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ABSTRACT Clostridium difficile is a potentially lethal gut pathogen that causes nos-
ocomial and community-acquired infections. Limited treatment options and reports
of reduced susceptibility to current treatment emphasize the necessity for novel an-
timicrobials. The DNA polymerase of Gram-positive organisms is an attractive target
for the development of antimicrobials. ACX-362E [N2-(3,4-dichlorobenzyl)-7-(2-[1-mor-
pholinyl]ethyl)guanine; MorE-DCBG] is a DNA polymerase inhibitor in preclinical de-
velopment as a novel therapeutic against C. difficile infection. This synthetic purine
shows preferential activity against C. difficile PolC over those of other organisms in
vitro and is effective in an animal model of C. difficile infection. In this study, we
have determined its efficacy against a large collection of clinical isolates. At concen-
trations below the MIC, the presumed slowing (or stalling) of replication forks due to
ACX-362E leads to a growth defect. We have determined the transcriptional re-
sponse of C. difficile to replication inhibition and observed an overrepresentation of
upregulated genes near the origin of replication in the presence of PolC inhibitors,
but not when cells were subjected to subinhibitory concentrations of other antibiot-
ics. This phenomenon can be explained by a gene dosage shift, as we observed a
concomitant increase in the ratio between origin-proximal and terminus-proximal
gene copy number upon exposure to PolC inhibitors. Moreover, we show that cer-
tain genes differentially regulated under PolC inhibition are controlled by the origin-
proximal general stress response regulator sigma factor B. Together, these data sug-
gest that genome location both directly and indirectly determines the transcriptional
response to replication inhibition in C. difficile.

KEYWORDS Clostridium difficile, DNA polymerase inhibitor, PolC, RNA-Seq, gene
dosage, marker frequency analysis, sigma factor, stress response

Clostridium difficile (Clostridioides difficile [1]) is a Gram-positive anaerobic bacterium
that can asymptomatically colonize the intestine of humans and other mammals

(2–4). However, when the normal flora is disturbed, C. difficile can overgrow and cause
fatal disease, as has been dramatically demonstrated in the Stoke Mandeville Hospital
outbreaks in 2004 and 2005 (5). The ability to form highly resistant endospores coupled
to its extensive antibiotic resistance have contributed to its success as a nosocomial and
community-acquired pathogen (2–4). Recent years have seen an increase in the inci-
dence and severity of C. difficile infections (CDI) due to the emergence of certain PCR
ribotypes (3, 6). Antibiotic use is a well-established risk factor for CDI (7), and the
emergence of the epidemic PCR ribotype 027 has been linked to fluoroquinolone
resistance (8). At present, two antibiotics, metronidazole and vancomycin, are com-
monly used to treat CDI, and a third, fidaxomicin, is indicated for the treatment of
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relapsing CDI (9, 10). Clearly, limited treatment options and reports of reduced suscep-
tibility to current treatment (11–13) emphasize the necessity for the development of
novel antimicrobials and a better understanding of tolerance and resistance to existing
therapeutics.

It is increasingly realized that off-target effects that occur when cells are exposed to
antimicrobials can contribute to their efficacy but also facilitate the emergence of
tolerance and/or resistance (14). Antimicrobials may act as signaling molecules which
modulate gene expression (14). Additionally, in particular, those targeting DNA repli-
cation (such as polymerase inhibitors) can cause transcriptional effects as a result of
differences in gene dosage (15).

The polymerase of Gram-positive organisms is an attractive target for the develop-
ment of novel antimicrobials (16). First, these PolC-type polymerases are absent from
Gram-negative organisms and humans (17, 18). HPUra, one of the first such com-
pounds, is therefore highly active against a wide range of Gram-positive bacteria but
does not affect Gram-negative bacteria (17, 18). Template-directed elongation is
blocked by the inhibitor through simultaneous binding to the cytosine of the DNA
strand and near the active site of PolC. Second, compounds can be derived that have
an increased specificity toward specific microorganisms. ACX-362E (Fig. 1) is a com-
pound in preclinical development as a novel therapeutic against C. difficile, as it shows
preferential activity against C. difficile PolC over those of other organisms in vitro (19, 20)
and will progress to clinical trials in the near future (Acurx Pharmaceuticals, personal
communication). PolC inhibitors can cause a stress response and cell death after
prolonged exposure. In Bacillus subtilis, this stress is characterized by a combination of
DNA damage (SOS) response and an SOS-independent pathway dependent on the DNA
replication initiator DnaA (21, 22). In Streptococcus pneumoniae cells, devoid of an SOS
response, competence for genetic transformation is induced upon replication stress
(23). The response of C. difficile to this particular class of compounds is unknown.

In this study, we characterized aspects of the action of PolC inhibitors toward C.
difficile. MICs for HPUra and ACX-362E were determined using agar dilution for a large
collection of clinical isolates. Next, we investigated the effects of subinhibitory levels of
PolC inhibitors on the growth of C. difficile in liquid medium and performed RNA
sequencing (RNA-Seq) analyses to determine the transcriptional response to PolC
inhibitors in our laboratory strain 630Δerm. Finally, marker frequency analysis and
transcriptional reporters were used to provide a mechanistic explanation for the
observed upregulation of origin-proximal genes under conditions of replication inhi-
bition.

RESULTS
ACX-362E is a potent inhibitor of diverse clinical isolates of C. difficile. To date,

reports on the activities of PolC inhibitors toward C. difficile are limited. MICs have been
published for only 4 (19) and 23 (20) C. difficile strains, and no analysis was performed
on possible differences in efficacy between various phylogenetic groups (24, 25).
Therefore, we assessed the sensitivities of a diverse collection of C. difficile clinical
isolates toward PolC inhibitors and determined if ACX-362E was indeed superior to the
general PolC inhibitor HPUra.

HPUra and ACX-362E were tested by the agar dilution method, according to Clinical
and Laboratory Standards Institute (CLSI) guidelines for the testing of antimicrobial
susceptibility of anaerobes (26, 27), against 363 C. difficile clinical isolates collected
earlier in the framework of a pan-European study (6, 28).

We found that ACX-362E (MIC50, 2 �g/ml; MIC90, 4 �g/ml) demonstrates lower
inhibitory concentrations than the general Gram-positive PolC inhibitor HPUra
(MIC50, 16 �g/ml; MIC90, 32 �g/ml) (Fig. 2; see also Table S1 in the supplemental
material), consistent with previous in vitro activities observed against purified PolC
(19). We observed no significant difference in ACX-362E susceptibilities between
clades (Table 1), and the different PCR ribotypes demonstrated a similar distribution in
MIC values (data not shown). No growth at the highest concentration of compounds
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tested for either one of the PolC inhibitors was observed among the clinical isolates
tested (n � 363). Notably, we observed only a 2-fold difference in MIC50 and MIC90,
indicating that the compounds have similar activities against nearly all strains. In
contrast, the Gram-negative obligate anaerobe Bacteroides fragilis was resistant to both
polymerase inhibitors under the conditions tested (MIC, �265 �g/ml), as expected for
an organism lacking PolC. The Gram-positive bacterium Staphylococcus aureus, which
was included as a control for the activity of HPUra against this group of bacteria (16, 29),
was sensitive to both HPUra and ACX-362E, with MIC values of 2 �g/ml and 1 �g/ml,
respectively.

We conclude that ACX-362E is highly active against diverse clinical isolates of C.
difficile, and resistance is not a concern in currently circulating strains.

Treatment with ACX-362E leads to a pleiotropic transcriptional response. In
order to determine the transcriptional response of PolC inhibitors, we established the
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FIG 1 Mechanism of action of the PolC inhibitors ACX-362E. (A) Ternary complex of inhibitor ACX-362E,
DNA, and PolC. (B) H-bonding between inhibitor molecule ACX-362E and a cytosine residue of DNA.
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optimal concentration of both inhibitors which affected the growth of C. difficile in
liquid medium. The laboratory strain C. difficile 630Δerm (PCR ribotype 012, multilocus
sequence type [MLST] clade 1) (30, 31) was grown in medium with various amounts of
HPUra (10 to 40 �g/ml) or ACX-362E (0.25 to 8 �g/ml). We note that concentrations up
to the MIC90 (as determined by agar dilution) did not lead to a complete growth arrest
in liquid medium in the time course of the experiment (Fig. S1). A difference in the MIC
values from agar dilution and (micro)broth methods has been observed before (32). The
growth kinetics of C. difficile under the influence of varied concentrations of HPUra was
marginally affected when using concentrations from 10 to 40 �g/ml, at �80% of the
nontreated culture. Growth kinetics of cultures containing PolC inhibitor ACX-362E at
1 to 8 �g/ml were similar and resulted in 30 to 40% reduced growth compared to that
with the nontreated culture. For subsequent experiments, we used concentrations of
PolC inhibitors that result in a maximum reduction in growth of 30% compared to that
of a nontreated culture (Fig. S1) (HPUra, 35 �g/ml; ACX-362E, 4 �g/ml).

As described above, we established that growth of C. difficile is partially inhibited at
certain concentrations of PolC inhibitors. Slowing down or stalling of replication forks
might lead to a stressed state, as observed for other organisms (22, 23). As nothing is
known about the effect of replication inhibition on the physiology of C. difficile, we
determined the transcriptional response to replication inhibition by sub-MIC levels of
PolC inhibitors through strand-specific RNA sequencing (RNA-Seq).

C. difficile 630Δerm was grown for 5 h in medium with HPUra (35 �g/ml) or ACX-362E
(4 �g/ml) starting from an optical density at 600 nm (OD600) of 0.05, after which cells
were harvested for RNA isolation. Purified RNA was converted to cDNA and used for
RNA-Seq, as described in Materials and Methods. For ACX-362E, 722 genes were
differentially expressed, of which 438 genes were upregulated and 284 genes were
downregulated. The number of differentially expressed genes in HPUra-treated samples
was approximately 2-fold lower, at 360, of which 124 genes were upregulated and 236

TABLE 1 MICs of PolC inhibitors toward C. difficile stratified by clade

Inhibitor by clade

MIC data (�g/ml)
No. of
isolates PCR ribotype(s)MIC50 MIC90 Range

Clade 1
HPUra 16 32 2–64 230 001, 002, 003, 005, 009, 010, 011, 012, 014, 015, 018, 025, 026, 029, 031,

037, 050, 051, 053, 056, 057, 064, 070, 081, 084, 087, 106, 118
ACX-362E 2 4 0.25–4

Clade 2
HPUra 16 32 2–32 24 016, 019, 027, 075, 208
ACX-362E 2 4 0.5–4

Clade 3
HPUra 16 32 4–32 7 023
ACX-362E 4 4 1–4

Clade 4
HPUra 8 16 2–16 9 017
ACX-362E 2 4 1–4

Clade 5
HPUra 16 32 4–32 43 033, 045, 078, 126
ACX-362E 1 2 0.5–4

Clade 6
HPUra 4 4 4 1 131
ACX-362E 4 4 4

Clade unknown
HPUra 16 32 4–32 49 013, 024, 039, 046, 063, 090, 093, 097, 099, 101, 107, 110, 137, 139, 150,

154, 159, 161, 176, 202, 205, 207, 228, 229, 230, 231, 232, 234
ACX-362E 2 4 0.5–4
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genes were downregulated. The full list of differentially regulated genes is available in
Table S2, and the top 10 upregulated and top 10 downregulated genes are shown in
Table 2 (for HPura) and Table 3 (for ACX-362E). Here, we highlight three aspects of the
results.

First, we performed a gene set enrichment analysis (GSEA) (33) via the Genome2D
web server (http://genome2d.molgenrug.nl/) using the locus tags of the differentially
regulated genes (Table S1) as input. Among the genes upregulated by ACX-362E, there
is a strong overrepresentation of those involved in translation, ribosomal structure, and
ribosomal biogenesis. Not unexpectedly, replication, recombination, and repair pro-
cesses are also affected. This suggests that genes from these pathways show a
coordinated response in the presence of ACX-362E. Among the genes downregulated
in the presence of ACX-362E, the levels of significance for specific processes are
generally much lower, suggesting that there is a more heterogeneous response among
genes from the same pathway. Nevertheless, metabolic pathways (especially carbon
metabolism and coenzyme A transfer) and tellurite resistance were found to be
significantly affected. Strikingly, a GSEA on lists of genes that are differentially ex-
pressed in the presence of HPUra revealed similar processes to be affected.

The findings from the GSEA prompted us to evaluate the overlap in the lists of
differentially regulated genes between the ACX-362E and HPUra data sets in more
detail. If the two compounds act via a similar mechanism, we expect a conserved
response. Indeed, we observe that �90% of the genes that are upregulated in the
presence of HPUra compared to the nontreated condition are also identified as
upregulated in the presence of ACX-362E (Fig. 3A). Though the overlap is not as strong
for the downregulated genes, we find that �30% of the genes affected by HPUra are
also identified as affected by ACX-362E (Fig. 3B). Notably, the directionality of the
response is conserved, as no genes were found to be upregulated under one condition
but downregulated under the other condition. Based on these observations, we believe
that the differentially expressed genes identified in this study are representative for a
typical response to inhibition of PolC in C. difficile.

Finally, we related the changes in transcription to genome location. C. difficile has a
single circular chromosome and one origin of replication (oriC) from which the process
of DNA replication occurs bidirectionally toward the terminus (terC) (Fig. 4A).
Though neither oriC nor terC has been definitively defined for C. difficile, it is
assumed that oriC is located at or near dnaA (CD0001; CD630DERM_RS00005). The
terminal region is generally located at the inflection point of a GC skew ([G�C]/
[G�C]) plot. Such a plot places the terC region around 2.2 Mb from CD0001, near
the CD1931 (CD630DERM_RS10465) open reading frame (Fig. 4A) (34). We noted that
the differential expression appeared to correlate with genome location (Tables 2, 3, and
S2), as many of the upregulated genes have either low or high gene identifiers (CD
numbers) indicative of an origin proximal location; conversely, many of the downregu-
lated genes appear to be located away from oriC. Though this correlation is not
absolute, we observed a clear trend when plotting the mean fold change against the
genome location for all genes (Fig. 4B).

Overall, our data show that inhibition of DNA replication by PolC inhibitors causes
a consistent and pleiotropic transcriptional response that is at least in part is directly
dictated by genome location.

Gene dosage shift occurs at subinhibitory concentration of ACX-362E PolC
inhibitor. A possible explanation for the relative upregulation of oriC-proximal genes
and downregulation of terC-proximal genes is a gene dosage shift (35–37), due to the
fact that PolC inhibition slows replication elongation but does not prevent reinitiation
of DNA replication (23, 38). To determine if this in fact occurs in C. difficile when
replication elongation is inhibited, we performed a marker frequency analysis (MFA) to
determine the relative abundance of an origin-proximal gene relative to a terminus-
proximal gene on chromosomal DNA isolated from treated and nontreated cells.

We designed quantitative PCR (qPCR) probes against the CD0001 and CD1931
regions, representing oriC and terC, respectively (31, 34). Using these probes, we could
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show that C. difficile demonstrates multifork replication in exponential-growth phase
and that the MFA assay detects the expected decrease in oriC/terC ratio when cells
enter stationary-growth phase (data not shown). Next, we analyzed the effects of PolC
inhibitors on the oriC/terC ratio. When cells were treated with HPUra (35 �g/ml), the
MFA showed a modest increase in oriC/terC ratio of 2.6-fold compared to nontreated
cells. However, when cells were treated with ACX-362E (4 �g/ml), the MFA showed
a �8-fold increase in the oriC/terC ratio compared to nontreated cells. In contrast,
such an increase was not observed for cells treated with 0.25 �g/ml metronidazole
(a DNA-damaging agent), 0.00125 �g/ml fidaxomicin (an RNA polymerase inhibitor),

A.

B.

326

208

112 12

362E
HPUra

16076

FIG 3 Overlap in the transcriptional response to different PolC inhibitors. (A) Venn diagram of the
number of genes upregulated in the presence of ACX-362E (red), in the presence of HPUra (blue), or
under both conditions (overlapping region). (B) Venn diagram of the number of genes downregulated
in the presence of ACX-362E (red), in the presence of HPUra (blue), or under both conditions (overlapping
region). The sizes of the circles are proportional to the number of genes that showed differential
expression.
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FIG 4 Genome location correlates with differential expression upon PolC inhibition. (A) Schematic representation of the chromosome of C. difficile.
Higher-than-average GC skew ([G�C]/[G�C]) (red) and lower-than-average GC skew (blue) were calculated with DNAPlotter (https://www.sanger
.ac.uk/science/tools/dnaplotter). Vertical lines indicate the position of the predicted origin (oriC) and terminus (terC) of replication. Arrows indicate
the direction of replication. (B) Sliding window analysis (bins of 51 loci; step size, 1) of the median log fold change (FC) projected on a linear
genome map. The oriC of the circular chromosome is located on either size of the linear graph (0/4.29 Mb), whereas terC is indicated with a vertical
red line. The trend in log(FC) is highlighted using a green line. Light-blue shading indicates the median absolute deviation of the mean (23).
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0.625 �g/ml surotomycin (a cell wall synthesis inhibitor) (Fig. 5), or 2 �g/ml chloram-
phenicol (a protein synthesis inhibitor) (Fig. S2).

We conclude that the inhibition of PolC activity, but not the actions of any of the
other tested antimicrobials, leads to a gene dosage shift in C. difficile.

Origin-proximal sigB contributes to the transcriptional response. Elegant work
in S. pneumoniae has shown that the transcriptional response to replication inhibition
can also be affected by origin-proximal regulators that respond to the gene dosage
effect (23). In C. difficile, the gene encoding the general stress response sigma factor �B

(sigB, CD0011) is located close to the origin of replication (39). We wondered whether
this regulator contributes to the transcriptional effects observed in our studies.

First, we compared the list of differentially regulated genes from our study (Table S2)
to those under the control of �B (40). In contrast to most anaerobic Gram-positive
organisms, C. difficile encodes a homolog of the general stress response sigma factor �B

(39, 41). A transcriptome analysis comparing a sigB mutant versus wild-type cells was
recently published (40). Strikingly, we found �40% of the genes (21/58) identified as
involved in stress response under the control of �B to be differentially expressed in our
ACX-362E data set (Table S3). Similarly, we observed that 7/20 (�35%) of the genes
containing a transcriptional start site with a �B consensus sequence are differentially
expressed in our ACX-362E data set (Table S3). These data suggest that the response to
DNA replication inhibition is at least partially dependent on �B.

To demonstrate that exposure to ACX-362E causes a transient upregulation of sigB,
we constructed a reporter fusion of the secreted luciferase reporter sLucopt with the
predicted promoter of the sigB operon (Pcd0007). We monitored the luciferase activity of
a strain harboring a plasmid containing this reporter fusion (WKS2003) after dilution of
an overnight culture into fresh medium with or without ACX-362E (Fig. 6). In non-
treated cells, expression from the sigB promoter is relatively stable over the course of
5.5 h. In contrast, luciferase activity strongly increases from 1.25 h to 3 h after inocula-
tion into medium with ACX-362E. These data show that exposure to ACX-362E tran-
siently induces transcription of the sigB operon.

Next, a sigB mutant was constructed using allele-coupled exchange (42), as de-
scribed in Materials and Methods. The chromosomal deletion of sigB and absence of the
�B protein were verified by PCR and Western blotting, respectively (Fig. S3). To directly
demonstrate a role for sigB in the regulation of genes with altered transcription upon
PolC inhibition, we fused the predicted promoter regions of selected genes to a
secreted luciferase reporter (43) and evaluated luminescence in wild-type and sigB
mutant backgrounds after 5 h of growth in the presence and absence of 4 �g/ml
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FIG 5 Polymerase inhibitors lead to an increase in oriC/terC ratio. A marker frequency analysis of the
effects of subinhibitory amounts of polymerase inhibitors (red; HPUra, 35 �g/ml; ACX-362E, 4 �g/ml) and
three antibiotics with different modes of action (blue; metronidazole, 0.25 �g/ml; fidaxomicin,
0.00125 �g/ml, surotomycin, 0.625 �g/ml) compared to nontreated cells (black). Data points are averages
of technical replicates (n � 3). Black lines behind the data points indicate the average of the biological
replicates (n � 3), and whiskers indicate the standard deviation of the mean. Data have been normalized
compared to the nontreated control. The mean of HPUra- and ACX-362E-treated samples is statistically
different from the other samples (P � 0.0001).
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ACX-362E. All genes tested demonstrated a significant increase in promoter activity in
a wild-type background in the presence of ACX-362E compared to the nontreated
control, validating the results from the RNA-Seq analysis (Fig. 7). Three distinct patterns
were observed. For CD0350 (encoding a hypothetical protein) and CD2963 (encoding
a putative peptidoglycan-binding exported protein), there was virtually no expression
in a sigB mutant background (Fig. 7A and B). We conclude that these genes are strictly
dependent on �B for their expression under the conditions tested. CD3614 (encoding
a hypothetical protein) shows a basal level of expression but no significant increase in
transcription levels in the presence of ACX-362E in a sigB mutant background com-
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FIG 6 The sigB operon is transiently induced upon exposure to ACX-362E. The putative promoter of the
sigB operon (40) was fused transcriptionally to a plasmid-based luciferase reporter (43). Luciferase activity
was measured regularly between 30 min and 5.5 h of growth in liquid medium in the presence (�362E)
or absence (no antibody [Ab]) of polymerase inhibitor ACX-362E. RLU, relative light units.

FIG 7 Genes differentially expressed due to polymerase inhibitors are regulated by �B. The putative promoters of the
indicated genes were fused transcriptionally to a plasmid-based luciferase reporter (43). Luciferase activity was measured
after 5 h of growth in liquid medium in the presence (�362E) or absence (no Ab) of polymerase inhibitor ACX-362E. N.S.,
nonsignificant; *, P � 0.05; **, P � 0.005; ***, P � 0.0005; ****, P � 0.00005. (A) PCD350-sLucopt. (B) PCD2963-sLucopt. (C)
PCD3614-sLucopt. (D) PCD3412-sLucopt.
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pared to the nontreated control (Fig. 6C). This suggests that the transcriptional up-
regulation under these conditions is �B dependent, and it indicates that the basal level
of transcription observed is likely independent of �B. Finally, CD3412 (uvrB, encoding a
subunit of an excinuclease) shows reduced transcriptional upregulation in ACX-362E-
treated cells compared to the nontreated controls (Fig. 6D). Thus, the transcription of
this particular gene under conditions of ACX-362E exposure is brought about by both
�B-dependent and �B-independent regulatory pathways.

Together, these results demonstrate that sigB controls the expression of at least a
subset of genes that are upregulated under PolC inhibition.

DISCUSSION
Activity and specificity of ACX-362E. Limited treatment options and reports of

reduced susceptibility to current treatment (11, 12, 44) emphasize the necessity for the
development of novel antimicrobials. As CDI can be induced by the use of broad-
spectrum antibiotics (7), new antimicrobials ideally should only target C. difficile,
thereby maintaining the integrity of the colonic microbiota. In this study, we have
tested the inhibitors HPUra and ACX-362E that specifically target the PolC enzyme,
which is essential for DNA replication. The majority of PolC inhibitors target Gram-
positive bacteria with low G�C content, but ACX-362E has been reported to demon-
strate increased specificity toward C. difficile PolC in vitro and showed promising results
for efficacy in vivo based on a limited set of C. difficile strains (19, 20). The compound
will progress to clinical trials in the near future (Acurx Pharmaceuticals, personal
communication). The present study is the largest survey of the efficacy of HPUra and
ACX-362E against a large collection of clinical isolates consisting of many relevant PCR
ribotypes to date. We have established that ACX-362E demonstrated lower inhibitory
concentrations than the general Gram-positive PolC inhibitor HPUra in agar dilution
experiments. The MIC50 and MIC90 of ACX-362E are similar to those of antimicrobials
commonly used to treat C. difficile infection (for metronidazole, MIC50, 2 �g/ml, and
MIC90, 4 �g/ml; for vancomycin, MIC50, 2 �g/ml, and MIC90, 4 �g/ml [20]; for fidaxomi-
cin, MIC50, 0.125 �g/ml, and MIC90, 0.5 �g/ml [45]). We did not detect a significant
difference in MICs between clades and ribotypes, demonstrating that PolC inhibitors
have the potential to be used as treatment for the majority of, if not all, circulating C.
difficile strains. This includes the epidemic types of PCR ribotypes 027 and 078 (8, 46).
These results are in line with other work that demonstrated only 2- to 4-fold differences
in antimicrobial susceptibility between different clades for metronidazole, fidaxomicin,
and semisynthetic thiopeptide antibiotic LFF571 (28). In the course of our experiments,
we did not find any strains that grew at the highest concentrations of either HPUra or
ACX-362E tested. PolC inhibitors are competitive inhibitors of polymerase activity by
binding in the active site. Mutations that abolish binding of HPUra or ACX-362E are
likely to affect the essential enzymatic activity of the polymerase and for that reason are
unlikely to occur in vivo. A single mutation (azp-12) has been described in B. subtilis that
confers resistance to HPUra (47). This T-to-G transversion results in the replacement of
a serine with an alanine in the highly conserved PFAM07733 domain of the polymerase
(48). To our knowledge, it is unknown whether this mutation prevents binding of HPUra
to PolC of B. subtilis. Few other mutations have been described that confer resistance
against other PolC inhibitors (49, 50). It will be of interest to see if similar mutations in
C. difficile result in resistance to HPUra and/or ACX-362E and what the effect is on
binding of these compounds to C. difficile PolC.

ACX362 may have off-target effects unrelated to its replication-inhibitory activity.
For C. difficile, it has not been established that PolC inhibition is the sole mode of action
of the inhibitors. In our experiments, we found that S. aureus was sensitive to both
HPUra and ACX-362E and even more so than C. difficile. It should be established if this
is due to inhibition of PolC or is mediated by an alternative mechanism. If ACX-362E
targets DNA replication in S. aureus, we would also expect to find an increase in the
oriC/terC ratio upon ACX-362E exposure in this organism. Alternatively, ACX-362E may
also affect the activity of the other PolIII-type polymerase DnaE in S. aureus. PolIII
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inhibitors can affect PolC, DnaE, or both (50), though in vivo activity appears to correlate
with PolC inhibition. Both C. difficile and S. aureus possess PolC and DnaE polymerase,
but the DnaE enzymes are of different families (DnaE1 in C. difficile and DnaE3 in S.
aureus) (51). To verify the mode of action, and whether different DnaE-type poly-
merases explain the increased sensitivity of S. aureus compared to C. difficile, the activity
of ACX-362E toward purified DnaE and PolC from both organisms should be deter-
mined.

Though it is clear that ACX-362E inhibits C. difficile efficiently and shows limited
activity toward certain other anaerobes (19), these findings highlight the necessity to
perform additional (microbiome) studies to more clearly define the antimicrobial
spectrum of this compound. It also shows that ACX-362E may have therapeutic
potential outside treatment for CDI.

Regulators of the transcriptional response to PolC inhibitors. The present study
is the first to describe the transcriptional response of C. difficile to inhibition of DNA
replication. We find that �200 genes show differential expression under conditions of
PolC inhibition by both HPUra and ACX-362E compared to nontreated cells. When
considering only ACX-362E, approximately 13% of all genes in the genome show
statistically significant altered transcription. We demonstrate that this large reprogram-
ming of transcription is likely to be caused directly by a gene dosage shift.

In addition to direct effects, it is conceivable that at least part of the transcriptional
response is indirect. Our list of differentially regulated genes includes several putative
regulators, as follows: sigma factors (including sigE, sigG, and sigH), transcription factors,
and antiterminators. The relatively long time (5 h) at sub-MIC levels of antimicrobials
may have contributed to secondary effects through one or more of these regulators.
Though shorter induction times are thought to provoke more compound-specific
responses (52), we did observed a highly consistent transcriptional signature with both
HPUra and ACX-362E.

Major stress response pathways are poorly characterized in C. difficile. On the basis
of experiments in other organisms (21–23, 53–55), we expect that the inhibition of DNA
replication inhibition might possibly induce an SOS response (LexA) (56), a DnaA-
dependent transcriptional response (21), and possibly a heat shock response (HrcA/
CtsR) (57) and/or a general stress response (�B) (41). Of these, the best characterized
stress response pathway in C. difficile is the one governed by �B (40). We noted a
significant overlap in putatively �B-dependent genes and those differentially expressed
upon exposure to PolC inhibitors. In addition, our luciferase reporter fusions directly
implicate sigB in the expression and/or upregulation of some of these. It should be
noted that the sigB operon itself was not differentially expressed in our RNA-Seq
analysis. A sigB-reporter fusion suggests that sigB is transiently upregulated prior to the
time point of sampling for the RNA-Seq analysis. Similar transient upregulation of sigB
followed by a persistent response of �B-dependent gene expression has been observed
in other organisms (57–59). To our knowledge, this is the first indication that sigB- and
SigB-dependent gene expression could be subject to a gene dosage effect.

To date, no genes have been identified that are regulated by DnaA in C. difficile, and
direct regulation of genes through the other stress response pathways has not been
demonstrated. Many parameters (such as the medium used, cell density, concentration
of antibiotics, and protocol used to arrest transcription between cell harvest and lysis)
can influence overall transcription signatures (52) and can also govern an incomplete
overlap between our data and the stress regulons proposed by others (58–60).

Genome location contributes to the transcriptional response to PolC inhibi-
tion. Our analysis of differential regulation in relation to genome location revealed a
striking pattern of relative upregulation for oriC-proximal genes and downregulation
for terC-proximal genes under conditions of PolC inhibition. Antimicrobials directed at
DNA replication in bacteria have a profound negative effect on the processivity of
replication forks, though initiation of DNA replication is not or is only marginally
affected (23, 38). As a consequence, the presence of multiple replication forks simul-
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taneously increases the copy numbers of genes located in close proximity of the origin
of replication, and such a gene dosage differences can result in functionally relevant
transcriptional differences, either directly or indirectly (15). We found an increase of
oriC/terC ratio when performing MFA on chromosomal DNA of cells subjected to a
subinhibitory concentration of ACX-362E (and HPUra, albeit less pronounced), consis-
tent with findings in other organisms (23). This is the first demonstration of gene
dosage-dependent transcriptional regulation in C. difficile. Our experiments suggest
that at least part of the transcriptional response to PolC inhibition can be explained by
an indirect gene dosage effect, as also observed for S. pneumoniae (23). The positioning
of stress response regulators close to oriC may therefore be a conserved strategy in
bacteria to respond to DNA replication insults, independent of the nature of the
regulator.

Though it is likely that an increase in gene copy number leads to an increase in the
transcription of these genes, it is less clear whether this is the case for the observed
downregulation. Most methods of normalization for transcriptome analyses are based
on the assumption that there is no overall change in transcription or that the number
of transcripts per cells is the same for all conditions; this may not be the case when a
global copy number shift occurs (15). Absolute transcript levels for downregulated
genes might therefore be similar under the two conditions (but lower than oriC-
proximal transcripts).

It is interesting that certain processes are highly enriched in the list of genes
upregulated under conditions of PolC inhibition (most notably ribosome function and
DNA-related functions), whereas this is less so for the downregulated genes. This
suggests that pathways susceptible to replication-dependent gene dosage effects
demonstrate a functional clustering of genes near oriC, whereas clustering of genes
from specific pathways in the terC-proximal region is less pronounced. Indeed, most
ribosomal gene clusters in C. difficile are located close to the origin of replication (31,
39), and many genes involved in DNA replication and repair are located in these
regions. Consistent with this, the positioning of genes involved in transcription and
translation close to the origin appears to be under strong selection, as such genomes
tend to be more stable (61).

In conclusion, both direct and indirect effects of gene dosage shifts are likely to
contribute to the transcriptional response of C. difficile to replication inhibition.

MATERIALS AND METHODS
Bacterial strains and culture conditions. Plasmids and bacterial strains used in this study can be

found in Table 4 (note that this table only contains laboratory strains; the clinical isolates used for the
agar dilution experiments [see below] are listed in Table S1). E. coli was cultured aerobically at 37°C
(shaking at 200 rpm) in Luria-Bertani (LB) broth supplemented with 20 �g/ml chloramphenicol and
50 �g/ml kanamycin when appropriate. C. difficile strains were cultured in brain heart infusion (BHI) broth
(Oxoid) supplemented with 0.5% yeast extract (Sigma-Aldrich), Clostridium difficile selective supplement
(CDSS; Oxoid), and 20 �g/ml thiamphenicol when appropriate. C. difficile was grown anaerobically in a
Don Whitley VA-1000 workstation in an atmosphere of 10% CO2, 10% H2, and 80% N2. Liquid cultures
were grown under gentle agitation (120 rpm).

Agar dilution. HPUra and ACX-362E were tested against a collection of C. difficile clinical isolates.
Three hundred seventy-five clinical isolates have been collected during the ECDIS study (6). All strains
were characterized by PCR ribotyping (62) and by PCR to confirm the presence of genes encoding toxins
A and B and binary toxin (63–65). Of the 375 clinical isolates, we excluded stocks that were found to
contain more than one strain and isolates that could not be recultured. Testing was therefore performed
on 363 isolates (Table S1). C. difficile ATCC 700057, B. fragilis ATCC 25285, and S. aureus ATCC 29213 were
used as controls (ATCC).

The strains were tested for the different concentrations of antimicrobial using the agar dilution
method, according to Clinical and Laboratory Standards Institute guidelines (26, 27). In short, the
antimicrobials were diluted into brucella blood agar (BBA) supplemented with hemin and vitamin K1.
Bacterial isolates were cultured on blood agar plates and after 24 h resuspended to a turbidity of 0.5
McFarland in phosphate-buffered saline (PBS). The strains were inoculated onto BBA solid medium
containing the PolC inhibitors using multipoint inoculators to a final concentration of 104 CFU per spot.
Each series of antimicrobial agents was tested from the lowest concentration to the highest concentra-
tion. Two control plates without antibiotics were inoculated to control for aerobic contamination and
purity of anaerobic growth. At the end of the final series, two control plates were inoculated to verify the
final organism viability and purity. Only experiments where both positive and negative controls per-
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formed according to expectations were included. Plates were incubated anaerobically in a Don Whitley
VA-1000 workstation in an atmosphere of 10% CO2, 10% H2, and 80% N2, and the MICs were recorded
after 24 and 48 h and are presented in this paper with values at 48 h, according to the CLSI guidelines
(26).

Sub-MIC determination. C. difficile 630Δerm (30, 31) was grown in 20 ml brain heart infusion (Oxoid)
supplemented with 0.5% yeast extract (BHI/YE; Sigma-Aldrich) starting from an optical density at 600 nm
(OD600) of 0.05 using an exponentially growing starter culture (3 biological replicates per concentration).
To determine the effects on growth at subinhibitory concentrations of ACX-362E, cells were cultured in
the presence of the concentrations 0.25, 0.5, 1, 2, 4, and 8 �g/ml ACX-362E and compared to an
nontreated culture. To determine the effects on growth at subinhibitory concentrations of HPUra, cells
were cultured in the presence of the concentrations 10, 20, and 40 �g/ml HPUra and compared to an
nontreated culture. The OD600 was monitored every hour until stationary phase was reached.

Marker frequency analysis. C. difficile 630Δerm (30, 31) was grown in 20 ml BHI supplemented with
0.5% yeast extract with sub-MIC amounts of antimicrobials (HPUra, 35 �g/ml; ACX-362E, 4 �g/ml;
metronidazole, 0.25 �g/ml; fidaxomicin, 0.00125 �g/ml, surotomycin, 0.625 �g/ml), starting from an
OD600 of 0.05 using an exponentially growing starter culture. These samples were taken in the course of
an independent, but simultaneously performed, set of experiments for which we obtained surotomycin
and fidaxomicin from Cubist Pharmaceuticals. Metronidazole was commercially obtained (Sigma-
Aldrich). We confirmed that these concentrations did not lead to a �30% reduction in growth compared
to the nontreated cultures (Fig. S1 and data not shown). In parallel, cultures were grown without
inhibitors from the same starter culture. All conditions were performed in biological triplicates. Previous
experiments have shown that ori/ter differences are reliably detected �3 h after dilution into fresh
medium (23). Therefore, after 5 h, 1 ml cells was harvested (OD600, �0.5) and stored at �20°C. Isolation
of chromosomal DNA was performed the next day with the QIAamp DNA blood minikit (Qiagen),
according to the instructions of the manufacturer. Marker frequency analysis (MFA) was performed to
assess the relative abundance of origin-proximal genes relative to terminus-proximal genes. As a
proxy for oriC, a probe was designed that targets the CD0001 region (CD0001-probe-FAM). By using
plots of the GC skew ([G�C]/[G�C]) generated using DNAPlotter (https://www.sanger.ac.uk/science/
tools/dnaplotter), the approximate location of the terminal region for the C. difficile chromosome was
determined, and a probe targeting this region (CD1931) was designed (CD-1931-probe-TXR). Probe
design was performed with Beacon Designer (Premier Biosoft, Palo Alto CA, USA). Real-time PCRs were
performed on a Bio-Rad CFX96 real-time PCR detection system (95°C for 15 min, 39 cycles of 94°C for 30 s,
55°C for 30 s, and 72°C 30 s). The sequences for the primers and probes used are listed in Table 5. For
each biological replicate, three technical replicates were performed. Amplification efficiency was deter-
mined using standard curves obtained from DNA late-stationary-phase cells of strain 630Δerm, for which
an oriC/terC ratio of 1 was assumed. Reverse transcription-PCR (RT-PCR) results from antibiotic-treated

TABLE 4 Plasmids and strains used in this study

Plasmid or strain Relevant featuresa Source/reference

Plasmids
pAP24 tetR Ptet-slucopt catP; derived from pRPF185 43
pIB27 PCD3412-slucopt catP; derived from pAP24 This study
pIB54 pMTL-SC7315 containing the up- and downstream

area of the 630Δerm �B CDS (950 bp each)
This study

pIB68 PCD0350-slucopt catP; derived from pAP24 This study
pIB69 PCD2963-slucopt catP; derived from pAP24 This study
pIB74 PCD3614-slucopt catP; derived from pAP24 This study
pMTL-SC7315 pMTL83151 with codA catP 42
pH28 PCD0007-slucopt catP; derived from pAP24 This study

Strains
Escherichia coli

DH5� F�endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG purB20
�80dlacZΔM15 Δ(lacZYA-argF)U169 hsdR17(rK

� mK
�) ��

Laboratory stock

CA434 HB101 [F� mcrB mrr hsdS20(rB
� mB

�) recA14 leuB6 ara-14 proA2 lacY1 galK2
xyl-5 mtl-1 rspL20(SmR)glnV44 ��] R702

68

C. difficile 630Δerm MLS-susceptible derivative of strain 630 30, 31
IB37 630Δerm/pIB27; thiar This study
IB56 630Δerm ΔsigB This study
IB95 630Δerm/pIB68; thiar This study
IB96 630Δerm/pIB69; thiar This study
IB98 IB56/pIB27; thiar This study
IB99 IB56/pIB68; thiar This study
IB100 IB56/pIB69; thiar This study
IB108 630Δerm/pIB74; thiar This study
IB111 IB54/pIB74; thiar This study
WKS2003 630Δerm/pPH28; thiar This study

aMLS, macrolides-lincosamides-streptogramins; thiar, thiamphenicol resistance.
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cells were normalized to the oriC/terC ratio of DNA samples (3 biological replicates) from nontreated cells.
Calculations were performed in Microsoft Office Excel 2010, plotted using Prism 7 (GraphPad), and
prepared for publication in Corel Draw Suite X8. Significance was determined using a one-way analysis
of variance (ANOVA) and Tukey’s test for multiple comparisons (GraphPad).

Growth and RNA isolation for RNA-Seq. For RNA-Seq analysis, C. difficile 630Δerm (30, 31) was
grown for 5 h in BHI medium with HPUra (35 �g/ml) or ACX-362E (4 �g/ml) starting from an OD600 of 0.05
using an exponentially growing starter culture, after which cells (3 ml) were harvested for RNA isolation.
These concentrations were some of the highest concentrations that resulted in a modest effects on
growth (�30% reduction of growth compared to wild-type cells; Fig. S1). RNA isolation was performed
with NucleoSpin RNA kit (Macherey-Nagel). Although the kit includes on column recombinant DNase
(rDNase) digestion, a second treatment was performed in solution, and RNA was precipitated and
recovered by NaAc precipitation to remove residual DNA. Concentration determination and quality
control (16S/23S ratio and RNA integrity number [RIN]) were performed with a fragment analyzer (Agilent
Bioanalyzer), according to the instructions of the manufacturer. Samples with an RIN of �9 and 16S/23S
rRNA ratio of �1.4 were submitted for analysis by RNA-Seq.

RNA-Seq. RNA-Seq was performed at a commercial provider (GenomeScan, Leiden, The Nether-
lands). In short, the NEBNext Ultra directional RNA library prep kit for Illumina was used to process the
samples. Sample preparation was performed according to the protocol NEBNext Ultra directional RNA
library prep kit for Illumina (catalog no. E7420S/L; NEB). Briefly, after selective removal of rRNA (Ribo-Zero

TABLE 5 Oligonucleotides and probes used in this study

Name Sequence (5=¡3=)a Description

CD-0001- F GAGACAAGAATTGCTATACTTA Forward primer CD0001 MFA (oriC)
CD-0001- R CAACCACTCTAGTTAATGC Reverse primer CD0001 MFA (oriC)
CD-0001-probe-FAM CTCAACTAGAACGTATAGATGTGCCAA Probe CD0001 MFA (oriC)
CD-1931- F GCAGGAATTTTAGATGAAGA Forward primer CD1931 MFA (terC)
CD-1931- R GGCTGAAGTCTTATTAAATTTC Reverse primer CD1931 MFA (terC)
CD-1931-probe-TXR CCTCTTAACTGTAGCAGATTCACCAT Probe CD1931 MFA (terC)
oIB-26 GGAAGGTACCGTTGAATAAAGTATTTATTTTCCATG Forward primer for pCD3412 containing

a KpnI restriction site
oIB-27 GGTAGAGCTCAGTATCACTCCTTTTTTCGAAC Reverse primer for pCD3412 containing

an SacI restriction site
oIB-44 CGTAGAAATACGGTGTTTTTTGTTACCCTACTTATAGTAGCAATT

TATTTAGCTAAAAC
Forward primer for region 950 bp upstream

of sigB CDS
oIB-45 TACTTTTTTTATATTTTTTTAAATATCAACTCCTAAATATTTAGTC Reverse primer for region 950 bp upstream

of sigB CDS
oIB-46 GGAGTTGATATTTAAAAAAATATAAAAAAAGTATTGACCTACTG Forward primer for region 950 bp downstream

of sigB CDS
oIB-47 GGGATTTTGGTCATGAGATTATCAAAAAGGGGACTACCAGGGT

ATCTAATC
Reverse primer for region 950 bp downstream

of sigB CDS
oIB-53 CTTTAAAACAGTAGGTCAATACTTTTTTTATAT Reverse primer to verify sigB CDS deletion
oIB-76 AAAATATAAAAAAAGTATTGACCTACTGTTTTAAAGATGGTATA

GTATTAC
Forward primer to verify sigB deletion

oIB-78 GGAGATGTTAACTAATGAATGCATGG Forward primer to verify sigB CDS deletion
oIB-79 CTAATGCACAGCGCCAGCAAACAAAC Reverse primer to verify sigB CDS deletion
oIB-80 ctagcataaaaataagaagcctgcatttgcAAATTTACGAAAAGCTTGC Forward primer for PCD0350

oIB-82 ctagcataaaaataagaagcctgcatttgcTTGTGTTTAAGGGATTTTGAAAG Forward primer for PCD2963

oIB-92 ctagcataaaaataagaagcctgcatttgcGAATAAAAAAGGTGGTGTC Forward primer for PCD3614

oIB-94 agctattaataattttttacttggtctcatTTTTACCTCCATGTAACATTTATTG Reverse primer for PCD0350

oIB-95 agctattaataattttttacttggtctcatAATTAAATCCTTCCTTACATTGT
AATTAC

Reverse primer for PCD2963

oIB-100 agctattaataattttttacttggtctcatATAAACACCCTCCTATTCTTTG Reverse primer for PCD3614

oPH-19 ctagcataaaaataagaagcctgcatttgcCGATTGCCAAAATAAAT
ATTGAAG

Forward primer for PCD0007

oPH-20 agctattaataattttttacttggtctcatAACAATTACTCCTTTCAATTTT
AAATTTTTATC

Reverse primer for PCD0007

oWKS-1240 CACCTCCTTTTTGACTTTAAGCCTACGAATACC Forward primer on pAP24 backbone to
amplify insert

oWKS-1241 CACCGACGAGCAAGGCAAGACCG Reverse primer on pAP24 backbone to
amplify insert

oWKS-1537 TAGGGTAACAAAAAACACCG Reverse primer to amplify pMTL-SC7315
backbone

oWKS-1538 CCTTTTTGATAATCTCATGACC Forward primer to amplify pMTL-SC7315
backbone

oWKS-1580 ATGAGACCAAGTAAAAAATTATTAATAGC Forward primer to amplify pAP24 backbone
oWKS-1582 GCAAATGCAGGCTTCTTATTTTTATG Reverse primer to amplify pAP24 backbone
aRestriction sites are underlined. Overlap with the vector backbone is indicated in lowercase letters.
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rRNA removal kit for Gram-positive bacteria) and fragmentation of the mRNA, cDNA synthesis was
performed. cDNA was ligated to the sequencing adapters, and the resulting product was PCR amplified.
Clustering and DNA sequencing using the Illumina NextSeq 500 platform were performed according to
the manufacturer’s protocols. A concentration of 1.5 pM DNA was used. Image analysis, base calling, and
quality check were performed with the Illumina data analysis pipeline RTA version l.18.64 and Bcl2fastq
version 2.17. Per sample, four technical replicates were included in the RNA-Seq experiment. In case of
insufficient reads, the sample was rerun on another flow cell to reach satisfactory quantities (�20
million).

Analysis of RNA-Seq data. Analysis of the data was performed using T-REx, a user-friendly web
server which has been optimized for the analysis of prokaryotic RNA-Seq-derived expression data (66).
The pipeline requires raw RNA expression level data as an input for RNA-Seq data analysis. For data
normalization and determination of the genes, the factorial design statistical method of the RNA-Seq
analysis R package EdgeR is implemented in the T-REx pipeline. Some samples displayed incomplete
rRNA depletion, and rRNA mapping reads had to be removed manually prior to analysis.

To analyze the genome-wide pattern in differential gene expression, a sliding window analysis was
performed essentially as described previously (23). In short, genome locations (start of the locus tag)
were coupled to the locus tags in the T-REx output. Next, the median log fold change [log(FC)] was
calculated for bins of 51 loci, with a step size of 1. For each bin of [X1, X2. . .X51], the median absolute
deviation of the median [MAD � median(|Xi � median(X)|] was calculated as an robust indication of the
distribution around calculated median values. Calculations were performed, three curves (median,
median � MAD, and median � MAD) were plotted in Microsoft Office Excel 2010, and the graph was
prepared for publication using Adobe Photoshop CC and Corel Draw Suite X8.

A GSEA (33) was performed via the Genome2D web server (66) using our reference genome
sequence for C. difficile 630Δerm (GenBank accession no. LN614756.1 [listed in Genome2D as
“Clostridioides_difficile_630Derm”]) (31). As input, a single list of locus tags was used of either up- or
downregulated genes. The output was copied to Microsoft Excel 2010. The single-list column was split,
and a column was inserted to calculate the significance of the overrepresentation using the formula “(#
hits in list/ClassSize) � �log(P value; 2)” to allow for sorting of the output of the GSEA by significance.

General molecular biological techniques. E. coli strain DH5� was used for maintenance of all
plasmids. All plasmid transformations into E. coli were performed using standard procedures (67). E. coli
CA434 was used as a donor for conjugation of plasmids into the recipient C. difficile strain (68).
Conjugation was performed as previously described (68). Briefly, 1 ml of an overnight culture of donor
cells was mixed with 200 �l of the recipient, spotted onto anaerobic BHI agar plates, and incubated for
5 to 8 h. After incubation, cells were collected, and 10-fold serial dilutions were plated onto fresh BHI
plates containing thiamphenicol and CDSS.

Plasmid DNA was isolated using the NucleoSpin plasmid miniprep kits (Macherey-Nagel), as per the
manufacturer’s instructions. C. difficile genomic DNA was isolated using the DNeasy blood and tissue kit
(Qiagen), with pretreatment for Gram positives according to the instructions of the manufacturer.

Construction of luciferase-reporter fusion plasmids. All PCRs for plasmid construction were
carried out with Q5 polymerase (New England BioLabs). Putative promoter regions were amplified using
C. difficile 630Δerm chromosomal DNA (31) as the template.

The PCD3412 luciferase-reporter plasmid was created by restriction-ligation using the restriction
enzymes KpnI and SacI. PCD3412 was amplified using primers oIB-26 and oIB-27 (Table 5). The resulting
double-stranded DNA (dsDNA) fragment was digested and ligated into KpnI-SacI-digested pAP24 (43),
yielding plasmid pIB27. Plasmids pIB68 (PCD0350), pIB69 (PCD2963), pIB74 (PCD3614), and pPH28 (PCD0007)
were constructed using a Gibson assembly (69). The plasmid backbone of pAP24 was linearized by PCR
using primers oWKS-1580/oWKS-1582, and the predicted promoter areas of CD0350, CD2962, CD3614,
and CD0007 were amplified with primers oIB-80/oIB-94, oIB-82/oIB-95, oIB-92/oIB-100, and oPH-19/oPH-
20, respectively. Primers were designed using the NEBuilder assembly tool version 1.12.17 (New England
BioLabs) using a 30-bp overlap. For the assembly, 100 ng of vector DNA was assembled to a 5-fold molar
excess of the PCR fragment of the desired promoter using a homemade Gibson Assembly master mix at
50°C for 30 min (final concentrations, 4 U/�l Taq ligase [Westburg], 0.004 U/�l T5 exonuclease [New
England BioLabs], 0.025 U/�l Phusion polymerase [Bioké], 5% polyethylene glycol 8000 [PEG-8000],
10 mM MgCl2, 100 mM Tris-HCl [pH 7.5], 10 mM dithiothreitol, 0.2 mM dATP, 0.2 mM dTTP, 0.2 mM dCTP,
0.2 mM dGTP, and 1 mM �-NAD) and transformed into E. coli DH5�. Transformants were screened by
colony PCR using primers oWKS-1240/oWKS-1241. Transformants yielding PCR fragments of the correct
size were verified by Sanger sequencing.

Construction of C. difficile IB56 (�sigB). The up- and downstream regions (950 bp each) of the sigB
coding sequence were amplified with primers oIB-44/oIB-45 and oIB-46/oIB-47, respectively. Vector
pMTL-SC7315 (42) was linearized by PCR using primers oWKS-1537/oWKS-1538. Assembly was done
according to the method of Gibson (43, 69). The assembled plasmid was transformed into E. coli DH5�

and verified using PCR and Sanger sequencing. Generation of the unmarked sigB deletion mutant was
performed using allele-coupled exchange, essentially as described previously (42, 70). Briefly, pIB54 was
introduced into C. difficile 630Δerm (31) by conjugation. Transconjugants were grown for 2 days on BHI
agar plates supplemented with yeast extract, thiamphenicol, and CDSS, struck onto fresh prereduced
plates, and incubated anaerobically at 37°C for 2 days. Single-crossover integration was confirmed using
PCR, and those clones were plated onto nonselective BHI agar plates to allow the second crossover event
to occur. Colonies were then serially diluted and plated onto minimal agar supplemented with 50 �g/ml
5-fluorocytosine (Sigma), as described previously (42). DNA was isolated from thiamphenicol-susceptible
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colonies, and the chromosomal deletion was verified by PCR using primers oIB-78/oIB-79 (Fig. S3), as well
as Sanger sequencing of the PCR product using primers oIB-53/oIB-76/oIB-78.

Luciferase reporter assay. Strains containing luciferase reporter plasmids were inoculated to an
OD600 of 0.05 from an exponentially growing starter culture. Fresh inocula were grown in BHI broth
supplemented with yeast extract, with or without 4 �g/ml ACX-362E for 5 h (for putative sigB target
genes) or 5.5 h (sigB promoter). The supernatants from 1 ml of culture (harvested by centrifugation for
10 min, 4°C, 8,000 rpm) were analyzed in a GloMax-Multi microplate multimode reader (Promega), as
described before (43). Statistical significance of the data (P � 0.05) was determined by two-way analysis
of variance (ANOVA) and a pairwise Tukey-Kramer test using Prism 7 (GraphPad) where appropriate.

Data availability. Data for the RNA-Seq experiment have been deposited in the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/) under accession number GSE116503 and
under GenBank accession number LN614756.1.
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