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pAKT pathway activation is associated with PIK3CA
mutations and good prognosis in luminal breast cancer
in contrast to p-mTOR pathway activation
Amir Sonnenblick 1, David Venet2, Sylvain Brohée2, Noam Pondé2 and Christos Sotiriou2

Numerous studies have focused on the PI3K/AKT/mTOR pathway in estrogen receptor positive (ER) breast cancer (BC), as a linear
signal transduction pathway and reported its association with worse clinical outcomes. We developed gene signatures that reflect
the level of expression of phosphorylated-Serine473-AKT (pAKT) and phosphorylated-Serine2448-mTOR (p-mTOR) separately,
capturing their corresponding level of pathway activation. Our analysis revealed that the pAKT pathway activation was associated
with luminal A BC while the p-mTOR pathway activation was more associated with luminal B BC (Kruskal–Wallis test p < 10−10).
pAKT pathway activation was significantly associated with better outcomes (multivariable HR, 0.79; 95%CI, 0.74–0.85; p= 2.5 ×
10−10) and PIK3CA mutations (p= 0.0001) whereas p-mTOR pathway activation showed worse outcomes (multivariable HR,1.1; 95%
CI, 1.1–1.2; p= 9.9 × 10−4) and associated with p53 mutations (p= 0.04). in conclusion, our data show that pAKT and p-mTOR
pathway activation have differing impact on prognosis and suggest that they are not linearly connected in luminal breast cancers.
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INTRODUCTION
The phosphatidylinositol 3-kinase (PI3K)/AKT/mTOR-signaling
pathway mediates key cellular functions, including growth,
proliferation, and survival and is frequently involved in carcino-
genesis, tumor progression, and metastases.1 Numerous studies
have focused on the PI3K/AKT/mTOR pathway in estrogen
receptor positive (ER-positive) breast cancer (BC) and have shown
that PIK3CA mutations are frequent, that the PI3K/AKT/mTOR-
signaling pathway is often dysregulated and that both correlate
with worse clinical outcomes.2–4 As a consequence, a large
number of drugs targeting the various components of this
pathway have been developed.5 Everolimus (an mTOR inhibitor)
is currently the only approved drug targeting mTOR based on the
results of the BOLERO-2 trial.6

While AKT is activated by phospholipid binding and activation
loop phosphorylation at Threonine308 by PDK1 and by phosphor-
ylation within the carboxy terminus at Serine473, mTOR is
phosphorylated at Serine2448 via the PI3K-signaling pathway.7

AKT activates the mTOR complex 1 (mTORC1) which in addition to
mTOR contains mLST8, PRAS40, and RAPTOR.8 This activation
involves phosphorylation of tuberous sclerosis complex 2 (TSC2),
which blocks the ability of TSC2 to act as a GTPase-activating
protein, thereby allowing accumulation of Rheb-GTP and mTORC1
activation. AKT can also activate mTORC1 by PRAS40 phosphor-
ylation, thereby relieving the PRAS40-mediated inhibition of
mTORC1.9

The PI3K/AKT/mTOR pathway is usually considered as a linear
signal transduction pathway in BC, however in the ER-positive
disease, we have previously shown that PIK3CA mutations were
associated with relatively low mTORC1 functional output and with
good outcomes in patients who received adjuvant tamoxifen

monotherapy.4 Therefore, to gain better insight into the relative
contribution of each of the signaling pathways which lie down-
stream to PI3K (namely AKT and mTOR) to BC outcomes, we have
developed a novel in silico approach which assessed the
activation of each of these signaling pathways separately, by
integrating reverse phase protein array (RPPA) and matched gene
expression.

RESULTS
pAKT pathway activated and p-mTOR pathway activated ER-
positive early BCs are associated with distinct and exclusive gene
expression profiles
We first derived two distinct signatures whose expression levels
could predict AKT and mTOR pathway activation through pAKT
and p-mTOR RPPA levels by computing the differentially
expressed genes between tumor samples with high and low
RPPA levels of pAKT (respectively, activated and inactivated AKT
pathway) and p-mTOR proteins (respectively, activated and
inactivated mTOR pathway), using ER-positive tumors from the
TCGA repository. It is important to note that the two signatures
did not share any common genes (Fig. 1a). We next sought to
assess their biological and clinical relevance in BC. Firstly, we
compared both signatures to the reference classes of the Gene
Ontology and the mSigDB signatures repositories using the Broad
Institute site.10 This showed that the pAKT signature was
significantly enriched in genes up-regulated in less aggressive
invasive BC tumors (e.g. grade 1 vs. grade 311; fdr= 2 × 10−27). In
contrast, the p-mTOR signature was enriched in genes expressed
in mammary stem cells and more aggressive luminal B cancers11,12

(fdr= 2 × 10−7, fdr= 3 × 10−5, respectively). A network clustering

Received: 27 May 2018 Accepted: 8 January 2019

1Oncology Division, Tel Aviv Sourasky Medical Center, and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel and 2Breast Cancer Translational Research Laboratory,
Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
Correspondence: Amir Sonnenblick (amirsonn@gmail.com) or Christos Sotiriou (christos.sotiriou@bordet.be)

www.nature.com/npjbcancer

Published in partnership with the Breast Cancer Research Foundation

http://orcid.org/0000-0003-1954-4633
http://orcid.org/0000-0003-1954-4633
http://orcid.org/0000-0003-1954-4633
http://orcid.org/0000-0003-1954-4633
http://orcid.org/0000-0003-1954-4633
https://doi.org/10.1038/s41523-019-0102-1
mailto:amirsonn@gmail.com
mailto:christos.sotiriou@bordet.be
www.nature.com/npjbcancer


analysis using the pAKT and p-mTOR signatures, as well as other
RPPA-derived signatures that demonstrated a significant intersec-
tion with them, identified two main sub-networks according
mainly to their proliferation status, namely pAKT-high/p-mTOR-
low and pAKT-low/p-mTOR high characterized with low and high
proliferation levels, respectively (Fig. 1b). These observations were
confirmed when analyzing the TCGA RPPA dataset (Figs. 1c and
S1). AKT pathway was more often activated (elevated pAKT
expression) in luminal A cancers whereas mTOR pathway was
more often activated (elevated p-mTOR and pS6, an mTOR
downstream target), in luminal B subtypes (Figs. 1c and S2). Next,
we sought to determine how the pAKT and p-mTOR signatures
correlate with other signatures and RPPA markers of the pathway.
As shown in Fig. S3, the pAKT signature negatively correlates with
downstream effectors of the pathway while the p-mTOR signature
positively correlates with them.
Altogether, these results demonstrate that the pAKT and p-

mTOR pathways, assessed through these RPPA-based gene
expression signatures, have exclusive distribution according to
luminal molecular subtypes and are not necessarily linearly
connected.

Association of the pAKT and p-mTOR pathway activation with
clinical outcome in patients with ER-positive early BC
To ascertain the impact of each pathway on outcomes in ER-
positive BC, we applied the pAKT and p-mTOR signatures on a
dataset composed of 38 publicly available microarray datasets. We
first assessed whether pAKT or p-mTOR pathway activation were
associated with any particular luminal subtype. As expected, in the
pooled set analysis pAKT pathway activation was significantly
associated will luminal A cancers (p < 10−10) whereas p-mTOR
pathway activation was associated with luminal B cancers (p <

10−10) (Fig. 2). We next assessed whether pAKT and p-mTOR
pathway activation were correlated with outcomes (RFS) in ER-
positive patients with relapse data available. As shown in Figs. 3
and 5, pAKT pathway activation was significantly associated with
better outcomes in all luminal patients (multivariable HR, 0.79;
95% CI, 0.74–0.85; p= 2.5 × 10−10). Similar results were obtained
with a dataset consisting of patients treated with endocrine
therapy only (multivariable HR, 0.82; 95% CI, 0.73–0.93; p= 0.002).
Indeed, patients with pAKT pathway activation had better
outcomes irrespective of their specific subtype (luminal A multi-
variable HR, 0.85; 95% CI, 0.75–0.96; p= 0.01; luminal B HR, 0.91;
95% CI, 0.83–0.99; p= 0.033). In contrast, patients with p-mTOR
pathway activation had significantly worse outcomes in all luminal
patients (multivariable HR, 1.1; 95% CI, 1.1–1.2; p= 9.9 × 10−4) and
this remained true when tested in the dataset consisting of
patients treated with endocrine therapy only (multivariable HR,
1.2; 95% CI, 1.1–1.4; p= 0.004) (Figs. 4 and 5).
Next, we assessed the association between the PIK3CA and P53

mutation status and pAKT and p-mTOR pathway activation in an
independent set, namely the TCGA BC patients with RNA-
sequence gene expression data that were not used to design
the signatures. While the pAKT signature was associated with
PIK3CA mutations (p= 0.0001), the p-mTOR signature was not
(p= 0.22) (Fig. 6a, b). The opposite was true for P53 mutations,
which were positively correlated with p-mTOR pathway activation
(p= 0.04), and negatively correlated with pAKT (p= 0.0003)
(Fig. 6i, j). Analysis of the PIK3CA mutations by exon led to similar
results (Fig. 6), although mutations outside of exons 9 and
20 seemed less associated with pAKT pathway activation.
Finally, in an effort to identify whether these signatures could

predicts response to mTOR inhibitors, we evaluated another data
set of neo-adjuvant patients treated with Everolimus.13 Analysis of

Fig. 1 pAKT and p-mTOR signatures derived from the TCGA. a Venn diagram shows no intersection between the pAKT and p-mTOR gene
signatures. b Network representation of the gene signatures. Each node represents the genes up-regulated or down-regulated in the
signature. Edges show signatures sharing a significant number of genes. Network clustering shows the tendency of these signatures to cluster
together according to their proliferation status. c Integrated analysis of the PIK3CA/pAKT/m-TOR pathway in the TCGA. Luminal breast cancer
subtypes differ by pAKT and p-mTOR activity. The panel includes a protein-based (RPPA) proteomic status. Tumors were ordered first by mRNA
subtype (luminal A versus B). P values were calculated using the Mann–Whitney test
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Fig. 3 High pAKT gene signature expression is associated with good prognosis in the luminal subtype. a–f We assessed the prognostic value
of tertiles of pAKT gene signature expression in: a all luminal patients treated or not treated (n= 3073), b luminal A (n= 1491), c Luminal B
(n= 1582), d all luminal treated with only hormonal therapy (n= 1180), e luminal A treated with only hormonal therapy (n= 491), and
f luminal B treated with only hormonal therapy (n= 689). Significance (p-value) of differences in survival between patient groups defined by
tertiles of pAKT signature expression is estimated by log-rank test. The analysis presented includes patients with lymph node-negative and
lymph node-positive cancers

Fig. 2 pAKT (right) and p-mTOR (left) gene signatures expression in publicly available microarray datasets according to the PAM50 breast
cancer subtype. Kruskal–Wallis p-value is shown
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the correlations between the effectiveness of this treatment and
the developed signatures suggests as expected that the pAKT
signature is associated with less response to Everolimus (r= 0.45;
p= 0.031, Fig. S4).
Overall, our data suggests that pAKT and p-mTOR pathway

activation as assessed through the respective signatures, despite
being major components of the same overarching pathway (PI3K),
have distinctly different impacts on disease biology and conse-
quently on outcomes in early disease.

DISCUSSION
The goal of the present study was to better understand the
distinct contribution to disease biology and clinical outcomes of
signaling through the AKT and mTOR downstream pathways,
which typically occur as part of PI3K pathway activation in luminal
BCs. We found that pAKT and p-mTOR were differentially
expressed according to luminal subtypes, implying different
degrees of pathway activation, and that, more importantly, the
pathways were not linearly connected. Additionally, we found that
pAKT pathway activation was positively associated with PIK3CA
mutations whereas the opposite was observed with p-mTOR
pathway activation. In contrast, pAKT pathway activation was
associated with good clinical outcome despite its known

tumorigenic effects. Between 30% and 40% of BCs, especially
ER-positive tumors, have mutations in PIK3CA.14 The vast majority
of the PIK3CA mutations are missense mutations which are
positioned in the helical domain (exon 9, mostly: E545K and
E542K) and the kinase domain (exon 20, mostly H1047R) in
hotspot clusters.15 These mutations have direct effect on AKT
phosphorylation. The effect of PIK3CA mutations/pAKT on prog-
nosis is mixed in early BC.16 We found that exons 9 and 20
mutations in PIK3CA were more associated with pAKT than
mutations in other exons.
We previously reported that PIK3CA mutations were associated

with improved outcome and low levels of signaling through the
mTOR pathway in BC.4,17 Several possible hypotheses were raised
regarding the reasons for this. Some data available on PP2A and
PML, both known to have an inhibitory effect on both AKT and
mTOR,18,19 have suggested that they may be upregulated in
PIK3CA-activated tumors. Negative feedback regulation in PI3K-
mediated cells through the insulin receptor substrate20 and
relatively weak pathway activation in PIK3CA-mutated cancers
have also been suggested as possible explanations for low levels
of signaling through mTOR in ER-positive BC.
According to our findings only pAKT pathway activation was

found to be significantly different between the luminal subtypes
(A and B) and PIK3CA wildtype versus mutant, whereas p-mTOR

Fig. 4 High p-mTOR gene signature expression is associated with bad prognosis in the luminal subtype. a–fWe assessed the prognostic value
of tertiles of p-mTOR gene signature expression in: a all luminal patients treated or not treated (n= 3073), b luminal A (n= 1491), c Luminal B
(n= 1582), d all luminal treated with only hormonal therapy (n= 1180), e luminal A treated with only hormonal therapy (n= 491), and f
luminal B treated with only hormonal therapy (n= 689). Significance (p values) of differences in survival between patient groups defined by
tertiles of p-mTOR signature expression is estimated by log-rank test. The analysis presented includes patients with lymph node-negative and
lymph node-positive cancers
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pathway activation was not significant for both. The inconclusive
and relative activation of p-mTOR by the mutant PIK3CA may be
also attributed to the different roles and activators of mTOR and
the fact that mTOR is at the cross section of multiple signaling
pathways. Several studies have clearly demonstrated that mTOR is
a direct substrate for the AKT kinase and identified Serine2448 as
the AKT target site in mTOR.21 However, additional studies have
demonstrated that rapamycin, an inhibitor of mTOR function,
blocks serum-stimulated Serine2448 phosphorylation of mTOR in
an AKT-independent manner and identified S6 kinase as a major
effector of mTOR phosphorylation at Serine2448.22 Indeed, our
analysis of the TCGA data shows that the S6 kinase (downstream
of mTOR) is associated with luminal B and P53 mutations
suggesting that while mTOR itself is at the cross section of
conflicting pathways its downstream targets are not PIK3CA
dependent. In addition, there are alternative kinases that can
activate the mTOR pathway independently of AKT, such as RSK
which leads to phosphorylation of TSC resulting in increased
mTOR signaling and the PDK1–SGK1 axis that can sustain mTOR
activity upon AKT suppression.23–25

The primary TCGA report, which investigated all BC subtypes,26

confirmed a high frequency of PIK3CA mutations in luminal BC.
Multiple platforms, which examined the relationship between
PIK3CA mutation and protein expression, have demonstrated that
pAKT and pS6 were not elevated in PIK3CA-mutated luminal
cancers; instead, they were highly expressed in basal-like and
HER2 subtypes. Our dataset, which is restricted to luminal cancers,
demonstrated that pAKT pathway activation is associated with

luminal A/PIK3CA mutations and good prognosis, while p-mTOR/
pS6 is not, suggesting that the presence of HER2 and basal
subtype in the primary analysis of the TCGA masked these
observations.
In conclusion our data suggest that the AKT and mTOR

pathways are not linearly connected in luminal BCs. pAKT pathway
activation is associated with PIK3CA mutations, luminal A and
good prognosis, while p-mTOR pathway activation is associated
with luminal B, P53 mutations, and bad prognosis. These results
may have important clinical implications considering that in low p-
mTOR BCs, treatment with mTOR inhibitors, such as everolimus,
which is highly toxic, will possibly be of lower value since the
pathway is not activated. Additionally, pAKT pathway activation,
as measured through our gene signature, can add to presently
used outcome prediction tools in both luminal A and luminal B
tumors.

METHODS
Computation of RPPAs-based signatures
We downloaded clinic-pathological, normalized gene expression and RPPA
data from the publicly available TCGA repository using its online
bioinformatics tools26 (Fig. S1 flow chart). ER-positive early BCs were
analyzed based on the RPPA proteomic levels. 265 samples with available
gene expression and RPPA data were considered as luminal (166 Luminal A
and 99 Luminal B according to PAM50 computed on the cBioPortal
website27). To identify the genes that were differentially expressed
between the low and high expression groups, and to find the genes that
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Fig. 5 Forest plots showing the hazard ratios of the recurrence free survival of pAKT and p-mTOR gene signatures treated as a continuous
variable using Cox univariate a and multivariable analysis b, in the pooled analysis. For multivariate analysis, we considered the following
variables: age, tumor size, grade, and nodal status. Signatures with nominal significant effect (p < 0.05) are shown in blue
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would optimize the predictive power of our signatures, we used a machine
learning approach as previously described.28 After this process, we were
left with 69 signatures (Supplementary Data) presenting a relevant AUC for
proteomic status prediction. Among others, p-mTOR achieved an AUC of
0.71 (p ~ 10−6) and pAKT an AUC of 0.77 (p ~ 10−11) in both luminal A and
B cancers.

Code availability
The expression levels of the signatures in the gene expression datasets
were computed as previously described.28 In brief, we evaluated using a
nested 10-fold cross validation the maximal Benjamini–Hochberg false
discovery rate and the minimal gene fold change that would optimize the
ability of the differentially expressed genes to predict the high/low status
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Fig. 6 Expression of pAKT (a, c, e, g, i) and p-mTOR (b–d, f, h, j) gene signatures levels in PIK3CA (all, exon9, exon20 or others) and P53mutated
and wild type samples in an independent RNA sequencing set (n= 309)
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of the RPPA in luminal A and B patients together and separately. While the
parameters were selected in a 10-fold cross validation, the procedure itself
was assessed using a nested cross validation. All analyses were performed
using the genefu package of the R (v3.2)/bioconductor (v1.18) statistical
suite.

Network analysis and clustering
Network analysis and clustering was performed as previously described.28

The MCL graph clustering algorithm29 was applied. Visualization of the
network has been rendered using the yED software.

Gene-expression data and statistical analyses
We analyzed 38 gene expression datasets totaling more than 7000 tumors
(detailed in Table 1). To ensure comparability of expression values across
multiple data sets, a 0.95 quantile normalization was performed.
Differences in expression of pAKT and p-mTOR signatures according to
subtype were examined using the Kruskal–Wallis test. Survival outcome
data are presented as recurrence free survival (RFS). Survival plots
according to the pAKT and p-mTOR signatures tertiles were drawn using
the Kaplan–Meier method. Association of the signatures (i.e. pathway
activation) with good or bad outcomes were computed using uni-variate
or multi-variate Cox regression analyses and data were presented as forest
plots. For multivariate analysis, we considered the following variables: age,
tumor size, grade, and nodal status. To assess the correlation between the
PIK3CA mutation status and AKT and p-mTOR gene pathway activation, as
represented by the gene signature scores, we analyzed the TCGA cohort of
RNA sequenced data that was not used for the computation of the
signatures (309 samples), and for which both mutational and gene
expression data were available. Each sample was considered as mutated or
not (so a sample with four mutations was considered just like a sample
with one mutation). All mutations were taken into account. PIK3CA
mutations were also analyzed by specific exons (exons 9, 20, and all others
grouped together).

Reporting summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
The sources and locations for the 38 gene expression datasets analyzed during the
current study are available in Table 1 and the figshare repository https://doi.org/
10.6084/m9.figshare.7461776.30
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