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Lipin1 is required for skeletal muscle development
by regulating MEF2c and MyoD expression
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Key points

� Lipin1 is critical for skeletal muscle development.
� Lipin1 regulates MyoD and myocyte-specific enhancer factor 2C (MEF2c) expression via the

protein kinase C (PKC)/histone deacetylase 5-mediated pathway.
� Inhibition of PKCμ activity suppresses myoblast differentiation by inhibiting MyoD and MEF2c

expression.

Abstract Our previous characterization of global lipin1-deficient (fld) mice demonstrated that
lipin1 played a novel role in skeletal muscle (SM) regeneration. The present study using cell
type-specific Myf5-cre;Lipin1fl/fl conditional knockout mice (Lipin1Myf5cKO) shows that lipin1
is a major determinant of SM development. Lipin1 deficiency induced reduced muscle mass
and myopathy. Our results from lipin1-deficient myoblasts suggested that lipin1 regulates
myoblast differentiation via the protein kinase Cμ (PKCμ)/histone deacetylase 5 (HDAC5)/
myocyte-specific enhancer factor 2C (MEF2c):MyoD-mediated pathway. Lipin1 deficiency leads
to the suppression of PKC isoform activities, as well as inhibition of the downstream target
of PKCμ, class II deacetylase HDAC5 nuclear export, and, consequently, inhibition of MEF2c
and MyoD expression in the SM of lipin1Myf5cKO mice. Restoration of diacylglycerol-mediated
signalling in lipin1 deficient myoblasts by phorbol 12-myristate 13-acetate transiently activated
PKC and HDAC5, and upregulated MEF2c expression. Our findings provide insights into
the signalling circuitry that regulates SM development, and have important implications for
developing intervention aimed at treating muscular dystrophy.
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Introduction

Lipin1 catalyses the penultimate step in triglyceride
synthesis and acts as a nuclear transcriptional coactivator
(Finck et al. 2006; Han et al. 2006; Kim et al. 2013). Studies
of lipin1 have revealed multiple roles: its lipid-storing
function in adipose tissue, its role in Schwann cell
and macrophage biology and its role in hepatic lipid
metabolism (Rehnmark et al. 1998; Finck et al. 2006;
Nadra et al. 2008; Reue & Dwyer, 2009; Ren et al. 2010;
Nadra et al. 2012; Hu et al. 2013; Kim et al. 2013; Mitra
et al. 2013; Schweitzer et al. 2015; Wang et al. 2016;
Vozenilek et al. 2018), as well as new roles in autophagy
and mitophagy in other recent studies (Zhang et al. 2014;
Alshudukhi et al. 2018; Schweitzer et al. 2018). There are
three mammalian lipin genes, lipin1, lipin2 and lipin3,
with distinct but partially overlapping expression pattern
(Donkor et al. 2007), although lipin1 is the predominant
lipin isoform in skeletal muscle (SM), accounting for
almost all phosphatidic acid phosphatase activity in SM
(Han et al. 2006; Reue & Dwyer, 2009). Clinical studies
have identified a population carrying a homozygous or
compound heterozygous LPIN1 gene mutation, which
could be the result of a premature stop codon insertion, a
large intragenic deletion, frameshift mutation and single
amino acid replacements, comprising the major cause
of rhabdomyolysis (Zeharia et al. 2008; Michot et al.
2010; Michot et al. 2012). Our earlier work in global
lipin1-deficient (fld) mice demonstrated that lipin1 plays
a major role in SM regeneration (Jiang et al. 2015).
In particular, fld mice exhibited smaller regenerated
muscle fibre cross-sectional areas in response to injury,
accompanied by reduced MyoD expression compared to
wild-type (WT) mice. A key challenge in these studies,
however, is that lipin1-deficient fld mice have systemic
metabolic abnormalities and develop severe neuropathy
and locomotor defects that complicate or preclude a
detailed analysis of SM function (Rehnmark et al. 1998).
Thus, for the present study, we generated Lipin1Myf5cKO

mice to specifically deplete lipin1 expression in Myf5-
expressing progenitors to further investigate the role of
lipin1 in myogenic determination and differentiation.

SM development involves a highly ordered cascade
of events comprising myogenic lineage commitment,
myoblast proliferation and terminal differentiation
(Buckingham, 2001; Bentzinger et al. 2012). These steps
are tightly controlled by transcription factor families,
including the myogenic basic helix-loop-helix (bHLH)
proteins and the myocyte enhancer factor 2 (MEF2).
Members of the myogenic bHLH proteins, MyoD
and Myf5, are required for myoblast specification and

differentiation, whereas myogenin and MRF4 play key
roles in myoblast fusion (Hernandez-Hernandez et al.
2017). Myoblast differentiation requires the co-operative
activation of members of the MyoD families and MEF2
(Dodou et al. 2003), which need to be dissociated
from class II HDACs to release the repression function
(McKinsey et al. 2000; Lu et al. 2000b); however, this
regulatory mechanism is still not fully understood.

In the present study, we employed our newly generated
Lipin1Myf5cKO mice to investigate the role of lipin1 in
myogenic differentiation. The results obtained suggest
that lipin1 deficiency results in reduced SM mass.
Lipin1 is a major determinant of skeletal myogenesis by
the promotion of MEF2c and MyoD-regulated muscle
differentiation. We evaluated the expression of the myo-
genic transcription factors and proteins involved in
SM differentiation, and identified a lipin1-associated
regulatory pathway that was further confirmed in lipin1-
depleted myoblasts. Our experiments uncover the key
role of lipin1 in a regulatory circuit that facilitates
gene programme transition from proliferation to
differentiation.

Methods

Animals

Lipin1Myf5cKO mice were generated by crossing Lipin1fl/fl

mice (Nadra et al. 2008) with Myf5-Cre mice (Stock No:
007893; Jackson Laboratories, Bar Harbor, ME, USA).
Both Lipin1fl/fl and Myf5-Cre mice were in a C57/B6 back-
ground. Experiments were performed on 2–4-months-
old mice. These mice had free access to drinking water
and regular chow, unless otherwise noted. All animal
experiments were performed in accordance with the
relevant guidelines and regulations approved by the
Animal Care and Use Committee of Wright State
University (#1058).

Cell culture and differentiation of C2C12 myoblasts

Mouse C2C12 myoblasts were cultured in high-glucose
Dulbecco’s modified Eagle’s medium (DMEM)
(#10569-010; Gibco, Gaithersburg, MD, USA) supple-
mented with 10% (v/v) fetal bovine serum (#16000-044;
Gibco) and 1% penicillin–streptomycin (#15140-122;
Gibco) under humidified air containing 5% CO2 at 37°C.
Myotube formation was induced at confluence by replac-
ing growth medium with differentiation medium consist-
ing of DMEM supplemented with 2% horse medium
(#16050-122; Gibco) and 1% penicillin–streptomycin.
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Adenoviruses-mediated short hairpin RNA (shRNA)
knockdown

Adenoviruses expressing shRNA to knockdown lipin1
(shLpin1) and control shLacZ were generous gifts from Dr
Thurl Harris (University of Virginia, Charlottesville, VA,
USA). For knockdown of lipin1 expression, C2C12 myo-
blasts were infected with shLpin1 and shLacZ control in
growth medium containing 8 g mL−1 polybrene (#107689;
Sigma, St Louis, MO, USA) for 24 h. The medium was
then replaced with DMEM supplemented with 10% fetal
bovine serum. The myoblasts were incubated for an
additional 24 h until they were confluent. Differentiation
was then initiated by switching the medium to DMEM
differentiation medium.

Immunofluorescence, microscopy and image
processing

Cells were fixed with 4% formaldehyde and permeabilized
in PBS containing 0.1% Triton X-100 for 20 min followed
by blocking in PBS containing 1% BSA (#BP9704; Thermo
Fisher Scientific, Waltham, MA, USA) for 1 h at room
temperature. The cells were then incubated with the
Mf20 monoclonal antibody (#AB 2147781; dilution 1:10;
Developmental Studies Hybridoma Bank, Iowa City, IA,
USA) to detect MHC-expressing cells overnight at 4°C
and subsequently with an Alexa Fluor 488- or Alexa
Fluor 555-conjugated secondary antibody (#A-21411;
dilution 1:500, Thermo Fisher Scientific) for 1 h at room
temperature. Nuclei of cells were detected by staining
with 4′,6-diamidino-2-phenylindole (DAPI) (#D1306;
2.5 μg mL−1; Thermo Fisher Scientific) for 10 min.
Images were obtained using an inverted microscope (IX70;
Olympus, Tokyo, Japan) equipped with a DFC7000T
camera (Leica Microsystems, Wetzlar, Germany). The
fusion index was calculated as the ratio of nuclei in
MyHC-positive myotubes to the total number of nuclei
in the field for five random fields.

Cos7 cells were seeded onto 13 mm round glass
coverslips. Cells were transfected with HDAC5-GFP
(#32211; Addgene, Cambridge, MA, USA) with/without
lipin1-HA, lipin1 D712A-HA mutant or PKCu-HA
(#10808; Addgene) plasmids. After 24 h, cells were
fixed in 4% paraformaldehyde. The cells were then
permeabilized with 0.1% Triton X-100 (#28314; Thermo
Fisher Scientific) made with PBS for 10 min at room
temperature. After washes, the cells were blocked with
1% BSA, incubated with rabbit anti-HA primary anti-
body (#Ab9110; dilution 1:1000; Abcam, Cambridge,
MA, USA) using 1% BSA blocking reagent overnight
at 4˚C. The next day, the cells were incubated with
secondary antibody, goat anti-rabbit 555 (#A21428;
dilution 1:1000; Thermo Fisher Scientific) with 1% BSA
blocking reagent. Nuclei were then labeled with DAPI.

Co-localization of HDAC5 and lipin1, lipin1D712A or
PKCu was examined.

Quantitative real-time PCR

Total RNA from C2C12 myoblasts and muscle tissues
was extracted using TRIzol reagent (#15596018; Thermo
Fisher Scientific). The concentration and quality of RNA
were assessed with a NanoDrop 2000 (Thermo Fisher
Scientific). One microgram of total RNA was used
for reverse transcription with the High-Capacity cDNA
Reverse Transcription Kit (Thermo Fisher Scientific). The
quantitative real-time PCR reaction was performed in
a QuantStudio Real-Time PCR System (Thermo Fisher
Scientific) using SYBR Green Real-time PCR Master Mix
(#A25742; Thermo Fisher Scientific). The sequence of
primers is provided in Table 1. The Ct (2−��Ct) method
was used to analyse the relative gene expression data.

Western blotting

Cells and muscle tissues were lysed in RIPA buffer
containing 10 mM Tris-HCL (pH 7.4), 30 mM NaCl,
1 mM EDTA and 1% Nonidet P-40, supplemented with
proteinase inhibitors and phosphatase inhibitors before
use. Protein concentration was determined for each
sample and equal amounts of proteins were used, boiled
at 95°C for 5 min in 1 × SDS sample buffer and separated
by 7.5–15% SDS-PAGE. Thereafter, proteins were trans-
ferred to polyvinylidene difluoride membranes (Millipore,
Billerica, MA, USA) using a Mini Trans-Blot Cell System
(Bio-Rad, Hercules, CA, USA). The membrane was
blocked with 1% casein buffer for 1 h, and incubated
with the primary antibodies overnight at 4°C. After
probing with secondary antibodies for 1h at 25°C, protein
bands were detected by using Amersham Imager 600 (GE
Healthcare Life Sciences, Little Chalfont, UK). β-actin
(#A1978; dilution 1:5000; Sigma) or GAPDH (Ab181602;
dilution 1:20000; Abcam) antibodies were used as a
loading control. The densitometry values were normalized
by the corresponding loading control densitometry values
obtained from the same sample. Antibodies used include
lipin1 (#14906; dilution 1:1000; Cell Signaling Technology,
Beverly, MA, USA), phospho-PKCμ (#2054; dilution
1:1000; Cell Signaling Technology), MyoD (#Ab16148;
dilution 1:1000; Abcam), MEF2c (#5030; dilution 1:1000;
Cell Signaling Technology), phospho-PKCα (#sc-377565
dilution 1:1000; Santa Cruz Biotechnology, Santa
Cruz, CA, USA), phospho-PKCθ isoforms (#sc-271922;
dilution 1:1000; Santa Cruz Biotechnology) and Pax7
(#AB 528428; dilution 1:1000; Developmental Studies
Hybridoma Bank) and (#Ab34360; dilution 1:1000;
Abcam), along with goat anti-mouse IgG-HRP (#w402B;
dilution 1:5000; Promega, Madison, WI, USA) and
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Table 1. Primer sequence used for RT-PCR

Primer Forward 5’- to 3’ Reverse 5’- to 3’

Lipin1 CCTTCTATGCTGCTTTTGGGAACC GTGATCGACCACTTCGCAGAGC
Myf-5 TGTATCCCCTCACCAGAGGAT GGCTGTAATAGTTCTCCACCTGTT
MyoD GCAGGCTCTGCTGCGCGACC TGCAGTCGATCTCTCAAAGCACC
Mef2c TCTGTCTGGCTTCAACACTG TGGTGGTACGGTCTCTAGGA
Gapdh CCAATGTGTCCGTCGTGGATCT GTTGAAGTCGCAGGAGACAACC

goat anti-rabbit IgG-HRP (#w401B; dilution 1:5000;
Promega).

Statistical analysis

Unless noted otherwise, data are provided as the mean ±
SD number (n) of independent experiments. Statistical
significance was calculated using a two-tailed Student’s
t test. P < 0.05 was considered statistically significant.

Results

Depletion of lipin1 in Myf5-expressing precursors
causes suppression of SM development

To investigate the role of lipin1 in SM development, we
generated Lipin1Myf5cKO mice to specifically deplete lipin1
expression in Myf5-expressing progenitors. Myf5 is the

first muscle regulatory factor (i.e. Myf5, MyoD, myogenin
and Mrf4) expressed during embryonic development (Ott
et al. 1991; Buckingham, 1992; Bentzinger et al. 2012). Loss
of lipin1 in Myf5-expressing progenitors did not induce
neurological phenotypes such as hind-limb clasping
reflexes, tremors or an unsteady gait, as observed in global
lipin1-deficient fld mice shortly after 10 days of age.
However, compared to control mice, selectively deleting
lipin1 in Myf5-expressing precursors caused the inhibition
of SM development, characterized by a 24% reduction in
muscle mass of both TA and GAS muscle in Lipin1Myf5cKO

mice (Fig. 1A–C). Haematoxylin and eosin staining
exhibited a reduction in mean fibre cross-sectional area in
both TA and GAS muscle of Lipin1Myf5cKO mice compared
to WT mice (Fig. 1D–E). Consistent with recent reports in
skeletal muscle-specific lipin1 deficient (MCK promoter)
(Schweitzer et al. 2018) and fld (Zhang et al. 2014)
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Figure 1. Lipin1 deficiency in Myf5-expressing cells results in reduced SM mass
Appearance of TA and GAS muscles in WT and Lipin1Myf5cKO mice at 3 months of age (TA and GAS are indicated
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mice, SM of Lipin1Myf5cKO mice also displayed a large
number of centrally nucleated fibres compared to control
mice, suggesting that lipin1 deficiency results in myo-
pathy. The centrally positioned nuclei are associated with
excessive degeneration/regeneration processes similar to
those reported in patients with lipin1 deficiency (Zeharia
et al. 2008; Michot et al. 2012). However, we did not
observe any obvious body weight difference in these
knockout mice. These mice also have altered fat deposition
and metabolism (Fig. 1A) and increased intramuscular
lipid accumulation (data not shown). We are currently
exploring the impact of lipin1 deficiency on fat-associated
phenotypes in a separate project.

We next examined the expression levels of lipin1 in the
TA and GAS muscles of Lipin1Myf5cKO mice. As shown
in Fig. 2A, lipin1 was expressed in the control WT mice
but depleted in Lipin1Myf5cKO mice. We also measured
the protein expression levels of Myf5, MyoD and MEF2c
in GAS and TA muscles of Lipin1Myf5cKO and control
mice. Although lipin1 was depleted in Myf5-expression
progenitor cells, the expression level of Myf5 was not
affected. Interestingly, the expression levels of MyoD and
MEF2c were reduced by �48% and 60%, respectively, in
GAS and TA muscle of Lipin1Myf5cKO mice compared to
the control group (Fig. 2B). We also measured mRNA
expression levels, which were consistently decreased,
whereas the mRNA expression levels of Myf5 were not
(Fig. 2C).

Lipin1 deficiency diminishes PKC activation

Lipin1 catalyses diacylglycerol (DAG) biosynthesis (Han
et al. 2006). Overexpression of lipin1 increases cellular
DAG, whereas a deficiency contributes to decreased DAG
(Ren et al. 2010). DAG can recruit and activate a variety
of downstream effector molecules by phosphorylation,
including PKCμ (renamed as protein kinase D; PKD) and
other PKC isoforms, including classical (PKCα, PKCβI,
PKCβII and PKCγ) and novel (PKCδ, PKCε, PKCη and
PKCθ) isoforms (Brose et al. 2004; Toker, 2005; Gallegos
& Newton, 2008; Schmitz-Peiffer & Biden, 2008; Newton,
2009; Leonard & Hurley, 2011). PKC activation has been
suggested to be involved in MyoD expression, although
the detailed mechanisms of its action are unknown
(Brunelli et al. 2007). To investigate whether any particular
isoform was specifically implicated in the signalling
mechanisms by which lipin1 deficiency induces its myo-
genesis defects, we assessed the activation of conventional
PKCα and novel θ isoforms, as well as PKCμ and PKA,
in the GAS and TA muscle of WT vs. Lipin1Myf5cKO

mice. The activation of PKC isoforms was measured by
performing western blotting using antibodies directed
against the phosphorylated proteins. As shown in Fig. 3,
both phosphorylated PKCμ at Ser744/748 decreased by
more than 70%, and PKCα at Ser657 reduced by 63%, in
GAS and TA muscle, suggesting an inhibition of PKCμ
and PKCα activation in the SM of Lipin1Myf5cKO mice.
Phosphorylated novel PKCθ isoform was also reduced by
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(Myf5 and MyoD) and of myogenic enhancer factor (MEF2c) in GAS and TA muscles of 3-month-old WT and
Lipin1Myf5cKO mice. Unless otherwise indicated, data are from one representative (n = 3) of at least three
independent experiments (∗P < 0.05; ∗∗P < 0.01 Student’s t test).
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40% in the TA muscle of Lipin1Myf5cKO mice compared to
WT mice. By contrast, total levels of PKA and PKC did not
exhibit significant differences.

Lipin1 is required for myoblast differentiation in cell
culture

To clarify the role of lipin1 in the myoblast differentiation
process, we knocked down lipin1 expression in C2C12
cells using adenovirus-driven shRNA against the Lpin1
gene and evaluated the effect of lipin1 deficiency on myo-
blast differentiation at days 0, 4 and 6 after differentiation
treatment. At day 6 post-differentiation treatment, we
fixed the differentiated cells and examined myotube
formation using Mf20 immunostaining to detect myosin
heavy chain-positive myotubes. We found that lipin1
deficiency in C2C12 myoblasts induced a significantly
reduced myoblast differentiation and myotube formation
compared to shLacZ-treated cells (Fig. 4A). Consistently,
the lipin1 shRNA-treated myotubes had a reduced fusion
index, which is calculated as the percentage of nuclei
contained in myosin-positive myotubes. This index was
reduced from 49% to 30% in shRNA-treated myotubes
compared to the control (Fig. 4B). This is consistent
with a previous study in which we revealed that lipin1
is required for myoblast differentiation using lipin1
depleted myoblasts and primary myoblasts (Jiang et al.
2015).

We also examined the expression levels of myo-
genic regulatory proteins after differentiation treatment
(Fig. 4C–D). The expression level of Myf5 was not altered,
although MyoD and MEF2c were dramatically reduced

at day 6 after differentiation treatment. PKCμ activation
indicated by phosphorylated PKCμ levels was reduced by
60% at day 6. In addition, the expression levels of the myo-
genic transcriptional factor, MyoD, were also decreased by
75% at day 6 after differentiation treatment. These results
are consistent with our findings obtained in vivo and
confirm that lipin1 is essential for effective differentiation
during the early-stage myogenesis.

Inhibition of PKCμ activity suppresses myoblast
differentiation by inhibiting MyoD and MEF2c
expression in vitro

Next, we determined whether PKCμ activity is required
for MyoD and MEF2 expression during myogenesis.
C2C12 cells were differentiated for 6 days by fetal bovine
serum withdrawal in the presence of CID755673 to
selectively inhibit PKCμ activity. As shown in Fig. 5A,
treatment with CID755673 reduced the degree of C2C12
differentiation, as indicated by visualizing MHC-positive
myotubes detected by Mf20 immunostaining (Fig. 5A).
The fusion index, which is calculated by the percentage
of nuclei inside the myotube, was decreased from 50%
to 31% after CID755673 treatment (Fig. 5B). To assess
whether myogenesis was regulated by the activation of
PKC, myoblasts were shifted from a growth medium
to a differentiation medium (DMEM containing 2%
horse serum) and differentiation was examined at days
0, 4 and 6. The phosphorylation of PKCu, MyoD and
MEF2c expression in differentiated myoblasts was reduced
by 70%, 75% and 63%, respectively, at day 6 after
differentiation treatment (Fig. 5C–D).
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Figure 5. Inhibition of PKCμ activity suppresses myoblast differentiation by inhibiting MyoD and MEF2c
expression in vitro
C2C12 myoblasts were treated with PKCμ inhibitor, CID 755673, for 6 days, and subjected to myoblast
differentiation. Six days after differentiation, cells were fixed and stained with Mf20 and DAPI (scale bars = 50 μm)
(A) and the fusion index was calculated (B). C, cell lysate was harvested, and protein expression was measured
by western blot. D, protein expression levels in (C) were quantified by densitometric analysis and normalized to
β-actin. ∗∗P < 0.01.
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Lipin1 deficiency decreases MEF2 and MyoD by
inhibiting the nuclear export of HDAC5

MyoD and MEF2c have been reported to interact with
each other via their DNA-binding and dimerization motifs
to synergistically activate transcription and myogenic
programing (Kaushal et al. 1994; Molkentin et al. 1995;
Molkentin et al. 1996; Black et al. 1998). The MEF2c
protein also interacts with the class II deacetylase, HDAC5,
resulting in the repression of MEF2c-dependent genes (Lu
et al. 2000a). The release of MEF2c from repression by
HDAC5 is controlled by the nuclear export of HDAC5,
which can be regulated by CaMK (Ginnan et al. 2012),
protein kinase A (Ha et al. 2010) and salt inducible
kinase (Takemori et al. 2009). Because MyoD–MEF2c
interaction and activation require the nuclear export of
Class II HDAC to release the suppression function, we also

examined the protein expression of HDAC5. As shown
in Fig. 6A, we did not observe any obvious differences
in the expression levels of total HDAC5, although the
phosphorylated HDAC5 was substantially suppressed in
the SM of Lipin1Myf5cKO mice. To further confirm our
observation in tissue samples, we measured HDAC5 and
phosphorylated HDAC5 expression levels in CID755673
treated differentiated C2C12 as shown in Fig. 5. As a
result of a low transfection efficiency in myoblasts, we
used Cos7 cells for this experiment. We consider that
the overexpression of the indicated plasmids in C2C12
myoblasts should have a similar effect in Cos7 cells. PKCμ
suppression consistently did not alter protein expression
levels of the total HDAC5, although it inhibited its
phosphorylated form, suggesting that PKCμ activation
is required during myogenesis to translocate HDAC5
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Figure 6. Lipin1 regulates HDAC5 nuclear
export by activation of PKCμ

A, western blot of HDAC5 and phosphorylated
HDAC5 (Ser259) in the GAS and TA muscle of WT
and Lipin1Myf5cKO mice. B, C2C12 myoblasts were
treated with CID 755673 for 6 days and subjected
to myoblast differentiation. Six days after
differentiation, cell lysate was harvested, the
protein expression levels of HDAC5 and
phosphorylated HDAC5 were measured by western
blotting. C, Cos7 cells were transfected with either
HDAC5-GFP or along with lipin1-HA, catalytic
mutant lipin1-D712A-HA or PKCμ-HA. Cells were
fixed 24 h after transfection, and subcellular
localization of lipin1 and HDAC5 were examined by
anti-HA (red), anti-GFP (green) antibodies. Nuclei
were detected by DAPI (blue). Co-localization of
HDAC5 and lipin1 or PKCμ was determined. Scale
bars = 50 μm. D, cells co-transfected with
HDAC5-GFP and lipin1-HA were treated with either
selective PKCμ inhibitor, CID755673 or a pan-PKC
inhibitor against for PKCα, PKCβ and PKCγ

isoforms, Go 6976. After treatment for 6 h, the
subcellular localization of lipin1 and HDAC5 was
evaluated by immunostaining using anti-HA and
anti-GFP antibodies. E, a model for regulating
HDAC5 nuclear export.
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from the nucleus to release its transcriptional repressor
function.

We next examined the subcellular localization of
HDAC5 and found that overexpressed HDAC5 was
almost exclusively localized in the nucleus (Fig. 6C).
Interestingly, co-overexpression of lipin1 and HDAC5
induced HDAC5 nuclear export. HDAC5 nuclear export
was dependent on lipin1 catalytic activity because the
catalytic inactive mutant, D712A, lost its capability to
induce HDAC5 nuclear translocation. Co-transfection
of PKCμ with HDAC5 also induced HDAC5 nuclear
export. Selective PKCμ inhibitor, CID755673, inhibited
HDAC5 nuclear export in the presence of lipin1 (Fig 6D).
Interestingly, inhibition of Ca2+-dependent isoforms of
PKC (PKCα, PKCβ and PKCγ) by Go 6976 (Guh et al.
1998) failed to inhibit HDAC5 nuclear export in the pre-
sence of lipin1, suggesting that lipin1 regulates HDAC5
nuclear export via the activation of PKCμ. These results
suggest that PKCμ-mediated phosphorylation of class IIa
HDACs is required to release the suppression function of

MEF2 transcription to activate genes that govern muscle
differentiation and growth (Fig 6E). Lipin1 deficiency
failed to induce HDAC5 nuclear export that releases
the inhibition function of HDAC5 to MEF2c via PKCμ
activity.

Restoring DAG-mediated signalling response by
phorbol 12-myristate 13-acetate (PMA) treatment
transiently activated PKCμ/HDAC5 and upregulated
MEF2c expression

PMA, an analogue of DAG, activates PKC by mimicking
the activating ligand DAG (Way et al. 2000). To assess
whether restoration of DAG-mediated signalling could
alter HDAC5 subcellular localization, we treated cells
transfected with HDAC5 with 10 μM PMA for 30 min,
and then evaluated the HDAC5 subcellular localization
(Fig. 7A). We found that PMA treatment drives HDAC5
subcellular translocation from the nucleus to cytoplasm.
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Figure 7. PMA treatment activates PKC/HDAC5 and promotes the upregulation of MEF2c
A, Cos7 cells transfected with HDAC5 treated with/without PKC agonist, PMA, for 30 min. Subcellular localization
of HDAC5 was examined by immunostaining (scale bars = 50 μm). B, lipin1 deficient C2C12 myoblasts were
subjected to myogenic differentiation for 6 days followed by PMA treatment for 0 min, 30 min, 2 h, 6 h and 24 h.
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point (0 min). Data were from three independent experiments. ∗P < 0.05.
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To evaluate whether restoring DAG-mediated PKC
activation could rescue myoblast differentiation defect
induced by lipin1-deficiency, lipin1 deficient myoblasts
were subjected to myogenic differentiation for 6 days.
Cells were then treated with 10 μM of PMA for 0 min,
30 min, 2 h, 6 h and 24 h. After treatment, the
activation of PKCμ and HDAC5 and the expression level
of MEF2c were assessed (Fig. 7B and C). We found that
PKCμ and HDAC5 were activated after 30 min of PMA
treatment. However, the activation of PKCμ and HDAC5
was terminated immediately after 30 min of treatment,
as indicated by downregulation of phospho-PKCμ and
phosphor-HDAC5 and MEF2c, and it returned to base-
line levels 24 h later. Moreover, the expression of MEF2c
was upregulated at 2 and 6 h of PMA treatment, most
probably as a result of translational delay, returning to
basal levels by 24 h.

Discussion

The present study suggests that lipin1 plays a critical role
in SM development (Fig. 8). Lipin1 deficiency resulted
in reduced SM mass by suppressing the activity of
PKCμ, which is required for regulating HDAC5 nuclear-
cytoplasmic shuttling. HDAC5 phosphorylation-induced
cytoplasm translocation may release the suppression
function of MEF2c and activate MEF2c and MyoD
expression, resulting in myoblast differentiation in vitro.

In the present study, we found that the absence
of lipin1 resulted in inhibited myoblast differentiation
in vitro. The observed reduction was associated with
the inhibition of phosphorylation/activation of PKCμ.
PKCμ selective inhibitor treatment suppressed MyoD
and MEF2c expression in vitro (Fig. 5) and inhibited
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Activation of myogenesis
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PP

Figure 8. Lipin1 in SM differentiation
Lipin1 is suggested to play a critical role in SM development

lipin1- mediated HDAC5 nucleo-cytoplasmic trans-
location (Fig. 6), suggesting that lipin1 regulates myo-
genesis mainly by activation of PKCμ. Our results are
consistent with a previous study showing that PKCμ
(PKD2) depletion by shRNAs inhibits C2C12 myoblast
differentiation in vitro, and the ectopic expression of PKCμ
increases myogenic differentiation (Kleger et al. 2011). We
cannot rule out that other PKC isoforms, including PKCα
and θ, may also play an important role in myogenesis.
Capiati et al. (1999) reported that PKCα promote chick
myoblast differentiation. Additional studies using isoform
specific inhibitors or their specific shRNA are needed to
comprehensively evaluate the role of PKC in myogenesis.

MyoD is a master regulator of skeletal myogenesis.
Overexpression of MyoD in mouse embryonic fibroblasts
converts cells into SM (Yao et al. 2013) and MyoD
deficiency suppresses myoblast differentiation potential
(Sabourin et al. 1999). The activation of MyoD is
dependent on its association with members of the MEF2
family of transcription factors. SM-specific deletion of
MEF2c isoform in mice results in disorganized myo-
fibres and perinatal lethality demonstrating a critical role
of MEF2 proteins in SM development (Potthoff et al.
2007). By contrast, neither MEF2a, nor MEF2d isoform
is required for normal SM development in vivo. The
combinatorial activity of MyoD and MEF2c transcription
factors promotes the expression of myogenic genes
during the transition from undifferentiated myoblasts to
differentiated myotubes (Lu et al. 2000b). Our results
suggest that a lipin1 deficiency induces decreased MEF2c
and MyoD expression, and also that their respective
expression impacts upon each other. Although pre-
vious work suggests that MyoD and MEF2c interact
during skeletal myogenesis throughout the DNA binding
domains (Tapscott, 2005; Potthoff & Olson, 2007), further
research is needed to understand how they participate
in a regulatory loop by inducing and maintaining the
expression of each other during skeletal myogenesis.

We found that lipin1 regulates MEF2c expression by the
manipulation of HDAC5 nuclear export. Lipin1 regulates
phosphorylated-associated HDAC5 nucleocytoplasmic
trafficking depending on its catalytic activity because
the lipin1 inactive mutant D712A lost its capacity to
mediate HDAC5 nuclear export. In the present study,
treatment with the PKC agonist, PMA, also promoted
HDAC5 nuclear export. Treatment with specific PKCμ
inhibitor, CID755673, blocked HDAC5 nuclear export
in the presence of lipin1, whereas treatment with a
pan-PKC inhibitor against for PKCα, PKCβ and PKCγ
isoforms failed to block HDAC5 nuclear export induced
by lipin1. Based on our findings, we propose that
lipin1 regulates HDAC5 nucleocytoplasmic trafficking via
DAG/PKCμ. In the nucleus, HDAC5 binds to MEF2c via
the HDAC-interaction domain and represses its activity
(Lemercier et al. 2000). During myogenesis, MEF2c
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repression is relieved in response to phosphorylation-
induced translocation of HDAC5 to the cytoplasm.
Therefore, lipin1 deficiency increases nuclear-localized
HDAC5 and represses MEF2 expression. HDAC7 has also
been reported to affect MEF2c transcriptional function
(Dressel et al. 2001). Further studies will be conducted to
examine the role of lipin1 on HDAC7 expression. A pre-
vious study also suggested that lipin1 could directly inter-
act with MEF2c (Liu & Gerace, 2009). It is also possible
that, in addition to activating MEF2c via the DAG/HDAC5
mediated pathway, lipin1 may also be able to activate
MEF2c via its transcriptional regulation. The nuclear
transcription regulation of MEF2c by lipin1 requires
further investigation.

We also explored whether restoration of DAG by
treating cells with PMA could rescue the myoblast
differentiation defect in lipin1 deficient cells. We found
that PMA treatment can activate PKCμ and HDAC5,
in turn upregulating MEF2c expression. However, PKCμ
and HDAC5 activation by PMA was rapid and transient,
showing a robust activation at 30 min and returning to
baseline by 24 h. PKCμ activation requires membrane
recruitment by DAG and other PKC isoforms for its
catalytic activity. PKCμ has to be phosphorylated by novel
PKC isoforms within its activation loop at Ser744 and
Ser748 to promote its activity (Brandlin et al. 2002; Yuan
et al. 2002). The phosphorylated and activated PKCμ
dissociates from the plasma membrane, translocates to
the cytosol, and subsequently enters into the nucleus
to activate HDAC5. The activation of PKCμ has been
suggested to be sustained for a few hours once it leaves the
membrane and is dependent on its phosphorylation status
(Matthews et al. 2000). An ubiquitin E3 ligase, RINCK, has
been reported to be able to bind the C1 domain of PKC
and lead to the ubiquitination and degradation of PKCs
(Chen et al. 2007). However, the detailed mechanisms that
govern the termination of the cellular action of PKCμ, as
well as how PKCμ is regulated spatially and temporally in
biological systems, are largely unknown and remain to be
determined.

In summary, we identified an essential role of lipin1
in regulating SM development via the activation of
PKC, which regulates MyoD and MEF2c expression by
manipulating HDAC5 nuclear export. Because patients
with a lipin1 deficiency are associated with severe
rhabdomyolysis and muscle atrophy in type 2 muscle
fibres, the regulatory circuitry identified in the present
study provides an insight into how the dysfunction of
lipin1 causes muscle rhabdomyolysis.
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