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Small changes in synaptic gain lead 
to seizure-like activity in neuronal 
network at criticality
Jiaxin Du   , Viktor Vegh & David C. Reutens

Epilepsy is a neurological disorder characterised by spontaneous recurrent seizures. The mechanisms 
by which multiple molecular and cellular changes lead to seizures is not well understood. Here, we 
study cortical seizure generation by simulating the activity of neuron groups in a network using the 
laminar cortex model. We identified a clear boundary between low-amplitude, asynchronous activity 
and high-amplitude, rhythmic activity, around which small changes in excitatory synaptic gain led 
to strong oscillatory activity. Neuron groups only responded significantly to stimulation around the 
boundary. The consequences of biophysical changes induced by epilepsy-related SCN1A mutations 
were also examined. Marked reduction in neuronal inhibition, as caused by mutations underlying 
Dravet syndrome, invariably led to strong neuronal firing, whereas small reductions in inhibition could 
cause significant changes when the network was poised close to the boundary. The study highlights the 
critical role of network dynamics in seizure genesis.

Recurrent spontaneous seizures, which are characterised by hyper-synchronous neuronal discharges1,2, are a 
defining feature of epilepsy. This disorder affects about 50 million people globally3, and in about 30%, seizures 
remain refractory to antiepileptic drugs. To develop new treatment strategies, it is vital to understand how seizures 
are initiated and propagate in the brain. Animal models in which seizures are induced using pharmacological, 
physical, or genetic approaches, have played a major role in advancing our understanding of the pathophysiology 
of seizures4. Studies in these models have linked multiple molecular and cellular mechanisms to seizure genera-
tion5. How these mechanisms modulate neuronal function has been studied extensively, but effects on the activity 
of the neuronal network as a whole, which requires simultaneous recording from a large number of neurons, are 
less well understood. Computational modelling is a powerful tool for understanding brain activity across scales, 
extending from the level of the ion channel to individual neurons and small and large-scale neuronal networks6–8. 
By modelling the activity of a large number of connected neurons under different physiological conditions and 
with different synaptic connections, computer simulations may reveal the network properties and mechanisms 
underlying the genesis of seizures and epilepsy9. Informative computational models need to consider the charac-
teristics of neurons and synapses while simulating the collective activity of the neuronal network.

Mechanisms of seizure generation are likely to vary in different epilepsy phenotypes, reflecting the interplay 
of multiple contributors including pyramidal neurons, interneurons, and astrocytes and changes affecting syn-
aptic connections, gap junctions, and extracellular ion concentrations10. Seizure generation can be thought of in 
terms of an episodic shift in the balance of inhibition and excitation. Several mutations in pre- and post-synaptic 
proteins are epileptogenic, supporting the idea that these shifts in balance arise from abnormal short-term 
synaptic plasticity over seconds, transforming high-normal levels of network activity into ictal activity10,11. 
Activity-dependent disinhibition may also result from dysregulation of intra- and extracellular concentrations 
of ions including potassium, calcium, protons, and chloride. For example, sustained stimulation of GABAergic 
synapses due to intense firing of interneurons is thought to lead to progressive accumulation of the chloride 
ion within postsynaptic neurons resulting in hyperpolarization followed by sustained depolarization caused by 
outward HCO3

− currents12. Intense neuronal firing also induces potassium efflux via the potassium-chloride 
cotransporter, KCC2, increasing potassium (K+) concentration in the extracellular space and contributing to 
increased neuronal excitation13.

In the present paper, we study cortical seizure generation using computer simulations based on the laminar 
cortex model (LCM), a computational framework capable of simulating the activity of neuron groups in cortical 
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columns14,15. The LCM reflects many features of neuron groups and incorporates a realistic cortical architecture. 
It has been used to simulate the local field potentials (LFP) of the visual cortex under different conditions of visual 
stimulation14 and was able to produce spontaneous LFPs exhibiting frequency-inverse (1/f) power spectrum 
behaviour. Non-specific stimulation enhances gamma frequency oscillation in the model. The LCM also captures 
the fundamental as well as high order harmonics in LFPs during simulated intermittent light stimulation. We 
employed the LCM to examine the impact of changes in neuronal excitation and inhibition on the firing rates, 
oscillation state and synchronization of neuron groups. We also examined the effects of biophysical changes asso-
ciated with mutations in the SCN1A gene that cause epilepsy.

Results
Architecture of the LCM.  For the reader’s convenience, we introduce the structure of the LCM (see Fig. 1). 
The LCM represents a small region in the visual cortex of the cat as a sheet of cortical columns, within which 
neuron groups are situated (see Methods and Fig. 1B). Neuronal dynamics are modelled using a ‘mean field 
approximation’ approach, which treats the same type of neurons within a column as a group acting as a single 
entity within the network. The dynamics and connections of single neurons in a neuron group are averaged 

Figure 1.  Architecture of the LCM. Illustrated are (A) the visual pathway in cats, (B) the structure of the 
LCM, (C) the synaptic connections between neurons simulated in the LCM, and (D) the neuronal processes 
simulated in the LCM. In Figure (C), the arrows indicate the direction of synaptic transmission; and sizes of 
squares and circles indicate the relative densities of corresponding neuron groups (not to scale). Only a partial 
synaptic connection map is shown; a complete map is provided in Table S5 in the Supplementary Information. 
Acronyms: SI–sensory input; TH–thalamus; AP–action potential; PSP–postsynaptic potential; MP–membrane 
potential; E1–excitatory neurons in layer I of the cortex; I1–interneurons in layer I; P2/3–pyramidal neurons 
in layer II and III; I2/3–interneurons in layer II and III; P4–pyramidal neurons in layer IV; SS4–spiny stellate 
neurons in layer IV; I4–interneurons in layer IV; P5–pyramidal neurons in layer V; I5–interneurons in layer V; 
P6–pyramidal neurons in layer VI, I6–interneurons in layer VI; IRTN–interneurons in RTN of the thalamus; 
RLGN–relay neurons in LGN of the thalamus; ILGN–interneurons in LGN.
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using the mean field approximation14,16. We expanded the original LCM to incorporate a thalamocortical loop. 
Hence, the model now incorporates eleven neuron types in the cortex and three neuron types in the thalamus (see 
Fig. 1C,D and Table S1). Interactions between neuron groups are controlled by synaptic connections within the 
cortex and the thalamus (see Fig. 1C and Table S5). The LCM models the stimulus input to the thalamus as point 
spike sources, with spike rates generated using a Monte Carlo method (see Methods). For each run of the LCM, 
the membrane potentials of all neuron groups are first initialised at their resting values (−65 V), and then updated 
every 0.5 msec through five processes: action potential (AP) generation, AP conduction and distribution, synaptic 
transmission, postsynaptic potential (PSP) aggregation, and membrane potential (MP) formation (see Fig. 1D). 
Each of these processes is modelled using a set of equations elaborated upon in the Methods. The results reported 
below were generated by an instantiation of the LCM configured to simulate a cortical area of 1.12 × 1.12 mm2, 
which contains 20 × 20 cortical columns with the size of 56 μm17. The results were produced from a 5.12-second 
recording of neuronal firing rates after 10 seconds of running of the model.

Temporal features of different states of neuronal activity.  Parameters used to model the behav-
iour of neuron groups were derived from published experimental results (See Tables S1–S5). We found that the 
excitatory and inhibitory synaptic gains (gE and gI), which respectively control the efficiency of excitatory and 
inhibitory synaptic transmission, dramatically influence neuronal firing rates. Mathematically, synaptic gain can 
be expressed as (also see Equation (7)),

φ
φ=g

PSP
N

f V( , )
(1)

p
qp

p qp
q p

where PSPqp is the amplitude of PSPs at an afferent spike rate φp, Nqp is the number of synapses, and f(Vq, φp) is a 
scaling factor for spike adaptation and membrane potential dependency (refer to Equation (7) for more details). 
From a network perspective, excitatory and inhibitory synaptic gain respectively reflect the excitatory and inhib-
itory connection strength between neurons in the network with changes in gain corresponding to the effects of 
short-term synaptic plasticity.

Figure 2 displays the neuronal firing rates for a range of synaptic gains. Three types of neuronal activity with 
markedly different firing rates and oscillation states were noted. Low amplitude asynchronous activity occurred 
at low excitatory synaptic gain [<0.38 uV/(mV · Hz)] or high inhibitory synaptic gain (see Fig. 2). Here, the mean 
firing rate was less than one AP/sec. Neuronal activity was of low frequency with no specific frequency being 
dominant. High amplitude asynchronous activity was produced when the excitatory synaptic gain was high and 
the inhibitory gain was small. The mean firing rate exceeded 60 AP/sec, and in the frequency spectrum of neu-
ronal firing rates, low-frequency oscillations were enhanced. When both excitatory and inhibitory synaptic gain 
were large, strong rhythmic activity occurred. In this state, the neurons were highly activated (mean firing rates 
>10 AP/sec), and the frequency spectra showed obvious peaks.

Figure 3 displays four quantities calculated from the neuronal firing rates obtained using different synaptic 
gains: temporal mean firing rates (MFR), the mean power spectrum densities (PSD) of the low (2–15 Hz, PSDL) 
and the high (16–50 Hz, PSDH) frequency bands, the mean magnitude-squared coherence (MSC) of the low 
(MSCL) and the high (MSCH) frequency band. The first three measurements quantify temporal properties of 
neuronal firing and the MSCs measure coherence between neuron firing in columns. In Fig. 4, parameters are 
plotted against excitatory and inhibitory synaptic gains. Figures 3 and 4 reveal a complex relationship between 
neuronal firing rate and synaptic gains. The firing rate generally increases as excitatory synaptic gain (gE) increases 
or inhibitory synaptic gain (gI) decreases in magnitude. However, the change in firing rate is not continuous; a 
series of critical synaptic gain combinations are observed, around which small changes in excitatory or inhibitory 
gain cause dramatic jumps in the firing rate. For example, with an inhibitory gain of 1 uV/(mV · Hz), the firing rate 
jumps from about 0.3 AP/sec to >60 AP/sec as excitatory gain increases from 0.394 to 0.397 uV/(mV · Hz) (refer 
to Fig. 3D). On the synaptic gain maps shown in Fig. 3, the critical combinations of excitatory and inhibitory 
synaptic gains fall along a line:

= . + . = . + .g g g g0 018 0 376, or 55 6 20 89, (2)E,C I I,C E

where gE,C and gI,C are the critical excitatory and inhibitory gains, respectively. Secondly, this line divides neuronal 
firing rates into two regions: Region 1: where gE < gE,C and gI > gI,C, in which the neurons fire at low rate (mean 
firing rate <0.4 AP/sec), and Region 2: where gE > gE,C and gI < gI,C, in which the neurons fire at medium to high 
rates (mean firing rate >10 AP/sec, refer to Fig. 4A,B). Neuronal firing rates in the two regions exhibit differ-
ent dependencies on synaptic gains. In Region 1, the firing rate is positively correlated with both the excitatory 
(Pearson’s correlation coefficient r = 0.65) and the inhibitory gain (r = 0.38). In Region 2, firing rate is weakly 
negatively correlated with excitatory gain (r = −0.31), but strongly negatively correlated with inhibitory gain 
(r = −0.93). Neuronal firing rate increases exponentially as the magnitude of inhibitory gain decreases. The firing 
rate increases from about 20 AP/sec at gI = 6 uV/(mV · Hz) to 40 AP/sec at gI = 2 uV/(mV · Hz) and about 100 AP/
sec at gI = 0.2 uV/(mV · Hz). Excitatory gain does not affect the firing rate significantly (see Fig. 4B), but the range 
of firing rates increases slightly with a decrease in the lower limit (refer to Fig. 4A).

In Region 1 (gE < gE,C), oscillations in both low and high frequency bands increased with excitatory gain 
(r = 0.78 for low frequency band; and r = 0.87 for high frequency band; refer to Fig. 4C and E), and were not sig-
nificantly affected by changes in inhibitory gain (r = −0.1 for low frequency band; and r = 0.11 for high frequency 
band; refer to Fig. 4D and F). In Region 2 (gE > gE,C), the PSDs remained low [<0.1 (AP/sec)2/Hz] for excitatory 
gain <0.43 uV/(mV · Hz). When excitatory gain exceeded 0.43 uV/(mV · Hz), the PSDs varied between 0–2 (AP/
sec)2/Hz for the low-frequency band and 0–8 (AP/sec)2/Hz for the high-frequency band. As with neuronal firing 
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rate, the PSDs were more strongly dependent on inhibitory gain than on excitatory gain (refer to Fig. 4C–F). 
PSDs in both low and high-frequency bands increased as inhibitory gain increased, implying that strong neuronal 
oscillations require high inhibitory activity. The PSDs of high but not low-frequency bands appeared to saturate 
at gI = 3 uV/(mV · Hz) (refer to Fig. 4F).

The MSCs in both low and high-frequency bands did not vary significantly with either excitatory or inhibitory 
gains in Region 1 (gE < gE,C). In Region 2 (gE > gE,C), the correlations between the MSCs and excitatory gains were 
moderate in the low-frequency band (r = 0.59) and low in the high-frequency band (r = 0.27). The MSCs had a 
strong, non-linear relationship with the inhibitory gains in the region. Highly coherent neuronal firing occurred 
at high excitatory gain [gE ≥ 0.43 uV/(mV · Hz)] and moderately low inhibitory gain (between 1.3 and 3.3 uV/
(mV · Hz); refer to Fig. 4G,H).

The LCM incorporates spike inputs from two external sources: cortico-cortical projections to cortical neurons 
and sensory inputs to thalamic neurons. Cortico-cortical input was modelled as low-magnitude (1 AP/sec), 
low-frequency (frequency cut off at 20 Hz) white noise resembling temporal features of alpha activity generated 
in the absence of a stimulus. Afferent thalamic input was modelled for two conditions: (1) the non-stimulated 
state, modelled as low magnitude (1 AP/sec) low frequency (frequency cut off at 20 Hz) white noise; and (2) the 
stimulated state, modelled as high magnitude (50 AP/sec) high frequency (frequency cut off at 50 Hz) white noise. 
Cortico-cortical connections to each column were treated as being independent (i.e., asynchronous input) 
whereas thalamic inputs were the same for all columns (i.e., synchronous input). The neuronal firing rates and 
their response to stimulation are shown in Figs 2 and 3. Stimulation did not change mean firing rates significantly 
when 

g gE E,C or 
g gE E,C but firing rate increased by as much as 80 AP/sec when gE was close to gE,C (see 

Figure 2.  Neuronal firing rates with different synaptic gains. The plots in panel (A) displays firing rates 
simulated without (black lines) and with stimulus (red lines) using a range of excitatory and inhibitory synaptic 
gains. The excitatory and inhibitory synaptic gain values are shown on the top and the left, respectively [unit: 
uV/(mV · Hz)]. The number on the right of each figure indicates the value at the middle of the vertical scale bars 
(unit: AP/sec). The vertical scale bars on the right represent a firing rate of 20 AP/sec, and the horizontal scale 
bars at the bottom represent a period of 500 msec. Six amplified firing rate traces are plotted below the panel. 
The figures in panels (B and C) show the power spectrum densities (PSD) and magnitude-squared coherence 
(MSC) of six typical neuronal firing rates in panel (A). Corresponding plots are indicated by the lower case 
letters (a–c etc.). See also Fig. 3.
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Figure 3.  Neuronal firing rate properties with different synaptic gains. The plots display the mean firing rates 
(MFR) without stimulation (A), with stimulation (B), their differences (C) and dependency on excitatory gain 
for three typical inhibitory gains (D); the mean power spectrum density over firing rates of 2–15 Hz (PSDL) 
without stimulation (E), with stimulation (F), their differences (G) and dependency on excitatory gain (H); the 
mean power spectrum density over firing rates of 16–50 Hz (PSDH) without stimulation (I), with stimulation 
(J), their differences (K) and dependency on excitatory gain (L); and the mean magnitude-squared coherence 
for firing rates of 2–15 Hz (MSCL) without stimulation (M), with stimulation (N), their differences (O) and 
dependency on excitatory gain (P); the mean magnitude-squared coherence for firing rates of 16–50 Hz 
(MSCH) without stimulation (Q), with stimulation (R), their differences (S) and dependency on excitatory gain 
(T). Discrete values for synaptic gain were used with minimum intervals of 0.003 uV/(mV · Hz) and 0.1 uV/
(mV · Hz) between adjacent values for excitatory and inhibitory synaptic gain respectively. On the right column, 
the lines with open and closed markers display results for datasets without and with stimulus, respectively. Error 
bars on the line plots show the standard deviations (SD) for 10 runs of the LCM with the same parameter values 
but different random number kernels. See also Fig. 4.
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Fig. 3C). Stimulation did not affect neuronal oscillation or synchronisation in Region 1 (gE < gE,C). In Region 2 
(gE > gE,C), stimulation changed PSDs of neuronal firing in both low and high-frequency bands only when 
gI > 2.4 uV/(mV · Hz) (Fig. 3G and K) and it significantly increased MSCs of neuronal firing in both low and 
high-frequency bands when gI < 0.4 uV/(mV · Hz) (refer to Fig. 3O and S).

Figure 4.  Neuronal firing rate measurements plotted versus synaptic gains. Shown are the mean firing rates 
(MFR; (A,B)), the mean power spectrum density over 2–15 Hz (PSDL; (C and D)), the mean power spectrum 
density over 16–50 Hz (PSDH; (E and F)), the mean magnitude-squared coherence over 2–15 Hz (MSCL; (G,H)), 
the mean magnitude-squared coherence over 16–50 Hz (MSCH; (I and J)) of neuronal firing rates plotted versus 
excitatory gain (A,C,E,G and I) and inhibitory gain (B, D,F,H and J) for conditions when excitatory gains were 
smaller than the critical values (gE ≤ gE,C − δ, where δ = 0.002 uV/(mV · Hz)) and when excitatory gains were 
larger than the critical values (gE ≥ gE,C + δ). Each dot on the plot represents a result obtained using one synaptic 
gain pair. The inhibitory synaptic gain values in figure (A,C,E,G and I) and the excitatory synaptic gain values in 
figure (B,D,F,H and J) are represented by colour, and the corresponding colour bars are shown on the right. The 
Pearson’s correlation coefficient (r) was calculated for each case. The data was produced from non-stimulated 
datasets, as shown in Fig. 3.
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Response to transient changes in synaptic gain.  The results shown above were simulated using fixed 
synaptic gains. However, the efficiency of synaptic transmission may be influenced by many factors. We therefore 
examined the changes in neuronal firing rates induced by slight, transient changes in synaptic gain (see Fig. 5). For 
most combinations of synaptic gains, a change in firing rate occurred within milliseconds and neuronal activity 
returned to its previous state as soon as gains were restored to their initial values. The transition was more complex, 
however, for certain combinations of synaptic gain. For example, for the combination of gE = 0.4 uV/(mV · Hz) and 
gI = 2 uV/(mV · Hz) (see Fig. 5), the effects of changes in excitatory gain persisted for hundreds of milliseconds. For 
the combination of gE = 0.403 uV/(mV · Hz) and gI = 2 uV/(mV · Hz), a 0.015 uV/(mV · Hz) increase in excitatory 
gain resulted in significant changes in neuronal activity only after a 1-second delay with a strong neuronal oscil-
lation that lasted almost 0.5 second before steady state was reached. Neuronal activity did not return to its original 
state after synaptic gains were restored to their initial values. Similar behaviours were also observed with temporary 
changes in inhibitory synaptic gain. It should be noted that the complex transitions in neuronal activity occurred 
when gE increased from below gE,C to above gE,C or gI decreased from above gI,C to below gI,C.

Figure 5.  Neuronal firing rates under a small transient change in synaptic gains. (A) The red lines display the 
firing rates when the excitatory synaptic gains, which are shown on the left, are increased by 0.015 uV/(mV · Hz) 
for 2 seconds (indicated by solid vertical lines). The black lines display neuronal firing rates without the change 
in synaptic gain. Inhibitory gains are fixed at 2 uV/(mV · Hz) and the corresponding critical excitatory gain is 
~0.431 uV/(mV · Hz). (B) The red lines display the firing rates when inhibitory synaptic gains, which are shown 
on the left, are reduced by 0.2 uV/(mV · Hz) (i.e., weaker inhibition) for 2 seconds (indicated by solid vertical 
lines). The black lines display neuronal firing rates without the change in synaptic gain. The excitatory gains are 
fixed at 0.431 uV/(mV · Hz) and the corresponding critical inhibitory gain is about 3 uV/(mV · Hz). The number 
on the right is the firing rate at the middle of the vertical scale bar (unit: AP/sec), and markers represent the 
values of vertical scale bars: •−0.1 AP/sec, ••−0.5 AP/sec, +−5 AP/sec; +•−25 AP/sec, ++−50 AP/sec. For 
comparison, the same random number kernels were used for all cases.
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Response to changes in the reversal potential of inhibitory synapses.  We also examined neuronal 
network response to changes in the reversal potentials of inhibitory synapses. Figure 6 displays neuronal firing 
rates obtained using different combinations of inhibitory synaptic gains and reversal potentials of inhibitory 
synapses. We observed a boundary in the map, around which a small positive shift in the reversal potential 
led to a jump in neuronal firing rates (Fig. 6A). The critical values of the reversal potentials moved positively 
when inhibitory gain increased. In addition, neuronal oscillations did not change significantly with the reversal 
potential under weak inhibition but the oscillation amplitudes in both low- and high-frequency bands increased 
significantly when reversal potentials shifted positively (Fig. 6B,C).

Neuronal activity with changes associated with SCN1A mutations.  The LCM can be used to ana-
lyse the behaviour of the network with changes in the biophysical properties or synaptic connections of neu-
rons. We examined the effects of biophysical changes associated with SCN1A gene mutations. This gene encodes 
the alpha 1 subunit (Nav1.1) of the neuronal voltage-gated sodium channel. Mutations are associated with a 
wide range of epilepsy syndromes, ranging from relatively mild simple febrile seizure (FS) and Generalised 
Epilepsy with Febrile Seizures Plus (GEFS+) to more severe Intractable Childhood Epilepsy with Generalized 
Tonic-Clonic seizures (ICEGTC) and Dravet syndrome (DS)18–22. A variety of biophysical changes have been 
associated with different mutations, including impaired firing capability and positive shifts in the firing thresholds 
of inhibitory neurons23–25.

Impaired firing capability was simulated by gradually reducing maximum firing rates FI
[max] (see Equation (5)) 

from 200 to 40 AP/sec, in steps of 10 AP/sec, in all inhibitory neuron groups. Figure 7 displays the neuronal firing 
rates with reduced FI

[max] and different synaptic gains. As expected, the neuronal firing rate increased as FI
[max] 

decreased for all synaptic gains tested, but the firing rate did not change continuously. It jumped from a low rate 
to a high rate around certain values of FI

[max], and the closer gE was to gE,C, the smaller the reduction in FI
[max] 

required for an abrupt transition (refer to Fig. 7E). PSDs at both high and low frequency increased as FI
[max] was 

reduced and there was an abrupt transition at the same FI
[max] as that at which the abrupt transition in firing rates 

was observed. PSDs at both high and low frequency decreased when FI
[max] was extremely low (FI

[max] < 70 AP/
sec).

A positive shift in the firing thresholds of inhibitory neurons was simulated by gradually increasing the voltage 
at half-maximum-firing (VI

[HMF]; see Equation (5)) for all inhibitory neuron groups from −45 mV to −19 mV in 
steps of 2 mV. Figure 8 displays the neuronal firing rates with changes in VI

[HMF] and different synaptic gain com-
binations. Positive shifts in firing thresholds caused the neuronal firing rate to increase discontinuously. Even a 
small, 2–4 mV, shift in neuronal firing threshold caused a significant increase in the firing threshold (refer to 
Fig. 8E). The PSDs at both high and low frequencies increased after a small positive shift in firing threshold, but 
they returned to minimum values for VI

[HMF] > −29 mV.

Discussion
In this paper, we study the neuronal activity in the cortex using computer simulations based on the LCM. The 
LCM incorporates many realistic features of neuronal networks allowing us to gain insights into neuronal dynam-
ics under various conditions that are relevant to the generation of seizures.

Neuronal network dynamics.  For the normal function of a brain network, outputs (neuronal firing rates) 
associated with different input conditions (stimuli) should be distinguishable from each other. Our results sug-
gest that this is the case when synaptic gains are close to their critical values (i.e., gE close to gE,C). In the cor-
tex, thalamic projections account for less than 5% of the total synapses on a neuron (refer to Table S5 in the 
Supplementary Information) and are greatly outnumbered by distant cortico-cortical projections and local con-
nections. Spike inputs from the thalamus are unlikely to evoke significant responses in the firing states of the 
cortical neurons unless their membrane potentials are already poised close to the firing threshold. Therefore, 
the neuronal network must maintain some level of activity even in the absence of the stimulus. This may help to 

Figure 6.  Neuronal firing rate measurements under a small shift in the reversal potentials of inhibitory 
synapses. Shown are the mean firing rates (MFR; (A)), the mean power spectrum density over 2–15 Hz (PSDL; 
(B)), and the mean power spectrum density over 16–50 Hz (PSDH; (C)) simulated using combinations of 
inhibitory synaptic gains (gI) and reversal potentials of inhibitory synapses (VI

[rev]).
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explain previous observations that noise may help to improve the function of neuronal networks (see, for exam-
ple, paper of Hansel and Vreeswijk26).

The neuronal network exhibited significantly different dynamics in the two synaptic gain regions, indicat-
ing that transitions of neuronal network phases occurred around the boundary between the two regions. The 
network in Region 1 (gE < gE,C) is in a disordered phase, because the activity of neuron groups is more strongly 
influenced by noise than by neighbouring neurons. The network in Region 2 (gE > gE,C) operates in an ordered 
phase because the activity of neuron groups is highly correlated. Our results suggest that the neuronal network of 
the brain operates in a balanced critical state between the two phases. This finding aligns with the proposal that 
neuronal networks in the brain operate in a self-organised critical state27,28. The criticality hypothesis has gained 
support from both theoretical considerations and experimental observations. Theoretically, a neuronal network 
in a critical state can maintain some order to ensure consistent responses to specific stimuli but allows a degree 
of disorder to enable adaptation to variations in external conditions29. Experimentally, neuronal avalanches with 
an inverse power-law distribution for avalanche size and duration, a characteristic of systems in a self-organised 
critical state, have been observed in the spontaneous activity of organotypic neuronal cultures from rats28,30 and 
humans31. In diseased tissue, such as that from patients with epilepsy, neuronal avalanches deviate from the 
power-law distribution32. Our simulations provide further compelling support for the criticality hypothesis inso-
far as neuronal networks only show a significant response to stimuli when they are situated close to the critical 
state (refer to Fig. 3).

Many interesting behaviours were observed when the network was close to the critical state. Firstly, the neu-
ronal network in a critical state displayed some degree of adaptation to changes in neuronal excitation and inhi-
bition (refer to Fig. 4). The network first reacted to increased neuronal excitation with strong oscillatory activity. 
Then, it gradually absorbed the changes by increasing firing, and oscillation amplitude fell significantly. The 
observed adaptation may help to clarify a long-standing conundrum: how does a neuronal network at criticality 
avoid slipping into either a completely disordered or a completely ordered state in a noisy environment. Our 
results suggest that the neuronal network itself is capable of absorbing temporal changes in neuronal excitation 
and inhibition. This, together with adaptation in synaptic transmission and the refractory period of neuron firing, 

Figure 7.  Neuronal firing rates with reduced firing capability of inhibitory neuronal groups. Shown are the 
neuronal firing rates when the maximum firing rate of inhibitory neuron groups (FI

[max]) is reduced. Figures 
(A–D) show the firing rates simulated using four combinations of synaptic gains. The synaptic gain values are 
shown on the left [unit: uV/(mV · Hz)] and FI

[max] values are shown on the top of the figures (unit: AP/sec). The 
number on the right is the firing rate at the middle of the vertical scale bar (unit: AP/sec), and the markers 
indicate the values of vertical scale bars: •−0.1 AP/sec; +−5 AP/sec; +•−25 AP/sec. The horizontal scale bars 
represent a 200 millisecond period. Figures (E–G) display the temporal mean firing rates (MFR; (E)), and the 
mean power spectrum density for firing rates of 2–15 Hz (PSDL; (F)) and 16–50 Hz (PSDH; (G)). The synaptic 
gain values are displayed on the top [unit: uV/(mV · Hz)]. The error bars represent the standard deviation for 10 
runs of the LCM with the same parameter values but different random number kernels.
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may confer tolerance in the network to significant fluctuations in background activity. Secondly, the network 
showed hysteresis – network responses were delayed (by about one second) after the change in synaptic gain 
(refer to Fig. 4). The hysteresis phenomenon is unlikely to be caused by AP propagation along axons or conduc-
tion of PSPs along dendrites, because the former only lasts several milliseconds and the latter less than 100 milli-
seconds. A more likely cause for the delay is the cascade of neuronal excitability within the network (see below). 
This suggests that the network may be able to accumulate neuronal excitation for a period much longer than the 
duration of an AP or PSP, which may have important implications for the generation of seizures.

Implications for seizure generation.  Seizure initiation in the brain is a temporal dynamical process 
resulting from changes in neurons, synapses, and ion concentrations. Simulation of different states of the neu-
ronal network predicts the changes in activity that are associated with changes in state. This can help to inform 
our understanding of how cellular and molecular changes can evoke or inhibit seizure generation.

Although it is possible for the neuronal network to achieve a critical state over a range of inhibitory activ-
ity, seizure vulnerability is greatest at a low level of inhibition. At a small inhibitory gain (<1 uV/(mV · Hz)), 
the rate of neuronal firing is close to maximal when the excitatory gain exceeds the critical value (see Fig. 3). 
The high firing rates persist even after excitatory gain falls below the critical value (further discussed below). 
Furthermore, stimulation significantly increased synchronisation when inhibitory gain was small. Seizure gen-
eration in neuronal networks with weak inhibition may result from the amplification of synchronised inputs in 
noisy environments.

The simulations revealed distinctive roles of neuronal excitation and inhibition in regulating network dynam-
ics. Excitation imposed a threshold on neuron firing with firing rates being lowest when neuronal excitation was 
below threshold and high firing rates when excitation exceeded the threshold. Above the threshold, inhibition 
plays an important role in controlling neuronal firing. The results can be explained by the interactions between 
three factors that determine neuronal membrane potential: leaking currents through the membrane, 

Figure 8.  Neuronal firing rates simulated using positively shifted firing thresholds of inhibitory neuron groups. 
Shown are the neuronal firing rates simulated using positively shifted voltage at half-maximum firing (VI

[HMF]). 
Figures (A–D) display the firing rates obtained using four synaptic gain combinations. The synaptic gain values 
are shown on the left [unit: uV/(mV · Hz)], and the values for VI

[HMF] are shown on the top (unit: mV). The 
number on the right is the firing rate in the middle of the vertical scale bar (unit: AP/sec), and the markers 
indicate the values of vertical scale bars: •−0.1 AP/sec; ••−0.5 AP/sec; +−5 AP/sec; +•−25 AP/sec. The 
horizontal scale bars represent a 200 millisecond period. Figures (E–G) display the temporal mean firing rates 
(MFR; (E)), and power spectrum density for firing rates of 2–15 Hz (PSDL; (F)) and 16–50 Hz (PSDH; (G)) using 
different synaptic gains. Synaptic gain values are displayed at the top [unit: uV/(mV · Hz)]. Error bars represent 
the standard deviation for 10 runs of the LCM using the same parameter values but different random number 
kernels.
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depolarisation caused by excitatory PSPs, and repolarisation caused by inhibitory PSPs (see Fig. 9A). Leaking 
currents reduce the membrane potential according to τ⋅ −u texp( / )m , where u is the membrane potential above 
the resting potential, and τm is the membrane time constant (see, Equation (3) in Methods)6. The amplitudes of 
PSPs are influenced by neuron membrane potentials through two mechanisms. Firstly, the efficiency of excitatory 
synapses decreases and that of inhibitory synaptic transmission increases with the membrane potential of post-
synaptic neurons. The relationships were modelled as linear functions in the LCM (see Equation (7) and 
Fig. 9E,F). Secondly, the afferent spike rates to synapses increase with the membrane potentials of presynaptic 
neurons (see Fig. 9C,D). The membrane potentials of pre- and postsynaptic neurons are highly correlated in the 
network due to the strong recurrent synaptic connections between neurons. The three factors play different roles 
in regulating neuron firing at different levels of excitatory gain. When the excitatory gain is low, PSP amplitudes 
do not change significantly because the afferent spike rates to synapses are low. However, leaking currents, which 
increase linearly with the membrane potential (see Fig. 9B), strongly restrain the growth of the membrane poten-
tial. As the excitatory gain increases, the amplitude of excitatory PSPs may outweigh the repolarisation caused by 
leaking currents, and membrane potentials of neurons begin to grow. When they exceed the firing thresholds, 
neuronal firing rates increase explosively, which leads to further depolarisation. The cascade of neuronal excita-
bility occurs as long as the excitatory PSP amplitudes are higher than the membrane potential reduction due to 
leaking currents, and even a small net neuronal depolarisation eventually leads to explosive neuron firing. The 
cascade stops when the amplitudes of inhibitory PSPs match that of excitatory PSPs because increases in mem-
brane potential reduce the efficiency of excitatory synapses and boost the efficiency of inhibitory synapses. The 
larger the inhibitory gain, the sooner the cascade stops. Therefore, the final membrane potentials depend more 
strongly on the inhibitory gain than on the excitatory gain.

Epilepsies associated with SCN1A mutations exhibit extraordinary clinical heterogeneity. Seizure manifesta-
tions vary between members of the same pedigree bearing identical mutations33,34. Previous studies have ascribed 
the phenotypic heterogeneity to the diversity of functional changes in the voltage-gated sodium channel caused 
by individual mutations35,36. Our simulations, however, suggest the effects of SCN1A mutations on the neuronal 
network depend on the levels of neuronal excitation and inhibition. Though severe loss of neuronal inhibition, 
as caused by the SCN1A mutation associated with DS, leads inevitably to high neuron firing, a small reduction 
in neuronal inhibition, as caused by the SCN1A mutation associated with the GEFS+ syndrome, only causes sig-
nificant changes in neuronal activity when the network is poised close to the boundary. The mutation also causes 
other neuronal changes, such as changes in GABAA chloride reversal potential, which may contribute to seizure 
generation37.

Figure 9.  Factors that determine neuronal membrane potential. Illustrated are (A) a schematic diagram of 
currents flowing into and out of neurons, and the dependency of (B) leaking currents, (C) excitatory neuron 
firing rates (FE), (E) excitatory synapse efficiency (|SE|), (D) inhibitory neuron firing rates (FI), and (F) inhibitory 
synapse efficiency (|SI|) on membrane potentials. Synaptic efficiency is defined as | | = | − |S g V V( )p p qp

[rev] , where gp 
is the synaptic gain, Vq is the membrane potential of the postsynaptic neuron, V p

[rev] is the reversal membrane 
potential and set to 0 mV for excitatory synapses and −70 mV for inhibitory synapses. The figures are plotted in 
arbitrary units. Acronyms: EPSC–excitatory postsynaptic currents, IPSC–inhibitory postsynaptic currents.
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Methods
In this section, we outline the structure of the LCM model, which enables cortical neuronal dynamics to be mod-
elled under various conditions using model parameters that represent different neuronal behaviours. Additional 
details about the simulation methods and parameter values used in the paper are provided in the Supplementary 
Information.

Laminar cortex model.  The LCM was developed to simulate local field potentials (LFP) in the visual cortex 
of the cat. The LCM simulates neuronal activity of a flat sheet of cortical columns14,15. A cortical column may con-
tain thousands of neurons, however, neurons in a column display similar responses to specific stimuli. Therefore, 
the LCM treats the same type of neurons within a column as a group which acts as a single entity in a network. 
A neuron group has similar features to a single neuron but its dynamics and connections are averaged using the 
mean-field approximation14,16. The approach allows us to model the neuronal activity of a large cortical region 
without knowing the detailed physiology of individual neurons.

In the current LCM, the evolution of neuronal membrane potentials is modelled using the following differ-
ential equation38

= − +C du
dt

G u I (3)m m E

where u = V − V[0] is the membrane potential relative to the resting state, and V and V[0] are the membrane poten-
tial and resting membrane potential of neuron groups, respectively; Cm is the total capacitance of the membrane; 
Gm is total conductance of the membrane; the term −Gmu represents the currents leaking through the membrane; 
and IE is the total current flowing into the neuron through synaptic transmission, i.e., postsynaptic currents 
(PSC). The LCM calculates membrane potentials at discrete time points. For a small time interval, a simple itera-
tion equation can be derived from Equation (3):

u t t u t e C I t u t e V t( ) ( ) ( ) ( ), (4)t
m

t/ 1
E

/m m+ Δ ≈ + Δ = + Δτ τ−Δ − −Δ

where Δt is the time interval; τm = Cm/Gm is the membrane time constant characterising the time for the mem-
brane to repolarize after depolarisation6; Δ = Δ−V C I tm

1
E  is the membrane potential change caused by the injected 

currents during the period. The LCM uses equation (4) to calculate the membrane potentials of neuron groups 
iteratively. The membrane potential change ΔV is assumed to be the aggregate postsynaptic potential (PSP) at the 
soma, and is determined by three processes: neuronal firing, synaptic transmission and postsynaptic potential 
(PSP) aggregation. Each of the three processes is modelled using a set of equations, which are described in details 
below.

The LCM uses a set of equations to model neuronal processes. For notational convenience, the following con-
ventions are adopted for the equations: (1) the LCM treats the mean (somatic) membrane potentials of neuron 
groups (denoted by V) as state variables; (2) the LCM uses spike rates (denoted by φ or F) to measure the inter-
action between neuron groups. The spike rate is defined as the average number of spikes a neuron of one group 
receives from another group per unit time; (3) neuron groups can be differentiated by neuron type (as listed in 
Table S1 in the Supplementary Information) or column number. Subscripts q or p may be used to denote a neuron 
group in a column. For synaptic transmission, p and q respectively indicate the presynaptic and postsynaptic 
neuron group; (4) the LCM simulates PSPs (denoted by PSP) generated through effects on different neurotrans-
mitter receptors. The superscript [rcpt] denotes the receptor type; (5) Subscripts and superscripts may be omitted 
when the equation applies to all relevant objects in the same class (such as neuron groups, receptors, or synaptic 
connections) equally but parameter values may differ.

The LCM determines the mean spike rate generated by a neuron group using a sigmoid function16,38:

=
+ − −

F t F
k V V

( )
1 exp[ ( )]

,
(5)

[max]

[HMF]

where F(t) is the mean spike rate, k is the firing gain, F[max] is the maximum firing rate of the neuron groups, and 
V[HMF] is the membrane potential at half maximum firing rate. Equation (5) is similar in behaviour to a power-law 
function at low voltage39 and converges to F[max] at high voltage. The LCM also incorporates time delays of spike 
propagation. The time delay for a spike to reach a postsynaptic neuron group is calculated with:

Δ =t s v/ , (6)[AP] [axon] [AP]

where s[axon] is the length of the axon connecting the two neuron groups, and v[AP] is the spike propagation speed, 
which is set to 1.0 m/sec6. In the LCM, axon length is assumed to be the distance between the two groups (i.e. 
direct synaptic connections between neuron groups), and spike rates remain constant during propagation.

Afferent spikes change the membrane potentials of the target neuron groups. The amplitude of the postsyn-
aptic potential (PSP) depends on the afferent spike rate and the membrane potential of the target neuron group. 
PSP amplitude is determined by16:

φ φ λ φ= − − −PSP V g N V V( , ) ( ) exp( ), (7)qp q p p qp q p p p,0
[rcpt] [rev] [rcpt]

where the subscript 0 denotes the PSP amplitude at the synapse (see below), φp is the afferent spike rate (see 
below), gp is the synaptic gain at the resting membrane potential (referred to as synaptic gain), Nqp is the synapse 
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number between the two neuron groups, V p
[rev] is the reversal membrane potential (0 for excitatory spikes and 

−70 mV for inhibitory spikes) and λ[rcpt] is the spike adaptation parameter. Three kinds of neurotransmitter 
receptors were considered: AMPA, NMDA, and GABA receptors. The excitatory synaptic gain (gE) controls the 
PSPs of both AMPA and NMDA receptors, and inhibitory synaptic gain (gI) controls PSP of the GABA receptors. 
The time course of the PSP is modelled with modified bi-exponential functions:

τ
τ

τ

τ
τ=
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(8)f r
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0
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where τ0
[rcpt] is the synaptic transmission delay, τr

[rcpt] and τf
[rcpt] are the time constants respectively controlling the 

rise and fall of the PSP, τ τ τ= +A ( )/( )f r f
[rcpt] [rcpt] [rcpt] 2 is the normalising constant, and H(x) is a Heaviside step 

function, with a value of 1 when x ≥ 0 and 0 elsewhere. The LCM also considers the time delay for PSPs to reach 
the neuron body using an approach similar to Equation (6). It also assumes that PSP amplitudes decay exponen-
tially during propagation, i.e.:

λ= −PSP PSP sexp( / ), (9)qp qp,0
[dend] [PSP]

where PSPqp,0 is the PSP amplitude at the synapse, PSPqp is the corresponding membrane change in neuron body, 
s[dend] is the distance between the synapse and the neuron body, and λ[PSP] is the PSP decay factor. The change in 
membrane potential in the target neuron group is the aggregate of all PSPs16:

∑ ∑ φΔ = ⊗V PSP V R t( , ) ( ),
(10)

q
p

qp q p
[rcpt]

[rcpt] [rcpt]

where ⊗ denotes convolution in time, and aggregation is performed over all receptors and presynaptic neuron 
groups in all columns.

The model incorporates the laminar architecture of the cortex represented as five laminae (layers I to VI with 
layers II and III combined). The cortex is divided horizontally into columns containing eleven neuron groups 
spanning the five cortical layers (see Fig. 1). The model uses a quantitative synaptic connection map to define the 
synaptic connections between neuron groups (see Table S5 in Supplementary Information). This map was derived 
from the literature40. Each entry in the map represents the average number of synapses on a neuron that project 
from a specific type of neuron. A neuron may receive thousands of synaptic connections from many surrounding 
cortical columns. The synaptic connection map only shows the types of presynaptic neurons, and does not con-
tain information on columnar origin. The LCM also assumes that the density of presynaptic neurons connected 
to a specific neuron is normally distributed according to the following equation:

π σ σ
=






−






r s X s
( )

2 ( )
exp

2( )
,

(11)
qp

qp
[synp] 2

2

[synp] 2

where r(sqp) is the proportion of synapses from neurons located at a distance sqp from the target neuron; σ[synp] is 
the standard deviation of the spatial distribution of the presynaptic neurons, set to 80 um for pyramidal neurons41 
and 40 um for spiny stellate and inhibitory neurons. X is a Gaussian random number with mean of 1 and standard 
deviation of 0.2, to avoid unrealistic synaptic connections that are totally symmetric.

The LCM also incorporates the thalamocortical loop. The thalamus is modelled as an additional layer to the 
previously described cortical model, allowing the propagation delay between the thalamus and cortex to be sim-
ulated. Three groups of thalamic neurons are considered: interneurons in the reticular nucleus of the thalamus 
(IRTN), relay neurons in the lateral geniculate nucleus (RLGN), and interneurons in the lateral geniculate nucleus 
(ILGN). Synaptic connections formed between thalamic neuron groups and cortical neuron groups are added. 
The source code of the LCM may be downloaded from the GitHub website (http://github.com/jiaxin-du).

Simulation parameters.  A large number of parameters is used to describe the behaviour of neuron groups 
and their connections. These are divided into four categories: (1) parameters that describe the physiological prop-
erties of neuron groups (see Table S3 in the Supplementary Information); (2) parameters that describe the prop-
erties of synapses and receptors (see Table S4 in the Supplementary Information); (3) parameters that describe 
cortical structure (see Table S2 in the Supplementary Information), and (4) parameters that describe synaptic 
connections between neuron groups (see Table S5 in the Supplementary Information). Most parameter values 
are based on published experimental data. We note that the physiological parameters are not independent and 
that changes in one parameter can usually be compensated by changes in other parameters (refer to our previous 
paper14).

Data analysis.  To determine the excitation level of a cortical column, we calculate the mean firing rates of 
excitatory neuron groups in the column, from which the MFRs, PSDs and MSCs of neuronal firing are deter-
mined. The MFRs and PSDs were estimated from the firing rates in the central column, and the MSCs were 
estimated from these in the central 100 columns. The MFRs were the temporal mean of firing rates weighted by 
a tapered cosine window function, which was used to minimise the cut-off effects of oscillatory firing rates. The 
PSDs and MSCs of firing rates were estimated using Welch’s method42. The firing rates were first split into ten 
segments of equal length with 50% overlap between consecutive segments. Each segment was then multiplied by 
a Hamming windowing function. PSDs and MSCs were determined from the windowed segments using a fast 
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Fourier transform algorithm as implemented in the FFTW package43. The MSCs of firing rates in columns were 
estimated using

∑ ∑=
−

| |

⋅= = +
f

N N
F F

F F
MSC( ) 2

( 1)
CPSD( , )

PSD( ) PSD( )
,

(12)i

N

j i

N
i j

i i1 1

2

where PSD(Fi) computes the PSDs of firing rates in column i (Fi); CPSD(Fi, Fj) computes the cross power spec-
trum densities between Fi and Fj; and N = 100 is the number of columns used for MSC calculation. The final PSDs 
and MSCs were the mean PSDs and MSCs of the segments, respectively.
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