 in the supplemental material. All non-AMR metadata,
including the serotype, host, geographic location of isolation, and isolation year, were taken from the
metadata associated with each NCBI Sequence Read Archive (SRA) entry.

Genomic analyses. The short-read sequence data for each strain were assembled with the PATRIC
genome assembly service (43), using the full SPAdes pipeline, which uses the BayesHammer tool (44) for
read correction and SPAdes software for assembly (45). All genomes were annotated using the PATRIC
annotation service (43), which uses a variation of the RAST tool kit annotation pipeline (46). Annotated
genomes are available on the PATRIC website (https://patricbrc.org). PATRIC genome identifiers are
displayed in Table S1. Protein annotations, including those for proteins specifically asserted to be
involved in AMR (47), were downloaded from the PATRIC work space and used for subsequent analyses.
A phylogenetic tree was generated for the strains in the analysis by aligning the genes for the beta and
beta prime subunits of the RNA polymerase using MAFFT software (48), concatenating the alignments,
and computing a tree with the FastTree tool (49). The tree was rendered using the iTOL tool (50).

MIC prediction. (i) Model generation. A model for predicting the MICs for the 15 antibiotics was
built following the methods previously described by Nguyen and colleagues (38). Briefly, each genome
was divided into the set of nonredundant overlapping nucleotide 10-mers using the k-mer counting
program KMC (51). A matrix in which the k-mers, antibiotics, and MICs are treated as features for each
genome was built. Each row in the matrix contains the k-mers for a genome as well as the MIC for a single
antibiotic. The MIC prediction model was built using an XGBoost (41) regressor predicting linearized
MICs. All model parameters were identical to those used by Nguyen et al. (38). Briefly, XGBoost is a
computationally scalable method for generating gradient-boosted models. Gradient boosting is an
ensemble method by which decision trees are generated to minimize an error function. We chose this
method because of its scalability and its built-in ability to perform feature selection. The sensitivity and
accuracy of the models generated in this study were tested by performing 10-fold cross validations. The
cross validation partitions the matrix into 10 equal parts, such that each part has an equal (or nearly
equal) number of antibiotic-MIC combinations. Ten rounds (folds) of training are performed: one part is
used for testing, one part is used for validation, and eight parts are used for training. In this way, each
part is used once for testing purposes, and any biases can be observed by tracking the average accuracy
and confidence interval (CI) size over each fold. The validation set was used to monitor each model to
prevent overfitting.

Unless otherwise stated, the accuracy of a model is reported as the ability to predict the correct MIC
within �1 2-fold dilution step of the laboratory-derived MIC. Defining an accuracy to be within �1 2-fold
dilution step is consistent with FDA requirements for automated MIC measuring device standards and is
consistent with established clinical microbiology practices (20, 52–54). A comparison of raw accuracies
and accuracies within �1 2-fold dilution step is shown in Table S2. To assess the accuracy of a model over
various metadata categories, including date, serotype source, and location, the training set genomes are
used to make the model. The test set genomes are used to assess the model accuracy for a given fold.
For models based on date ranges, all parameters are identical and the accuracy over the genomes is
reported from the held-out dates.

(ii) Subsampling. All models were built and tested on a server with 4 Intel E5-4669v4 central
processing units (Xeon at 2.2 GHz, 22 cores hyperthreaded to 44) with 1.585 terabytes (TB) of random-
access memory (RAM). In order to perform the model building on this machine (machines with more
memory are currently somewhat uncommon), we reduced the matrix size to sets of size n, where n is
�250, 500, 1,000, 2,000, 3,000, 4,000, and 4,500 genomes. To create a diverse subset of size n, a
hierarchical clustering method (55) was used to create n clusters by using the 10-mer distribution of each
genome as the input features. To avoid the curse of dimensionality (56, 57), the taxicab/Manhattan
distance (L1 norm) rather than the Euclidean distance (L2 norm) was used, since previous research has
shown it to be both computationally fast and more accurate for high-dimensional data (58). From the
resulting n clusters, one genome from each cluster was randomly selected from a uniform distribution
to create the subset containing n genomes. For each subset of genomes, a matrix was generated, and
models were generated as described above.

(iii) Feature identification. In order to unambiguously identify k-mers that are important to MIC
prediction, we built separate models for each individual antibiotic using the method described above,
except that we increased the k-mer length to 15 nucleotides in order to reduce the number of redundant
k-mers within each genome and to enable analyses with the BLAST program (59). We also measured
k-mer hits as presence versus absence, rather than counts, in order to simplify the analysis. Each model
was built using the set of 1,000 diverse genomes from the subsampling experiment described above, and
10-fold cross validations were performed on each model.
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The XGBoost feature importance score was computed using the internal XGBoost function xgboost-
.Booster.get_score(), using gain as the metric. This was computed for each fold within the 10-fold cross
validation. This results in an importance score per feature (15-mer) from each fold. We summed the
feature importance scores from each fold for the top 10 features in order to generate an overall
importance score across all folds. This overall importance score captures both the importance of the
15-mer to a given fold and the number of times that the 15-mer was chosen as a top feature within each
of the 10 folds.

XGBoost’s internal feature importance is unable to provide correlations between features and label
values and thus does not provide an indication of whether a k-mer is related to antibiotic resistance or
susceptibility. This is partially due to the fact that many nonlinear correlations that may use multiple
features exist. In order to see if the high-scoring k-mers correlate with resistance or susceptibility, we
computed the distribution of MICs for the genomes containing each high-scoring k-mer. For example, a
k-mer conferring susceptibility should be found in more genomes with lower MICs, while a k-mer
conferring resistance should exist in genomes with higher MICs. Each high-scoring k-mer was also
compared to the set of protein-encoding genes within each Salmonella genome. If a k-mer was found
within a known AMR gene, that gene is reported. Otherwise, we report the distance (in nucleotides)
between the center of the k-mer and the center of nearby AMR genes. This search was scoped to 3 kb
to reduce the search space.

To find k-mers that are being used by the individual antibiotic models to predict susceptible MICs,
we computed the presence or absence of each k-mer with high XGBoost feature importance values
(described above) for the entire data set of 5,278 genomes. The k-mers with the largest difference in
occurrence between the susceptible and resistant genomes are the ones that are chosen by the models
for predicting susceptible MICs. To determine if there were significant SNPs in these k-mers, we found
the genomic features containing the k-mer—protein-encoding gene, RNA gene, or intergenic region—
using the BLASTn program (59). The corresponding feature or region was then found for all genomes in
the collection. The features were aligned using MAFFT (48) and manually curated using the Jalview
program (60). Poor-quality sequence was removed, all duplicates and paralogs were removed, and the
subalignment covering the k-mer was extracted. To prevent possible biases due to clonality that may
exist in the full set of genomes, the analysis was repeated on the diverse subset of 1,000 genomes
(described above). We report an SNP in a k-mer region as being significant if the susceptible and resistant
sets were significantly different (P � 0.001) for a given nucleotide position, based on a chi-square test,
for both the full set of 5,278 genomes and the set of 1,000 diverse genomes. Sequence logos for k-mers
containing significant SNPs were generated using the WebLogo application (61). k-mers from the
azithromycin and ciprofloxacin models were excluded from this analysis because they each had seven
resistant genomes. Comparisons of codon usage versus the genome average, genome mode, and
high-expression gene sets were computed as described previously (62, 63).

Software availability. The Salmonella MIC prediction model based on 4,500 genomes—including
the software and documentation for running the model—is available at our GitHub page (https://github
.com/PATRIC3/mic_prediction).

Accession number(s). Data are available under BioProject accession numbers PRJNA292661 and
PRJNA292666. The SRA run accession number for each genome is displayed in Table S1 in the
supplemental material.

RESULTS
Model construction. For this study, we used a publicly available collection of 5,278

Salmonella whole-genome sequences generated by the NARMS project between 2002
and 2016. The strains were isolated from retail meat and food animal sources in the
United States. The collection included 98 different serotypes, including Salmonella
enterica serotypes Heidelberg (678 genomes), Kentucky (618 genomes), and Typhimu-
rium var. 5� (588 genomes), from 41 states (see Table S1 in the supplemental material).
Isolates were tested for resistance to up to 15 antimicrobial agents using the broth
microdilution method. Many of the strains were randomly selected for sequencing as
part of a compulsory nationwide collection program (Table 1).

The nontyphoidal Salmonella MIC prediction model was built by a strategy similar to
our previously described strategy used to predict MICs for K. pneumoniae clinical
isolates (38). Since the Salmonella data set has many more genomes and greater
sampling in the range of susceptible MICs, it provides a critical test case for determining
if the approach remains robust for other pathogens. In the Klebsiella study, we built
individual models for each antibiotic, as well as a single large integrated model by
combining the data from all antibiotics. We found that the combined model achieved
slightly higher overall accuracies (by �1% to 2%); however, the matrix that was
necessary to train this model had a large memory footprint. Indeed, if we were to build
a similar matrix for the current Salmonella data set using all 5,278 genomes, the model
training would exceed 1.5 TB of RAM. RAM usage and training times are displayed in
Fig. S1. Therefore, we first built models for all antibiotics using subsets of the genomes
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ranging in size from 250 to 4,500 genomes, which were rationally selected to maximize
genetic diversity (Fig. 1). A matrix built from 4,500 genomes is the largest that we can
train on a 1.5-TB machine using this protocol. As the training set size increased from
250 to 1,000 genomes, the accuracy increased from 88.5% to 91.4%. Then, as the
training set increased beyond 1,000 genomes, the accuracy continued to improve more
modestly, with the 4,500-genome model having an average accuracy of 95.2%. The
results indicated that the overall MIC prediction approach which was developed
previously for Klebsiella pneumoniae also works for Salmonella, despite the differences
in sampling, genetic diversity, and MICs. Also, we discovered that a smaller number of
well-chosen diverse genomes can serve as a useful proxy for the entire set, since
models built from �500 genomes have accuracies exceeding 90%.

TABLE 1 Number of genomes susceptible, intermediate, or resistant to the 15 antibiotics
for the 5,278 Salmonella genomes used in this study

Antibiotic

No. of genomes:

Susceptible Intermediate Resistant

AMP 3,682 2 1,593
AUG 4,145 355 778
AXO 4,508 1 769
AZI 2,409 0 7
CHL 5,026 87 164
CIP 5,217 53 7
COT 5,219 0 58
FIS 3,356 0 1,573
FOX 4,501 98 679
GEN 4,577 68 633
KAN 837 3 84
NAL 5,233 0 45
STR 872 0 1,919
TET 2,364 28 2,885
TIO 4,517 8 753

FIG 1 MIC prediction model accuracy for subsamples of genomes. Diverse subsamples of genomes were
chosen, and the model accuracy within �1 2-fold dilution step based on a 10-fold cross validation is shown
with the red plot line. The dashed lines represent the high and low values for the 95% confidence interval
for the average accuracy at each given plot point.
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Model accuracy. We computed the overall accuracy for each antibiotic using the
model that was based on 4,500 genomes. For this model, all 15 antibiotics had average
accuracies of �90%, with their first quartile being bound �89% (Fig. 2). Chloramphen-
icol and ceftiofur had the highest accuracies (99%), and gentamicin and tetracycline
had the lowest accuracies (91% and 90%, respectively) (Table S2). Since the model is
robust to the various mechanisms of resistance for the 15 antibiotics, it is possible that
the slightly lower accuracies for gentamicin and tetracycline could be due to the
distribution of multiple AMR genes/mechanisms across the population of strains with
resistant genomes (which will be analyzed in more detail below). Figure 3 depicts the
accuracy of the 4,500-genome model for each MIC. Overall, the model was robust for
both the resistant and susceptible MICs, and it tended to be more accurate when a MIC
was represented by many genomes. The model tended to have lower accuracies for the
highest and lowest MICs, perhaps because of underlying genetic differences between
strains that have been reported with values greater than or equal to or less than or
equal to a MIC, which represents a range of MICs rather than a discrete value.

The utility of AMR diagnostic devices is often described in terms of error rate. Major
errors (MEs) are defined as susceptible genomes that have been incorrectly assigned
resistant MICs by the model. Very major errors (VMEs) are defined as resistant genomes
that have been incorrectly assigned susceptible MICs by the model. FDA standards for
automated systems recommend a major error rate of �3% (54). All antibiotics used in
the model had ME rates within this range (Table 2). The FDA standards for VME rates
indicate that the lower 95% confidence limit should be �1.5% and that the upper limit

FIG 2 Box plot of the overall accuracies within �1 2-fold dilution step for each antibiotic in the
4,500-genome model. The y axis depicts each antibiotic (abbreviations are defined in Materials and
Methods). The x axis depicts the accuracy. Each vertical red line represents the median accuracy over the
holdout sets for each fold in the 10-fold cross validation. The blue box encompasses the data for the first
and third quartiles. The dashed blue horizontal lines bounded by black vertical lines (or whiskers) depict
the entire distribution of accuracies for each fold and antibiotic. The accuracy of the entire 4,500-genome
model over all antibiotics and folds is depicted in the row marked “ALL.”
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should be �7.5% (54). Seven of the 15 antibiotics—amoxicillin-clavulanic acid, ceftri-
axone, chloramphenicol, cefoxitin, streptomycin, tetracycline, and ceftiofur— had ac-
ceptable VME rates by this measure. Ampicillin and sulfisoxazole had VME rates with
95% confidence intervals approaching the ranges of 0.022 to 0.033 and 0.026 to 0.053,
respectively, failing only on the lower bound. The VME rates for some of the remaining

FIG 3 Accuracy of the MIC prediction model based on 4,500 diverse genomes. The heat map depicts the
accuracy within �1 2-fold dilution step of the laboratory-derived MIC. The x axis shows the MIC (in
micrograms per milliliter), and each antibiotic is shown on the y axis. The accuracy for each antibiotic-MIC
combination is depicted by color, with bright yellow/green being the most accurate and red being the
least accurate. The values shown in each cell are the number of genomes with that MIC for a given
antibiotic.

TABLE 2 VME and ME rates for the 4,500-genome modela

Antibiotic

VME rate ME rate No. of samples:

Avg 95% CI Avg 95% CI Resistant Susceptible

All 0.027 0.024 to 0.030 0.001 0.001 to 0.002 10,979 47,366
AMP 0.028 0.022 to 0.033 0.000 0.000 to 0.001 1,442 3,054
AUG 0.012 0.000 to 0.025 0.000 0.000 to 0.000 746 3,449
AXO 0.022 0.011 to 0.032 0.000 0.000 to 0.001 740 3,758
AZI 0.857 0.508 to 1.207 0.000 0.000 to 0.000 7 2,040
CHL 0.000 0.000 to 0.000 0.000 0.000 to 0.001 149 4,271
CIP 0.417 0.099 to 0.933 0.000 0.000 to 0.000 7 4,445
COT 0.670 0.515 to 0.825 0.000 0.000 to 0.001 55 4,443
FIS 0.039 0.026 to 0.053 0.000 0.000 to 0.000 1,479 2,757
FOX 0.009 0.001 to 0.020 0.000 0.000 to 0.000 651 3,754
GEN 0.090 0.066 to 0.113 0.000 0.000 to 0.000 579 3,862
KAN 0.074 0.012 to 0.136 0.000 0.000 to 0.000 82 662
NAL 0.917 0.819 to 1.014 0.000 0.000 to 0.001 39 4,460
STR 0.014 0.008 to 0.020 0.027 0.013 to 0.040 1,703 744
TET 0.000 0.000 to 0.000 0.018 0.012 to 0.025 2,575 1,901
TIO 0.004 0.001 to 0.009 0.000 0.000 to 0.000 725 3,766
aThe rates of very major errors (VME), defined as resistant genomes predicted to be susceptible, and major
errors (ME), defined as susceptible genomes predicted to be resistant, are reported within �1 twofold
dilution step. CI, 95% confidence interval.
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antibiotics were higher because there were fewer resistant genomes. As more resistant
genomes are collected and the data set becomes more balanced, we expect VME rates
to be reduced.

In addition to the extensive MIC data, NARMS reports rich metadata, including
isolation date, food or animal source, collection year, geographic location, and sero-
type. We computed the accuracy of the model over each available metadata category
to determine if the model is robust to these differences and to ensure that no subset
biased the model. The period of collection of the genomes spanned 15 years, with all
the years except 2002 (the oldest) and 2016 (the most recent) having over 100 isolates.
The model accuracy ranged from 94% to 97% over each collection year (Table 3). That
is, the genetic factors that contribute to the MICs either remained stable over the
15-year period or were learned as the model was trained. Although the data set was
mostly comprised of poultry meat or live animal isolates, the accuracy ranged from 94%
to 96% over the four contamination sources: turkey, beef, pork, and chicken (Table 4).
No obvious biases in the accuracies were detected on the basis of the state of isolation
(an average of 95% accuracy over 41 states with a 95% CI equal to 0.95 to 0.96) (Fig. 4)
or the serovar of each isolate (94% accuracy over 97 serovars with a 95% CI equal to
0.94 to 0.96) (Table S3). Since the traditional Salmonella serotyping scheme is based on
the lipopolysaccharide O and flagellar H antigens, which are encoded by genes that
influence the cell surface (64), we also constructed a phylogenetic tree for Salmonella
genomes to observe the model accuracy over the various clades. Overall, no phyloge-
netic bias in the model accuracy was detected (Fig. S2).

One concern of using a model that is trained on the data from previous years and
in some cases over 15 years old is that the training set is not representative of currently
circulating strains. That is, the model may be inaccurate for predicting MICs for the
genomes of strains that are currently circulating or will emerge in the future. For
example, shifts in clonal groups, the evolution of AMR-associated genes, or the intro-
duction of AMR genes by horizontal gene transfer is possible (65, 66). We evaluated this
possibility by building models from subsets of the whole-genome sequence data using
strains collected in earlier years and measuring the accuracy of the models on genomes
collected in later years. Models were built for years prior to 2009 through 2014 and

TABLE 3 Model accuracy for the genomes from each sample collection year

Collection date (yr) Accuracy No. of genomes No. of binsa

2002 0.97 55 624
2003 0.95 159 1,809
2004 0.96 235 2,850
2005 0.95 274 3,384
2006 0.95 313 3,880
2007 0.94 258 3,192
2008 0.95 388 4,821
2009 0.95 436 5,367
2010 0.94 230 2,820
2011 0.95 214 2,968
2012 0.96 257 3,694
2013 0.97 265 3,793
2014 0.95 506 7,100
2015 0.95 689 9,646
2016 0.96 83 1,161
aThe total number of MICs available for the genomes isolated in that year.

TABLE 4 Model accuracy for the genomes isolated from various sources

Source Accuracy No. of genomes No. of binsa

Chicken 0.96 1,981 25,869
Cow/beef 0.94 419 5,688
Pig/pork 0.95 448 6,144
Turkey 0.94 1,651 21,260
aThe total number of MICs available for the genomes of each category.

Nguyen et al. Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01260-18 jcm.asm.org 8

https://jcm.asm.org


tested on the remaining genomes (Table 5). These models had accuracies ranging from
86% to 92%. As the number of years used for building the models increased, the
number of genomes available for testing decreased, so we also tested each model on
only the 462 genomes from 2015 and 2016. Similarly, the accuracy of each model on
the genomes from 2015 and 2016 ranged from 87% to 90% (Table S4). The results
indicate that within this data set, the models generated from genomes collected at
earlier dates yielded stable MIC predictions for genomes collected at later dates. This
finding is consistent with the pattern of AMR genes that was observed within the data
set. Although the AMR gene content may vary from year to year, we did not observe
any major sweeps or fixation events that drastically altered the AMR gene content of
the collection between years, which would cause the MIC predictions to fail for a large
fraction of the genomes (Table S5). Taken together, these data suggest that the MIC
prediction models generated in this study are likely to be sustainable over time.

FIG 4 Average accuracy of the model based on 4,500 diverse genomes for predicting MICs for the Salmonella genomes from each state. Light blue is the most
accurate, and dark blue/black is the least accurate. Note that the scale starts at an accuracy of 0.90. Each state is labeled with the number of genomes collected
from that state. States without a label contain no samples and are colored in gray; no genomes from Alaska and Hawaii exist in the collection.

TABLE 5 Ability of models trained on genomes from prior years to predict MICs for genomes collected in later years

Training set yr Test set yr Accuracy 95% CI for accuracy No. of training binsa No. of testing binsa

No. of training
genomes

No. of testing
genomes

2002–2008 2009–2016 0.88 0.88–0.89 36,563 22,412 1,819 2,681
2002–2009 2010–2016 0.88 0.88–0.89 31,196 27,779 2,255 2,245
2002–2010 2011–2016 0.88 0.88–0.88 28,376 30,599 2,485 2,015
2002–2011 2012–2016 0.88 0.88–0.89 25,408 33,567 2,699 1,801
2002–2012 2013–2016 0.88 0.87–0.88 21,714 37,261 2,956 1,544
2002–2013 2014–2016 0.86 0.86–0.87 17,921 41,054 3,221 1,279
2002–2014 2015–2016 0.92 0.92–0.92 10,807 48,168 3,728 772
aThe total number of genome/antibiotic combinations.
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Genomic regions important for MIC prediction. The 4,500-genome model de-
scribed above contained data from all antibiotics and MICs, making feature extraction
to determine which k-mers contribute to the MIC predictions for each antibiotic
difficult. To address this limitation, we modified the protocol by building separate
models for each antibiotic. Instead of using 10-mers, we increased the k-mer length to
15 nucleotides to reduce redundancy and make them identifiable using BLAST analysis
(59). We also searched for the presence or absence of k-mers, rather than using k-mer
counts, to simplify the analysis of the XGBoost decision trees. Since a 15-mer matrix can
be 45 times larger than a 10-mer matrix, we used �1,000 diverse genomes to reduce
the memory footprint during training. Overall, the average accuracy for the individual
models was nearly identical to the average accuracy for the combined 4,500-genome
model (96% versus 95%, respectively), and in nearly all cases, the 95% confidence
intervals overlapped between the combined and single antibiotic models (Table S6).
Thus, for this data set, single antibiotic models with fewer genomes and larger k-mers
performed as well as a combined model (Fig. S3).

During model training, XGBoost assigns an importance value to each k-mer used in
a decision tree. When the model is used to predict the MICs for a new genome, the
k-mers with the highest importance values are the most informative for the MIC
prediction. Thus, by analyzing the feature importance values of each k-mer, we can use
the models as a tool for understanding the genomic regions that differentiate MICs. For
each antibiotic-specific model, we parsed the XGBoost decision trees from each fold of
the 10-fold cross validation to extract the importance values for each k-mer. To
understand the relationship between known AMR genes and the important k-mers that
were chosen by each model, we then searched for k-mers that had high importance
values within AMR genes or that occurred in close proximity to an AMR gene. Table 6
lists the highest-ranking k-mers from each model that occurred within or in close
proximity to an AMR gene. In most cases, the k-mers corresponded to known AMR
genes, including class A and C beta-lactamases for the beta-lactam antibiotics, amin-
oglycoside nucleotidyl- and acetyltransferases for the aminoglycosides, DNA gyrase and
QnrB for the fluoroquinolones, TetA and TetR for tetracycline, and dihydrofolate
reductase and dihydropteroate synthase for co-trimoxazole and sulfisoxazole. In the
case of azithromycin, the collection mostly contained susceptible genomes (Table 1), so
the first macrolide resistance gene observed corresponds to the eighth-ranking k-mer.
The top 10 k-mers with the highest feature importance values from each of the 10 folds
used in model training are listed in Tables S7 to S21. In addition to the top AMR k-mers
displayed in Table 6, these tables show other highly ranking k-mers from the same AMR
genes as well as k-mers from related genes that are known to confer resistance to the
given antibiotic. In some cases, k-mers matching regions or genes from unrelated AMR
mechanisms have high importance values, suggesting a pattern of co-occurrence on
horizontally transferred genetic elements.

Since each model predicts the entire range of MICs, some of the highly ranking
k-mers may be used to predict susceptible MICs. To assess this, we computed the
fraction of susceptible and resistant genomes with each k-mer from Tables S7 to S21.
The set of k-mers that were most enriched in the susceptible genomes is shown in
Table 7. Overall, 7 of the top 10 k-mers represented significantly different SNPs (P �

0.001) both in the complete set of 5,278 genomes and in the set of 1,000 diverse
genomes used to build the models (Fig. S4). The top k-mer associated with suscepti-
bility was from the nalidixic acid model and occurred in the DNA gyrase gyrA gene. This
is also the top k-mer that was found in an AMR gene for nalidixic acid from Table 6. In
this case, the model relied more heavily on the wild-type version of the k-mer rather
than any of the resistant versions (the remaining k-mers from Table 6 occurred almost
exclusively in resistant genomes). The same gyrA k-mer was also found as a highly
ranking k-mer in the case of ciprofloxacin (Table S12). Two significant gyrA SNPs were
captured by this k-mer (Fig. S4). These are missense mutations in the resistant genomes
occurring at Ser83 and Asp87, and changes at these positions have been shown to
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confer quinolone resistance in Escherichia coli (67, 68). The remaining significant
mutations from Fig. S4 that occurred in the protein-encoding genes were the same
sense (not amino acid-changing) mutations. In the cases of eptA (Ser, TCG to TCA), oadA
(Ala, GCC to GCA), the AraJ precursor gene (Leu, CTG to CTA), and the second gcd
mutation (Thr, ACG to ACA), the codon changed from a commonly used codon in the
susceptible genomes to the least preferred codon in the resistant genomes. In the cases
of the nrfE and nrfF mutations (Asn, AAT to AAC) and the first gcd mutation (Asp., GAC
to GAT), the resistant genomes had the preferred codon of the pair. Whether these
SNPs have a modulating effect on protein translation or contribute to the fitness of the
resistant organisms requires further analysis.

DISCUSSION

In this study, we built, using XGBoost (41), machine learning-based MIC prediction
models for nontyphoidal Salmonella genomes that achieved overall accuracies of 95%
to 96% within a �1 2-fold dilution factor. To our knowledge, this is one of the largest
and most accurate MIC prediction models to be published to date. Importantly, it
provides a model strategy for performing MIC prediction directly from genome se-
quence data that could be applied to other human or veterinary pathogens.

The success of our MIC prediction model was dependent on the large, publicly
available, population-based collection of genomes with associated metadata. Since
researchers often focus on collecting highly resistant or otherwise unusual strains, the
opportunities to generate balanced models are rare. We demonstrate the many ben-
efits from comprehensive sampling for the entire range of possible MICs. First, the use
of diverse and balanced data sets improved model accuracies because there was better
sampling across all MIC dilutions. Second, having balanced data enabled us to achieve
acceptable ME and VME rates for 7 of the 15 antibiotics used in the study. Third,
compared with our recent model for Klebsiella pneumoniae, the larger and more
balanced data set for nontyphoidal Salmonella enabled us to build models for individ-
ual antibiotics that had accuracies similar to those of the combined model. This enabled
us to begin to disambiguate the important genomic regions relating to resistant and
susceptible MICs. Finally, we show that MICs in the susceptible range can be accurately
predicted with the algorithm using all genomic data rather than scoping it to known
AMR genes or gene polymorphisms. This contrasts with prior work correlating MICs to
known resistance mechanisms in Salmonella (69). In future studies, our strategy could
be used as a starting point for identifying the subtle genomic changes that result in
different MICs.

For each single-antibiotic model, we analyzed the k-mers that had high feature
importance values and were important to the models for predicting MICs. The highly
ranking k-mers that were enriched in the resistant genomes mainly occurred within or

TABLE 7 Important k-mers used by the individual antibiotic models for predicting susceptible MICsa

Antibiotic k-mer sequence Sus Res Frac sus Frac res
Genomic
region PATRIC annotation or genomic region

NAL ATTCCGCAGTGTATG 5,233 45 1.00 0.38 PEG DNA gyrase subunit A (EC 5.99.1.3)
AXO TGGTATTCGCATCAA 4,508 769 0.78 0.48 PEG Phosphoethanolamine transferase EptA
KAN CTGGCTTTTTTTTTT 837 84 0.30 0.00 RNA RyhB RNA
STR CCCTTATCCAACACG 872 1,919 0.85 0.55 PEG Respiratory nitrate reductase delta chain (EC 1.7.99.4)
AXO CAGAACCAGAATTTG 4,508 769 0.74 0.46 PEGs Formate-dependent nitrite reductase complex subunit NrfF,

and Cytochrome c-type heme lyase subunit NrfE,
nitrite reductase complex assembly

TIO AGAGAAGCCTGCCGC 4,517 753 0.68 0.40 PEG Oxaloacetate decarboxylase alpha chain (EC 4.1.1.3)
AXO ATCCCCGCCATTACA 4,508 769 0.73 0.46 PEG Tagatose-1,6-bisphosphate aldolase GatY (EC 4.1.2.40)
AXO TGCTGCAAAACGCCA 4,508 769 0.69 0.45 PEG Protein AraJ precursor
AXO GAAAACAGGGTGTAG 4,508 769 0.47 0.23 INT Upstream of IlvGMEDA operon leader peptide
FOX GGATACCACGCCGGG 4,501 679 0.58 0.35 PEGs Glucose dehydrogenase, PQQ-dependent (EC 1.1.5.2), and

IncF plasmid conjugative transfer protein TraP
aSus and Res, total number of susceptible and resistant genomes in the entire collection, respectively; Frac sus and Frac res, fraction of susceptible and resistant
genomes with the k-mer in the entire collection, respectively; PEG, protein-encoding gene; RNA, RNA gene; INT, intergenic region.
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in close proximity to well-known AMR genes. With the exception of the gyrA k-mer, the
highly ranking k-mers that were enriched in the susceptible genomes were significant
in several cases but were more difficult to interpret. Some of these susceptibility k-mers
hint at a possible relationship between AMR and oxidative stress or electron transport,
such as the k-mers matching components of the nitrate and nitrite reductases and
pqq-dependent glucose dehydrogenase, which is consistent with the known link
between antibiotics and oxidative stress (70, 71). Although XGBoost would be expected
to yield similar results with other ensemble machine learning methods, it may be
possible to generate a more interpretable set of features using support vector machines
or a single perceptron. However, these methods are not ideal, given the size of the
input data. Future machine learning work that eliminates the effect of the resistance
k-mers and bench work specifically examining these mutations may shed light on the
subtle effects that result in the gradient of susceptible MICs.

The genomes used in this study were collected over a 15-year period from 41 U.S.
states. By building models encompassing genomes collected over ranges of earlier
dates, we demonstrated stable and accurate MIC prediction for genomes collected at
later dates. Presently, we are not aware of any large publicly available collections of
Salmonella genomes with MIC data from other countries. Since the AMR gene content
may vary across pathogen populations, validation of the Salmonella models using
strains from other countries is important to its application in global health. Neverthe-
less, the present analysis clearly demonstrates that the current model provides accurate
MIC predictions for United States isolates. Similarly, an analysis of this model on
Salmonella enterica serotype Typhi strains would provide information about the utility
of the model over broader phylogenetic distances.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JCM

.01260-18.
SUPPLEMENTAL FILE 1, PDF file, 0.5 MB.
SUPPLEMENTAL FILE 2, XLSX file, 3 MB.
SUPPLEMENTAL FILE 3, XLSX file, 0.1 MB.

ACKNOWLEDGMENTS
This work was supported by the National Institute of Allergy and Infectious Diseases,

National Institutes of Health, U.S. Department of Health and Human Service (contract
no. HHSN272201400027C).

We thank Emily Dietrich for her helpful edits.
M.N. designed the study, performed experiments, generated data, and prepared the

manuscript, S.W.L. designed the study, P.F.M. designed the study and generated data,
R.J.O. designed the study, R.O. performed software engineering, R.L.S. designed the
study, G.H.T. designed the study and generated data, S.Z. designed the study and
generated data, and J.J.D. designed the study, generated data, and prepared the
manuscript.

The views expressed in this article are those of the authors and do not necessarily
reflect the official policy of the U.S. Department of Health and Human Services, the U.S.
Food and Drug Administration, the Centers for Disease Control and Prevention, or the
U.S. government. Mention of trade names or commercial products in this publication is
solely for the purpose of providing specific information and does not imply recom-
mendation or endorsement by the U.S. Department of Agriculture or the U.S. Food and
Drug Administration.

We claim no competing financial interests.

REFERENCES
1. Centers for Disease Control and Prevention (CDC). 2017. Surveillance for

foodborne disease outbreaks, United States, 2015. Annual report. U.S.
Department of Health and Human Services, Centers for Disease Control

and Prevention, Atlanta, GA. https://www.cdc.gov/foodsafety/pdfs/
2015FoodBorneOutbreaks_508.pdf.

2. Crim SM, Griffin PM, Tauxe R, Marder EP, Gilliss D, Cronquist AB, Cartter

Predicting MICs for Nontyphoidal Salmonella Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01260-18 jcm.asm.org 13

https://doi.org/10.1128/JCM.01260-18
https://doi.org/10.1128/JCM.01260-18
https://www.cdc.gov/foodsafety/pdfs/2015FoodBorneOutbreaks_508.pdf
https://www.cdc.gov/foodsafety/pdfs/2015FoodBorneOutbreaks_508.pdf
https://jcm.asm.org


M, Tobin-D’Angelo M, Blythe D, Smith K. 2015. Preliminary incidence and
trends of infection with pathogens transmitted commonly through
food—Foodborne Diseases Active Surveillance Network, 10 US sites,
2006-2014. MMWR Morb Mortal Wkly Rep 64:495– 499.

3. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL,
Jones JL, Griffin PM. 2011. Foodborne illness acquired in the United
States. Emerg Infect Dis 17:7– 40. https://doi.org/10.3201/eid1701
.091101p1.

4. World Health Organization. 2015. WHO estimates of the global burden
of foodborne diseases: foodborne disease burden epidemiology refer-
ence group 2007-2015. World Health Organization, Geneva, Switzerland.

5. Andino A, Hanning I. 2015. Salmonella enterica: survival, colonization,
and virulence differences among serovars. ScientificWorldJournal 2015:
520179. https://doi.org/10.1155/2015/520179.

6. Aserkoff B, Bennett JV. 1969. Effect of antibiotic therapy in acute salmo-
nellosis on the fecal excretion of salmonellae. N Engl J Med 281:
636 – 640. https://doi.org/10.1056/NEJM196909182811202.

7. Crump JA, Sjölund-Karlsson M, Gordon MA, Parry CM. 2015. Epidemiol-
ogy, clinical presentation, laboratory diagnosis, antimicrobial resistance,
and antimicrobial management of invasive Salmonella infections. Clin
Microbiol Rev 28:901–937. https://doi.org/10.1128/CMR.00002-15.

8. Varma JK, Mølbak K, Barrett TJ, Beebe JL, Jones TF, Rabatsky-Ehr T, Smith
KE, Vugia DJ, Chang HH, Angulo FJ. 2005. Antimicrobial-resistant non-
typhoidal Salmonella is associated with excess bloodstream infections
and hospitalizations. J Infect Dis 191:554 –561. https://doi.org/10.1086/
427263.

9. Varma JK, Greene KD, Ovitt J, Barrett TJ, Medalla F, Angulo FJ. 2005.
Hospitalization and antimicrobial resistance in Salmonella outbreaks,
1984 –2002. Emerg Infect Dis 11:943. https://doi.org/10.3201/eid1106
.041231.

10. Krueger AL, Greene SA, Barzilay EJ, Henao O, Vugia D, Hanna S, Meyer S,
Smith K, Pecic G, Hoefer D, Griffin PM. 2014. Clinical outcomes of
nalidixic acid, ceftriaxone, and multidrug-resistant nontyphoidal Salmo-
nella infections compared with pansusceptible infections in FoodNet
sites, 2006 –2008. Foodborne Pathog Dis 11:335–341. https://doi.org/10
.1089/fpd.2013.1642.

11. Angulo FJ, Mølbak K. 2005. Human health consequences of antimicrobial
drug—resistant Salmonella and other foodborne pathogens. Clin Infect
Dis 41:1613–1620. https://doi.org/10.1086/497599.

12. Karp BE, Tate H, Plumblee JR, Dessai U, Whichard JM, Thacker EL, Hale
KR, Wilson W, Friedman CR, Griffin PM, McDermott PF. 2017. National
Antimicrobial Resistance Monitoring System: two decades of advancing
public health through integrated surveillance of antimicrobial resis-
tance. Foodborne Pathog Dis 14:545–557. https://doi.org/10.1089/fpd
.2017.2283.

13. U.S. Food and Drug Administration (FDA). 2018. NARMS now. U.S. Food
and Drug Administration, Rockville, MD. Updated 20 July 2018. https://
www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/
NationalAntimicrobialResistanceMonitoringSystem/ucm416741.htm.

14. Abrams AJ, Trees DL. 2017. Genomic sequencing of Neisseria gonor-
rhoeae to respond to the urgent threat of antimicrobial-resistant gon-
orrhea. Pathog Dis 75:ftx041. https://doi.org/10.1093/femspd/ftx041.

15. Goldberg B, Sichtig H, Geyer C, Ledeboer N, Weinstock GM. 2015. Making
the leap from research laboratory to clinic: challenges and opportunities
for next-generation sequencing in infectious disease diagnostics. mBio
6(6):e01888-15. https://doi.org/10.1128/mBio.01888-15.

16. Didelot X, Bowden R, Wilson DJ, Peto TE, Crook DW. 2012. Transforming
clinical microbiology with bacterial genome sequencing. Nat Rev Genet
13:601. https://doi.org/10.1038/nrg3226.

17. Brown EW, Gonzalez-Escalona N, Stones R, Timme R, Allard MW. 2017.
The rise of genomics and the promise of whole genome sequencing for
understanding microbial foodborne pathogens, p 333–351. In Gurtler JB,
Doyle MP, Kornacki JL (ed), Foodborne pathogens: virulence factors and
host susceptibility. Springer International Publishing, Cham, Switzerland.

18. McArthur AG, Tsang KK. 2017. Antimicrobial resistance surveillance in
the genomic age. Ann N Y Acad Sci 1388:78 –91. https://doi.org/10.1111/
nyas.13289.

19. Opota O, Croxatto A, Prod’hom G, Greub G. 2015. Blood culture-based
diagnosis of bacteraemia: state of the art. Clin Microbiol Infect 21:
313–322. https://doi.org/10.1016/j.cmi.2015.01.003.

20. Reller LB, Weinstein M, Jorgensen JH, Ferraro MJ. 2009. Antimicrobial
susceptibility testing: a review of general principles and contemporary
practices. Clin Infect Dis 49:1749 –1755. https://doi.org/10.1086/647952.

21. Saha SK, Darmstadt GL, Baqui AH, Hanif M, Ruhulamin M, Santosham M,

Nagatake T, Black RE. 2001. Rapid identification and antibiotic suscep-
tibility testing of Salmonella enterica serovar Typhi isolated from blood:
implications for therapy. J Clin Microbiol 39:3583–3585. https://doi.org/
10.1128/JCM.39.10.3583-3585.2001.

22. Llor C, Bjerrum L. 2014. Antimicrobial resistance: risk associated with
antibiotic overuse and initiatives to reduce the problem. Ther Adv Drug
Saf 5:229 –241. https://doi.org/10.1177/2042098614554919.

23. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, Suppes R,
Feinstein D, Zanotti S, Taiberg L, Gurka D, Kumar A, Cheang M. 2006.
Duration of hypotension before initiation of effective antimicrobial ther-
apy is the critical determinant of survival in human septic shock. Crit
Care Med 34:1589 –1596. https://doi.org/10.1097/01.CCM.0000217961
.75225.E9.

24. Palmer H, Palavecino E, Johnson J, Ohl C, Williamson J. 2013. Clinical and
microbiological implications of time-to-positivity of blood cultures in
patients with Gram-negative bacilli bacteremia. Eur J Clin Microbiol
Infect Dis 32:955–959. https://doi.org/10.1007/s10096-013-1833-9.

25. McDermott PF, Tyson GH, Kabera C, Chen Y, Li C, Folster JP, Ayers SL,
Lam C, Tate HP, Zhao S. 2016. Whole-genome sequencing for detecting
antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents
Chemother 60:5515–5520. https://doi.org/10.1128/AAC.01030-16.

26. Hunt M, Mather AE, Sánchez-Busó L, Page AJ, Parkhill J, Keane JA, Harris
SR. 2017. ARIBA: rapid antimicrobial resistance genotyping directly from
sequencing reads. Microb Genom 3:e000131. https://doi.org/10.1099/
mgen.0.000131.

27. Niehaus KE, Walker TM, Crook DW, Peto TE, Clifton DA. 2014. Machine
learning for the prediction of antibacterial susceptibility in Mycobacte-
rium tuberculosis, p 618 – 621. Abstr 2014 IEEE-EMBS Int Conf Biomed
Health Informatics.

28. Stoesser N, Batty EM, Eyre DW, Morgan M, Wyllie DH, Del Ojo Elias C,
Johnson JR, Walker AS, Peto TEA, Crook DW. 2013. Predicting antimicro-
bial susceptibilities for Escherichia coli and Klebsiella pneumoniae isolates
using whole genomic sequence data. J Antimicrob Chemother 68:
2234 –2244. https://doi.org/10.1093/jac/dkt180.

29. Pesesky MW, Hussain T, Wallace M, Patel S, Andleeb S, Burnham C-AD,
Dantas G. 2016. Evaluation of machine learning and rules-based ap-
proaches for predicting antimicrobial resistance profiles in Gram-
negative bacilli from whole genome sequence data. Front Microbiol
7:1887. https://doi.org/10.3389/fmicb.2016.01887.

30. Lipworth SIW, Hough N, Leach L, Morgan M, Jeffrey K, Andersson M,
Robinson E, Smith G, Crook D, Peto T. 2018. Whole genome sequencing
for predicting Mycobacterium abscessus drug susceptibility. bioRxiv
251918. https://doi.org/10.1101/251918.

31. Bradley P, Gordon NC, Walker TM, Dunn L, Heys S, Huang B, Earle S,
Pankhurst LJ, Anson L, De Cesare M. 2015. Rapid antibiotic-resistance
predictions from genome sequence data for Staphylococcus aureus and
Mycobacterium tuberculosis. Nat Commun 6:10063. https://doi.org/10
.1038/ncomms10063.

32. Harrison OB, Clemence M, Dillard JP, Tang CM, Trees D, Grad YH, Maiden
MCJ. 2016. Genomic analyses of Neisseria gonorrhoeae reveal an asso-
ciation of the gonococcal genetic island with antimicrobial resistance. J
Infect 73:578 –587. https://doi.org/10.1016/j.jinf.2016.08.010.

33. Grad YH, Harris SR, Kirkcaldy RD, Green AG, Marks DS, Bentley SD, Trees
D, Lipsitch M. 2016. Genomic epidemiology of gonococcal resistance to
extended-spectrum cephalosporins, macrolides, and fluoroquinolones in
the United States, 2000 –2013. J Infect Dis 214:1579 –1587. https://doi
.org/10.1093/infdis/jiw420.

34. Coelho JR, Carriço JA, Knight D, Martínez J-L, Morrissey I, Oggioni MR,
Freitas AT. 2013. The use of machine learning methodologies to analyse
antibiotic and biocide susceptibility in Staphylococcus aureus. PLoS One
8:e55582. https://doi.org/10.1371/journal.pone.0055582.

35. Eyre DW, De Silva D, Cole K, Peters J, Cole MJ, Grad YH, Demczuk W,
Martin I, Mulvey MR, Crook DW, Walker AS, Peto TEA, Paul J. 2017. WGS
to predict antibiotic MICs for Neisseria gonorrhoeae. J Antimicrob Che-
mother 72:1937–1947. https://doi.org/10.1093/jac/dkx067.

36. Drouin A, Giguère S, Déraspe M, Marchand M, Tyers M, Loo VG, Bour-
gault A-M, Laviolette F, Corbeil J. 2016. Predictive computational phe-
notyping and biomarker discovery using reference-free genome com-
parisons. BMC Genomics 17:754. https://doi.org/10.1186/s12864-016
-2889-6.

37. Davis JJ, Boisvert S, Brettin T, Kenyon RW, Mao C, Olson R, Overbeek R,
Santerre J, Shukla M, Wattam AR, Will R, Xia F, Stevens R. 2016. Antimi-
crobial resistance prediction in PATRIC and RAST. Sci Rep 6:27930.
https://doi.org/10.1038/srep27930.

Nguyen et al. Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01260-18 jcm.asm.org 14

https://doi.org/10.3201/eid1701.091101p1
https://doi.org/10.3201/eid1701.091101p1
https://doi.org/10.1155/2015/520179
https://doi.org/10.1056/NEJM196909182811202
https://doi.org/10.1128/CMR.00002-15
https://doi.org/10.1086/427263
https://doi.org/10.1086/427263
https://doi.org/10.3201/eid1106.041231
https://doi.org/10.3201/eid1106.041231
https://doi.org/10.1089/fpd.2013.1642
https://doi.org/10.1089/fpd.2013.1642
https://doi.org/10.1086/497599
https://doi.org/10.1089/fpd.2017.2283
https://doi.org/10.1089/fpd.2017.2283
https://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm416741.htm
https://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm416741.htm
https://www.fda.gov/AnimalVeterinary/SafetyHealth/AntimicrobialResistance/NationalAntimicrobialResistanceMonitoringSystem/ucm416741.htm
https://doi.org/10.1093/femspd/ftx041
https://doi.org/10.1128/mBio.01888-15
https://doi.org/10.1038/nrg3226
https://doi.org/10.1111/nyas.13289
https://doi.org/10.1111/nyas.13289
https://doi.org/10.1016/j.cmi.2015.01.003
https://doi.org/10.1086/647952
https://doi.org/10.1128/JCM.39.10.3583-3585.2001
https://doi.org/10.1128/JCM.39.10.3583-3585.2001
https://doi.org/10.1177/2042098614554919
https://doi.org/10.1097/01.CCM.0000217961.75225.E9
https://doi.org/10.1097/01.CCM.0000217961.75225.E9
https://doi.org/10.1007/s10096-013-1833-9
https://doi.org/10.1128/AAC.01030-16
https://doi.org/10.1099/mgen.0.000131
https://doi.org/10.1099/mgen.0.000131
https://doi.org/10.1093/jac/dkt180
https://doi.org/10.3389/fmicb.2016.01887
https://doi.org/10.1101/251918
https://doi.org/10.1038/ncomms10063
https://doi.org/10.1038/ncomms10063
https://doi.org/10.1016/j.jinf.2016.08.010
https://doi.org/10.1093/infdis/jiw420
https://doi.org/10.1093/infdis/jiw420
https://doi.org/10.1371/journal.pone.0055582
https://doi.org/10.1093/jac/dkx067
https://doi.org/10.1186/s12864-016-2889-6
https://doi.org/10.1186/s12864-016-2889-6
https://doi.org/10.1038/srep27930
https://jcm.asm.org


38. Nguyen M, Brettin T, Long SW, Musser JM, Olsen RJ, Olson R, Shukla M,
Stevens RL, Xia F, Yoo H. 2018. Developing an in silico minimum
inhibitory concentration panel test for Klebsiella pneumoniae. Sci Rep
8:421. https://doi.org/10.1038/s41598-017-18972-w.

39. Metcalf BJ, Chochua S, Gertz R, Li Z, Walker H, Tran T, Hawkins PA,
Glennen A, Lynfield R, Li Y. 2016. Using whole genome sequencing to
identify resistance determinants and predict antimicrobial resistance
phenotypes for year 2015 invasive pneumococcal disease isolates re-
covered in the United States. Clin Microbiol Infect 22:1002.e1–1002.e8.
https://doi.org/10.1016/j.cmi.2016.08.001.

40. Li Y, Metcalf BJ, Chochua S, Li Z, Gertz RE, Walker H, Hawkins PA, Tran T,
Whitney CG, McGee L. 2016. Penicillin-binding protein transpeptidase
signatures for tracking and predicting �-lactam resistance levels in
Streptococcus pneumoniae. mBio 7(3):e00756-16. https://doi.org/10
.1128/mBio.00756-16.

41. Chen T, Guestrin C. 2016. Xgboost: a scalable tree boosting system, p
785–794. Proc 22nd ACM SIGKDD Int Conf Knowledge Discovery Data
Mining ACM.

42. U.S. Food and Drug Administration. 2011. National Antimicrobial Resis-
tance Monitoring System—Enteric Bacteria (NARMS): executive report.
U.S. Department of Health and Human Services. Food and Drug Admin-
istration, Rockville, MD.

43. Wattam AR, Davis JJ, Assaf R, Boisvert S, Brettin T, Bun C, Conrad N,
Dietrich EM, Disz T, Gabbard JL, Gerdes S, Henry CS, Kenyon RW, Machi
D, Mao C, Nordberg EK, Olsen GJ, Murphy-Olson DE, Olson R, Overbeek
R, Parrello B, Pusch GD, Shukla M, Vonstein V, Warren A, Xia F, Yoo H,
Stevens RL. 2017. Improvements to PATRIC, the all-bacterial bioinfor-
matics database and analysis resource center. Nucleic Acids Res 45:
D535–D542. https://doi.org/10.1093/nar/gkw1017.

44. Nikolenko SI, Korobeynikov AI, Alekseyev MA. 2013. BayesHammer:
Bayesian clustering for error correction in single-cell sequencing. BMC
Genomics 14:S7. https://doi.org/10.1186/1471-2164-14-S1-S7.

45. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS,
Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV,
Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new
genome assembly algorithm and its applications to single-cell sequenc-
ing. J Comput Biol 19:455– 477. https://doi.org/10.1089/cmb.2012.0021.

46. Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GJ, Olson R,
Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R,
Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible
implementation of the RAST algorithm for building custom annotation
pipelines and annotating batches of genomes. Sci Rep 5:8365. https://
doi.org/10.1038/srep08365.

47. Antonopoulos DA, Assaf R, Aziz RK, Brettin T, Bun C, Conrad N, Davis JJ,
Dietrich EM, Disz T, Gerdes S, Kenyon RW, Machi D, Mao C, Murphy-
Olson DE, Nordberg EK, Olsen GJ, Olson R, Overbeek R, Parrello B, Pusch
GD, Santerre J, Shukla M, Stevens RL, VanOeffelen M, Vonstein V, Warren
AS, Wattam AR, Xia F, Yoo H. 31 July 2017. PATRIC as a unique resource
for studying antimicrobial resistance. Brief Bioinform https://doi.org/10
.1093/bib/bbx083.

48. Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment soft-
ware version 7: improvements in performance and usability. Mol Biol
Evol 30:772–780. https://doi.org/10.1093/molbev/mst010.

49. Price MN, Dehal PS, Arkin AP. 2010. FastTree 2—approximately
maximum-likelihood trees for large alignments. PLoS One 5:e9490.
https://doi.org/10.1371/journal.pone.0009490.

50. Letunic I, Bork P. 2007. Interactive Tree of Life (iTOL): an online tool for
phylogenetic tree display and annotation. Bioinformatics 23:127–128.
https://doi.org/10.1093/bioinformatics/btl529.

51. Deorowicz S, Kokot M, Grabowski S, Debudaj-Grabysz A. 2015. KMC 2:
fast and resource-frugal k-mer counting. Bioinformatics 31:1569 –1576.
https://doi.org/10.1093/bioinformatics/btv022.

52. U.S. Food and Drug Administration. 2009. Guidance for industry and
FDA. Class II special controls guidance document: antimicrobial suscep-
tibility test (AST) systems. Center for Devices and Radiological Health,
U.S. Food and Drug Administration, U.S. Department of Health and
Human Services, Silver Spring, MD.

53. Jorgensen JH. 1993. Selection criteria for an antimicrobial susceptibility
testing system. J Clin Microbiol 31:2841.

54. U.S. Food and Drug Administration. 2009. Class II special controls guid-
ance document: antimicrobial susceptibility test (AST) systems. U.S. Food
and Drug Administration, Rockville, MD.

55. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel OBM,
Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau
D, Brucher M, Perrot M, Duchesnay É. 2011. Scikit-learn: machine learn-
ing in Python. J Machine Learning Res 12:2825–2830.

56. Bellman R. 2013. Dynamic programming. Courier Corporation, New
York, NY.

57. Shalev-Shwartz S, Ben-David S. 2014. Understanding machine learning:
from theory to algorithms. Cambridge University Press, Cambridge,
United Kingdom.

58. Aggarwal CC, Hinneburg A, Keim DA (ed). 2001. On the surprising
behavior of distance metrics in high dimensional space. In International
conference on database theory. Springer-Verlag, Berlin, Germany.

59. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K,
Madden TL. 2009. BLAST	: architecture and applications. BMC Bioinfor-
matics 10:421. https://doi.org/10.1186/1471-2105-10-421.

60. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ. 2009.
Jalview version 2—a multiple sequence alignment editor and analysis
workbench. Bioinformatics 25:1189 –1191. https://doi.org/10.1093/
bioinformatics/btp033.

61. Crooks GE, Hon G, Chandonia J-M, Brenner SE. 2004. WebLogo: a se-
quence logo generator. Genome Res 14:1188 –1190. https://doi.org/10
.1101/gr.849004.

62. Davis JJ, Olsen GJ. 2010. Modal codon usage: assessing the typical codon
usage of a genome. Mol Biol Evol 27:800 – 810. https://doi.org/10.1093/
molbev/msp281.

63. Davis JJ, Olsen GJ. 2011. Characterizing the native codon usages of a
genome: an axis projection approach. Mol Biol Evol 28:211–221. https://
doi.org/10.1093/molbev/msq185.

64. Ranieri ML, Shi C, Switt AIM, Den Bakker HC, Wiedmann M. 2013.
Comparison of typing methods with a new procedure based on se-
quence characterization for Salmonella serovar prediction. J Clin Micro-
biol 51:1786 –1797. https://doi.org/10.1128/JCM.03201-12.

65. Zhu L, Olsen RJ, Nasser W, Beres SB, Vuopio J, Kristinsson KG, Got-
tfredsson M, Porter AR, DeLeo FR, Musser JM. 2015. A molecular trigger
for intercontinental epidemics of group A Streptococcus. J Clin Invest
125:3545–3559. https://doi.org/10.1172/JCI82478.

66. Nasser W, Beres SB, Olsen RJ, Dean MA, Rice KA, Long SW, Kristinsson KG,
Gottfredsson M, Vuopio J, Raisanen K, Caugant DA, Steinbakk M, Low DE,
McGeer A, Darenberg J, Henriques-Normark B, Van Beneden CA, Hoff-
mann S, Musser JM. 2014. Evolutionary pathway to increased virulence
and epidemic group A Streptococcus disease derived from 3,615 ge-
nome sequences. Proc Natl Acad Sci U S A 111:E1768 –E1776. https://
doi.org/10.1073/pnas.1403138111.

67. Yoshida H, Kojima T, Yamagishi J-I, Nakamura S. 1988. Quinolone-
resistant mutations of the gyrA gene of Escherichia coli. Mol Gen Genet
211:1–7. https://doi.org/10.1007/BF00338386.

68. Yoshida H, Bogaki M, Nakamura M, Nakamura S. 1990. Quinolone
resistance-determining region in the DNA gyrase gyrA gene of Esche-
richia coli. Antimicrob Agents Chemother 34:1271–1272. https://doi.org/
10.1128/AAC.34.6.1271.

69. Tyson GH, Zhao S, Li C, Ayers S, Sabo JL, Lam C, Miller RA, McDermott PF.
2017. Establishing genotypic cutoff values to measure antimicrobial
resistance in Salmonella. Antimicrob Agents Chemother 61:e02140-16.
https://doi.org/10.1128/AAC.02140-16.

70. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007. A
common mechanism of cellular death induced by bactericidal antibiot-
ics. Cell 130:797– 810. https://doi.org/10.1016/j.cell.2007.06.049.

71. Foti JJ, Devadoss B, Winkler JA, Collins JJ, Walker GC. 2012. Oxidation of
the guanine nucleotide pool underlies cell death by bactericidal antibi-
otics. Science 336:315–319. https://doi.org/10.1126/science.1219192.

Predicting MICs for Nontyphoidal Salmonella Journal of Clinical Microbiology

February 2019 Volume 57 Issue 2 e01260-18 jcm.asm.org 15

https://doi.org/10.1038/s41598-017-18972-w
https://doi.org/10.1016/j.cmi.2016.08.001
https://doi.org/10.1128/mBio.00756-16
https://doi.org/10.1128/mBio.00756-16
https://doi.org/10.1093/nar/gkw1017
https://doi.org/10.1186/1471-2164-14-S1-S7
https://doi.org/10.1089/cmb.2012.0021
https://doi.org/10.1038/srep08365
https://doi.org/10.1038/srep08365
https://doi.org/10.1093/bib/bbx083
https://doi.org/10.1093/bib/bbx083
https://doi.org/10.1093/molbev/mst010
https://doi.org/10.1371/journal.pone.0009490
https://doi.org/10.1093/bioinformatics/btl529
https://doi.org/10.1093/bioinformatics/btv022
https://doi.org/10.1186/1471-2105-10-421
https://doi.org/10.1093/bioinformatics/btp033
https://doi.org/10.1093/bioinformatics/btp033
https://doi.org/10.1101/gr.849004
https://doi.org/10.1101/gr.849004
https://doi.org/10.1093/molbev/msp281
https://doi.org/10.1093/molbev/msp281
https://doi.org/10.1093/molbev/msq185
https://doi.org/10.1093/molbev/msq185
https://doi.org/10.1128/JCM.03201-12
https://doi.org/10.1172/JCI82478
https://doi.org/10.1073/pnas.1403138111
https://doi.org/10.1073/pnas.1403138111
https://doi.org/10.1007/BF00338386
https://doi.org/10.1128/AAC.34.6.1271
https://doi.org/10.1128/AAC.34.6.1271
https://doi.org/10.1128/AAC.02140-16
https://doi.org/10.1016/j.cell.2007.06.049
https://doi.org/10.1126/science.1219192
https://jcm.asm.org

	MATERIALS AND METHODS
	Genomes and metadata. 
	Genomic analyses. 
	MIC prediction. 
	Software availability. 
	Accession number(s). 

	RESULTS
	Model construction. 
	Model accuracy. 
	Genomic regions important for MIC prediction. 

	DISCUSSION
	SUPPLEMENTAL MATERIAL
	ACKNOWLEDGMENTS
	REFERENCES

