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Background: Chronic inflammation caused by ulcerative colitis (UC) causes a pro-neoplastic drive in the inflamed
colon, leading to amarkedly greater risk of invasivemalignancy compared to the general population. Despite sur-
veillance protocols, 50% of cases proceed to cancer before neoplasia is detected. The Enhanced Neoplasia Detec-
tion and Cancer Prevention in Chronic Colitis (ENDCaP-C) trial is an observational multi-centre test accuracy
study to ascertain the role of molecular markers in improving the detection of dysplasia. We aimed to validate
previously identified biomarkers of neoplasia in a retrospective cohort and create predictivemodels for later val-
idation in a prospective cohort.
Methods: A retrospective analysis using bisulphite pyrosequencing of an 11 marker panel (SFRP1, SFRP2, SRP4,
SRP5,WIF1, TUBB6, SOX7, APC1A, APC2,MINT1, RUNX3) in samples from35patientswith cancer, 78with dysplasia
and 343 without neoplasia undergoing surveillance for UC associated neoplasia across 6 medical centres. Predic-
tive models for UC associated cancer/dysplasia were created in the setting of neoplastic and non-neoplastic mu-
cosa.
Findings: For neoplastic mucosa a fivemarker panel (SFRP2, SFRP4, WIF1, APC1A, APC2) was accurate in detecting
pre-cancerous and invasive neoplasia (AUC= 0.83; 95% CI: 0.79, 0.88), and dysplasia (AUC= 0.88; (0.84, 0.91).
For non-neoplastic mucosa a four marker panel (APC1A, SFRP4, SFRP5, SOX7) had modest accuracy (AUC= 0.68;
95% CI: 0.62,0.73) in predicting associated bowel neoplasia through the methylation signature of distant non-
neoplastic colonic mucosa.
Interpretation: This multiplex methylation marker panel is accurate in the detection of ulcerative colitis associ-
ated dysplasia and neoplasia and is currently being validated in a prospective clinical trial.
Funding: The ENDCAP-C study was funded by the National Institute for Health Research Efficacy andMechanism
Evaluation (EME) Programme (11/100/29).
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© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Chronic inflammation caused byUlcerative Colitis (UC) causes a pro-
neoplastic drive in the inflamed colon, leading to amarkedly greater risk
of invasive malignancy compared to the general population [1]. Al-
though rates of UC associated neoplasia seem to be decreasing [2], due
in part to improved medical control of inflammation, there remains a
Vincent Drive,
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significant risk beyond the background risk of colorectal cancer (CRC).
The risk is particularly pronounced in patients with extensive colitis
and an inflammatory bowel disease (IBD) diagnosis before 30 years of
age [3].

Despite colonoscopic surveillance protocols [4], 50% of cases are re-
ported to have developed invasive cancer before neoplasia is detected.
The disease is frequently multifocal, presumed due to the diffuse sensi-
tisation of the large bowelmucosa by the chronic inflammatory process.
Mutational events, such as KRAS and TP53 mutation [5] have been ob-
served as part of this field cancerization effect in UC, however no consis-
tent pattern has been demonstrated.
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Research in context

Evidence before this study

• Chronic ulcerative colitis carries a substantially elevated risk of
neoplasia as compared to an agematched unaffected population

• Current methods for detection of dysplasia and early neoplasia
are unreliable

• Epigenetic markers have previously shown promise in the de-
tection of UC associated dysplasia and neoplasia.

Added value of this study

• Methylation at a five marker panel (SFRP2, SFRP4, WIF1, APC1A,
APC2) panel highly accurately detects ulcerative colitis associ-
ated dysplasia and cancer in a retrospective cohort from pa-
tients treated at 6 different hospitals in the UK

• A second methylation panel ((APC1A, SFRP4, SFRP5, SOX7) may
have value as an adjunct to colonoscopy in identifying high
risk patients by providing predictive markers in random biop-
sies of background mucosa.

Implications of all the available evidence

• A multi-marker methylation panel may be able to identify pa-
tients with high risk dysplasia
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Endoscopic therapy can provide local control of early dysplastic
lesions, but enhanced detection strategies are required to aid early de-
tection and ensure that progressive dysplasia is not missed during sur-
veillance [6–8].

Chronic inflammation has been demonstrated to promote aberrant
DNA methylation in conditions such as ulcerative colitis [9]. This may
be due to a direct chemical effect causing cytosinemethylation in the in-
flamed colon. Use of abnormal DNA methylation as a biomarker for ul-
cerative colitis associated neoplasia has considerable theoretical
advantages; firstly methylation tends to be gene-centric [10], centering
around CpG islands and secondly it is usually homogenously distributed
within the CpG island, having a functional effect on transcription factor
binding and thus gene expression. This homogeneity facilitates simpler
detection of abnormal methylation patterns. Another advantageous
property of assaying methylation is that it tends to occur as part of a
“field cancerization” effect [11] whereby associated changes in methyl-
ation extend out past the dysplastic lesion in the colon and thus can be
detected in apparently normal mucosa some distance from the lesion
[12,13].

It has been demonstrated that hypermethylation of members of the
Frizzled pathway, involved in Wnt signalling regulation, are associated
with colorectal tumouriogenesis [14–16]. Dhir et al. [17] carried out an
analysis of methylation of Wnt signalling genes (APC1A, APC2, SFRP1,
SFRP2, SFRP4, SFRP5, DKK1, DKK3, WIF1 and LKB1) in the development
of UC associated neoplasia, finding that methylation of SFRP1/2 and
APC1A/2 were associated with the progression to invasive disease. Guo
et al. [18] demonstrated that SOX7, an independent checkpoint for
beta-catenin function can be hypermethylated in colorectal cancer and
may play a role in UC associated neoplasia.

Genetic variation in RUNX3 has been demonstrated as a risk factor
for the development of ulcerative colitis [19] and Garritty-Park et al.
[20] demonstrated that hypermethylation of RUNX3, and MINT1 could
be detected in the non-neoplastic mucosa from patients with colitis as-
sociated neoplasia. In our own analysis of colitis associated mucosa [21]
utilising the IlluminaMethylation450 platform, we identified an associ-
ation between hypomethylation of TUBB6 in non-neoplastic colonic
mucosa from patients with UC associated neoplasia.

In the Enhanced Neoplasia Detection and Cancer Prevention in
Chronic Colitis (ENDCaP-C) study, we set out to establish whether an
optimised methylation marker panel of suitable specificity could im-
prove detection of early neoplastic lesions at colonoscopic surveillance
diagnostic accuracy. This initial phase (Module 1) aims to measure the
accuracy of an optimised panel of markers on a multicentre, retrospec-
tive cohort of patients with ulcerative colitis before assessing their util-
ity in a prospective multi-centre test accuracy study (Module 3).

We aimed to:

1) Establish and optimise amulti-markermethylation panel for the de-
tection of colitis associated neoplasia.

2) Measure the accuracy of this panel in a retrospectivemulticentre co-
hort of patients with colitis associated neoplasia.
2. Materials & methods

2.1. Patient recruitment

Patients were identified from archived histology biopsy samples in 6
hospitals across the West Midlands area. Patients were identified
through tracing endoscopy records and correlation with histology
reports. Searches were restricted to endoscopies after January 1996, be-
cause of changes to formalin fixation at that time, and before January
2014 to minimise missed neoplasia through identification during the
follow up period. Mucosal biopsies were classified via pathological
examination using H&E sections as either neoplasia, defined as any of
adenocarcinoma, high-grade or low-grade dysplasia; matched non-
neoplastic defined as non- neoplastic chronically inflamed colonic
mucosal biopsies taken distant from areas of neoplasia as distant as pos-
sible from the original neoplastic region (see Fig. 1); control defined as
colonic mucosa, sampled from patients with chronic ulcerative colitis
of duration N8 years and extending to the splenic flexure or beyond
OR patientswith a diagnosis of both UC and PSCwhohad been screened
for neoplasia without it being found and in whom no neoplasia was
seen in follow up after the biopsy was taken. Ethical approval was
from South Birmingham Research Ethics Committee (Ref: 08/H1207/
104).
2.2. Sample processing

Biopsy samples from identified patients were retrieved from the his-
topathology archives at the 6 collaborating hospitals. For those patients
with neoplasia in the large bowel, separate biopsies from different co-
lonic segmentswere selected alongside the neoplastic biopsy. All blocks
underwent central histological review by PT, with representative sec-
tions undergoing DNA extraction. Dysplasia was defined as any of al-
tered nuclear/cytoplasmic ratio, increased cell size and/or an increase
inmitotic figures. DNA extraction of neoplasiawas performed by needle
macrodissection to enrich for tumourmaterial, andmacrodissectedma-
terial was extracted using the FFPE protocol of the Qiagen DNEasy FFPE
kit (Qiagen, UK). Extracted DNA was quantified by both Nanodrop
spectrophotometry and Qubit fluorimetry.

Neoplasia, matched non-neoplastic and control samples were in-
cluded in mixed batches to ensure that test performance could be
analysed at sequential analyses across the study duration. Each sample
was labelled with only a study sample identification number and assays
undertaken blinded to neoplasia status.



Fig. 1. Diagram of colonoscopic sampling from patients for ENDCAP-C study.
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2.3. DNA methylation analysis

500 ng of extracted DNA was bisulphite converted using a Zymo
EZ-DNA methylation bisulphite conversion kit according to the manu-
facturer's protocol. Two microliters of eluted bisulphite converted
DNA was utilised in a pyrosequencing PCR reaction using the Qiagen
PyroMark PCR kit according to themanufacturer's protocol in a 25uL re-
action volume. PCR products were run on a 2% agarose gel with a DNA
size ladder and successful amplification was defined as the presence of
a band at the appropriate size for the marker run. PCR products were
cleaned using streptavidin beads, washed and mixed with the requisite
pyrosequencing primers. These were then sequenced on a Qiagen
PyroMark Q96 instrument. All reactions were run with 100% methyl-
ated and unmethylated DNA positive and negative controls, as well as
a water reaction. Methylated DNA was generated by incubating 1μg of
blood derived control DNA with M.Ssi CpG methyltransferase (New
England Biolabs). Unmethylated DNAwas generated by whole genome
amplification of 10 ng of blood derived control DNA using the Qiagen
Repli-G Mini kit.

Themarker panel chosen for this experimentwas based on previous
findings and consisted of the following markers: SFRP1, SFRP2, SFRP4,
SFRP5, WIF1, TUBB6, SOX7, APC1A, APC2, MINT1, RUNX3. Primer se-
quences, chromosomal positions and reaction conditions are shown in
Supplementary Table 1. After each run, sample data was examined
using Qiagen PyroMark Q96 software. Samples that had failed Qiagen
quality metrics were marked as failed on the sample sheet.

2.4. Sample size

The original planned sample size of 160 neoplastic and 320 control
samples was determined to provide adequate events to robustly de-
velop a model (with N10 events per marker) and provide estimates of
sensitivity and specificitywith adequate precision (with 95% confidence
interval width b16% for sensitivity and b12% for specificity). The 2:1
sampling ratio is determined based on access to sample banks.

2.5. Statistical analysis

Where biomarkers were examined at multiple CpG sites the mean
CpG value across sites was used in all analyses for consistency and as
methylationwithin small regions tends to be distributed homogenously
[10]. Statistical analysis was then undertaken in three steps.

First, results for each batch of samples for each of the 11 biomarkers
(SFRP1, SFRP2, SFRP4, SFRP5, WIF1, TUBB6, SOX7, APC1A, APC2, MINT1,
RUNX3.) were evaluated in a group sequential analysis following the
O'Brien and Fleming (OBF) method [22], to assess whether further
testing of each biomarker was justified or considered futile. Sequential
boundaries were constructed according to the OBF method, the
t-statistic computed for each biomarker at each analysis step, and com-
parison made to the predefined boundary values to test for statistical
significance or futility (see Supplementary Fig. 1).

In this first stage the distributions of the biomarker values were un-
known, and data were analysed without transformation. Once all data
were accumulated, visual inspection of histograms demonstrated posi-
tive skew (Supplementary Fig. 2), and the mean biomarker values for
each sample were log-transformed prior to further analysis.

In the second stage markers with responses suitable for inclusion in
the predictive models were selected. The ability of each marker to dis-
criminate was described by computing the ratio of geometric means
(with 95% confidence interval) and statistical significance was assessed
by two-sample t-tests undertaken on the log transformed scale. Com-
parisons were made [1] between neoplasia samples and control
samples, and [2] between matched non-neoplastic samples and
control samples. Biomarkers which showed significant discrimination
(p b 0.05) and with amplification rates N85% were included in the pre-
dictive model.

In stage 3 predictive models were fitted using logistic regression
with outcome (1 = Sample or 0 = Control) and the mean log CpG
value for each patient for the biomarkers selected in Stage 2. Only sam-
ples which had complete data for the selected biomarkers were initially
included in these analyses. Three separatemodelswere constructed: [1]
differentiating neoplasia samples from control samples; [2] differentiat-
ing dysplasia samples from control samples; and [3] differentiating
matched non-neoplastic samples from control samples. Model 2 used
the same patients and biomarker selection as Model 1, but excluded
any samples which were classed as adenocarcinomas.

Discriminatory performance for each model was measured by the
area under the ROC curve (AUC). We estimated optimism by fitting
the predictedmodel in 100 bootstrap samples and computing the aver-
age difference between the AUC in the bootstrap samples and in the
original data. We applied the computed shrinkage factor to the param-
eter estimates [23]. The final models were produced including all sam-
ples, using multiple imputation using chained equations to impute
missing biomarker data. Multiple imputation models used 50 iterations
with pathology categorisation, sample type and measurements of all
other biomarkers as predictors. The model coefficients were corrected
for optimismby application of the shrinkage factor. To facilitate applica-
tion of the model when individual or pairs of biomarkers are unavail-
able, reduced models were computed omitting each biomarker and
possible pair of biomarkers from the multiple imputation model.

One biomarker (TUBB6) was not selected for inclusion in Models 1
and 2 in the stage 1 OBF analysis on untransformed data, but did show
significant differences in stage 2 once log transformations had been ap-
plied. Models 1 and 2 were fitted with and without this biomarker.

The clinical team considered that a positive test result should have a
positive predictive value of at least 20% to be of clinical value. Given an
assumed background incidence of 4% this corresponds to the point on
the ROC curve with a positive likelihood ratio (sensitivity/(1-specific-
ity)) of 6. The threshold at this point was identified from the ROC tabu-
lation of each predictive equation, and estimates of sensitivity and
specificity obtained. We also identified thresholds for each model
which corresponds with 90% of cases being detected.

3. Results

In total, 838 blocks from 575 patients were collected from 6 partici-
pating hospitals. Of these, 269 blockswere not used in the study because
they were duplicates from the same patient, or deemed not useable
after histological review. This left 569 blocks from 456 patients under-
going surveillance, consisting of 113 neoplastic, 113 matched non-
neoplastic and 343 control blocks (Table 1). Of the neoplastic biopsy
samples, 35/113 contained adenocarcinoma and the remaining 78/113
harboured dysplasia only. Baseline data for participants providing
these blocks is shown in Table 2.



Table 1
Samples graded according to histology and inflammation (central assessments).

Histopathological type Patients with neoplasia
(n = 113)

Patients without neoplasia
(control) (n = 343)

Total (n = 569)

Neoplastic samples Matched non-neoplastic samples

Number of blocks mean (sd) 2.9 (4.4) 1.2 (0.5) 1.6 (2.3)
Median [IQR] 2 [2–2] 1 [1–1] 1 [1–2]
Range 2–42 1–6 1–42
Adenocarcinoma 35 (31%) – – 35 (6%)
High grade dysplasia 4 (4%) – – 4 (1%)
Low grade dysplasia 74 (65%) – – 74 (13%)
Active chronic inflammation – 33 (29%) 83 (25%) 116 (20%)
Non active chronic inflammation – 69 (61%) 204 (59%) 273 (48%)
Normal mucosa – 11 (10%) 56 (16%) 67 (12%)
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3.1. Selection of biomarkers

Eight of the eleven methylation markers had an amplification
success rate of N85% (Table 3 and Supplementary Table 2). The three re-
maining primer sets were within the promotor regions of SFRP1, MINT1
and RUNX3. Because of the reduced reliability, these 3 were not taken
forward to further analysis.

In the stage 2 analysis, five markers accurately discriminated be-
tween neoplasia and control samples with p b 0.0001 – SFRP2, SFRP4,
WIF1, APC1A and APC2 (Table 3); with between 40% and 76% increases
in geometric mean values. TUBB6 showed a smaller (31%) increase but
which was also strongly significant (p = 0.003).

Comparison in samples of methylation in the background mucosa
(from patients with colitis associated neoplasia) with control patients
(with chronic UC only) showed some discrimination in four of the
eight promotor regions. SFRP4, APC1A, SFRP5 and SOX7 (Table 3). Two
of these markers SFRP4 and APC1A showed increases of 7% and 28% re-
spectively, in geometric mean values; the other two, SFRP5 and SOX7
showed decreases of 23% and 27% respectively.

3.2. Performance of predictive models

Predictive models to discriminate neoplasia samples from controls
had good discrimination (Table 4). The optimism adjusted AUC for
Model 1 detecting all neoplasiawas 0.86 (95% CI 0.81, 0.91) for the com-
plete case analysis (with a shrinkage factor of 0.93) but lower at 0.83
(95% CI 0.79, 0.88) for the model using multiple imputation (Fig. 2A).
Addition of TUBB6 only increased the AUC by 0.001. When considered
Table 2
Baseline patient data.

Baseline characteristics

Montreal classification Distal (Recto-Sigmoid)
Left-sided (to splenic flexure)
Extensive (beyond splenic flexure)
Unknown/Missing

Smoker No
Yes
Unknown
Ex-smoker

Primary sclerosing cholangitis No
Yes
Unknown/Missing

Family history of inflammatory bowel disease No
Yes
Unknown/Missing

Family history of colorectal cancer No
Yes
Unknown
Missing
together in the panel, all markers other than WIF1 showed significant
independent predictive value.

Discrimination of Model 2 predicting only dysplasia (excluding ade-
nocarcinoma cases) was higherwith an optimism corrected AUC of 0.92
(95% CI 0.88, 0.96) for the analysis of complete cases (with a shrinkage
factor of 0.91), and 0.88 (95% CI 0.84, 0.92) for themodel usingmultiple
imputation (Fig. 2B). Again adding TUBB6 made little difference, de-
creasing the AUC by 0.001. We report coefficients for Model 1 based
on the multiple imputation dataset in Supplementary Table 3A and for
Model 2 in Supplementary Table 3B. When considered together in the
panel, allmarkers other thanWIF1 showed significant independent pre-
dictive value.

The predictive model to discriminate samples where there is
methylation in the background mucosa (the matched non-neoplastic
samples, model 3) from controls had poorer discrimination,with an op-
timism adjusted AUC of 0.66 (95% CI 0.59, 0.73) for the complete case
model (shrinkage factor 0.91), and 0.68 (95% CI 0.62, 0.73) for the
model using multiple imputation (Fig. 2C). We report coefficients for
Model 3 based on the multiple imputation dataset in Supplementary
Table 3C. For SFRP5 and SOX7 lower levels of methylation were associ-
ated with neoplastic change in background mucosa. When considered
together only APC1A and SOX7 showed significant independent predic-
tive value.

The calibration plot for Model 1 after multiple imputation suggested
that our final model for neoplasia detection after multiple imputation
was reasonably well calibrated, with slight overestimation of probabil-
ity at lower risk and overestimation at higher risk (Supplementary
Fig. 3).
Patients with neoplasia
n (%age)

Patients without neoplasia
(control) n (%age)

Total n (%age)

(n = 113) (n = 343) (N = 456)

23 (20%) 56 (16%) 79 (17%)
17 (15%) 61 (18%) 78 (17%)
67 (59%) 203 (59%) 270 (59%)
6 (5%) 23 (7%) 29 (6%)
75 (66%) 197 (57%) 272 (60%)
7 (6%) 9 (2%) 16 (4%)
22 (19%) 125 (36%) 147 (32%)
9 (8%) 12 (3%) 21 (5%)
100 (88%) 293 (85%) 393 (86%)
8 (7%) 46 (13%) 54 (12%)
5 (4%) (1%) 9 (2%)
85 (75%) 249 (73%) 334 (73%)
4 (4%) 20 (6%) 24 (5%)
24 (21%) 74 (22%) 98 (21%)
83 (73%) 257 (75%) 340 (75%)
6 (5%) 6 (2%) 12 (3%)
17 (15%) 13 (4%) 30 (7%)
7 (6%) 67 (20%) 74 (16%)



Table 3
Distribution and comparison of methylation markers by sample type.

Biomarker Geometric mean (95% Confidence interval) Ratio of geometric means
(95% confidence interval); P-Valuea

Neoplastic (n = 113) Matched non-neoplastic
(n = 113)

Control (n = 343) Neoplastic vs. control Non-neoplastic
vs. control

sFRP2 22.1 (19.7, 24.9) 14.0 (12.8, 15.4) 14.1 (13.4, 14.9) 1.57 (1.40, 1.76) 0.99 (0.89, 1.11)
(n = 105) (n = 106) (n = 303) P b 0.0001 P = 0.92

sFRP4 44.7 (42.1, 47.5) 34.4 (31.8, 37.2) 32.0 (31.0, 33.1) 1.40 (1.31, 1.49) 1.07 (1.00, 1.15)
(n = 108) (n = 109) (n = 312) P b 0.0001 P = 0.057

WIF1 21.6 (18.6, 25.2) 12.8 (11.1, 14.8) 13.9 (12.8, 15.0) 1.56 (1.33, 1.83) 0.93 (0.79, 1.08)
(n = 104) (n = 105) (n = 292) P b 0.0001 P = 0.33

APC1A 2.92 (2.37, 3.60) 2.54 (2.16, 3.00) 1.99 (1.83, 2.17) 1.47 (1.22, 1.77) 1.28 (1.07, 1.52)
(n = 102) (n = 102) (n = 297) P = 0.0001 P = 0.006

APC2 35.4 (32.1, 39.0) 22.3 (20.4, 24.4) 20.2 (18.9, 21.5) 1.76 (1.55, 1.99) 1.11 (0.98, 1.26)
(n = 111) (n = 106) (n = 322) P b 0.0001 P = 0.12

sFRP1 35.7 (30.5, 41.9) 24.1 (21.7, 26.7) 25.1 (23.2, 27.1) 1.42 (1.21, 1.67) 0.96 (0.82, 1.13)
(n = 39) (n = 29) (n = 118) P b 0.0001 P = 0.62

sFRP5 7.14 (5.75, 8.87) 4.90 (4.08, 5.90) 6.40 (5.64, 7.27) 1.12 (0.87, 1.43) 0.77 (0.60, 0.98)
(n = 102) (n = 95) (n = 275) P = 0.38 P = 0.03

MINT1 4.14 (3.32, 5.16) 3.40 (2.87, 4.04) 3.13 (2.82, 3.48) 1.32 (1.06, 1.64) 1.09 (0.89, 1.33)
(n = 73) (n = 70) (n = 200) P = 0.012 P = 0.42

RUNX3 8.73 (7.15, 10.7) 7.58 (6.37, 9.02) 7.44 (6.68, 8.29) 1.17 (0.94, 1.46) 1.02 (0.83, 1.25)
(n = 87) (n = 97) (n = 248) P = 0.15 P = 0.86

SOX7 5.70 (4.60, 7.06) 3.92 (3.41, 4.51) 5.41 (4.88, 5.99) 1.05 (0.85, 1.30) 0.73 (0.60, 0.87)
(n = 100) (n = 106) (n = 280) P = 0.63 P = 0.001

TUBB6 12.2 (10.5, 14.2) 8.04 (6.93, 9.34) 9.34 (8.52, 10.23) 1.31 (1.10, 1.56) 0.86 (0.72, 1.03)
(n = 108) (n = 95) (n = 292) P = 0.003 P = 0.11

a Computed from a 2-sample t-test on log transformed data.
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3.3. Identification of diagnostic threshold

We identified the value of the predictive model corresponding to a
likelihood ratio of at least 6, to identify thresholds which would have a
positive predictive value of at least 20% when disease prevalence was
4%. This corresponded to a threshold of 0.40 for Model 1, 0.28 for
Model 2, and 0.50 forModel 3. Sensitivity and specificity (with 95% con-
fidence intervals) at this threshold were 58.4% (48.8%, 67.6%) and
90.38% (86.8%, 93.3%) for Model 1, 79.5% (71.0%, 86.6%) and 86.9%
(82.8%, 90.3%) for Model 2 and 7.1% (3.1%, 13.5%) and 98.8% (97.0%,
99.7%) for Model 3.

To achieve a sensitivity of at least 90%: Model 1 would use a thresh-
old of 0.11with a specificity of 46.4% (41.1%, 51.8%) and positive predic-
tive value of 6.6% (5.9%, 7.3%); Model 2 would use a threshold of 0.11
with a specificity of 68.2% (63.0%, 73.1%) and positive predictive value
of 10.7% (9.11%, 12.3%); and Model 3 would use a threshold of 0.19
with a specificity of 27.1% (22.5%, 32.1%) and positive predictive value
of 4.9% (4.5%, 5.3%).
3.4. Models for missing data

ForModel 1, to providemodels for scenarioswhere data on less than
five of the chosen biomarkers amplify, separate models accounting for
all possible scenarios of at least three biomarkers were created through
re-analysis of the multiple imputation model with reduced sets of
Table 4
Estimates of discrimination, optimism and shrinkage for fitted models.

Modela Optimismb Shrinkageb Complete case
AUC (95% CI)

Compl
optimi

Model 1 0.012 0.93 0.871 (0.822, 0.919) 0.859 (
with TUBB6 0.015 0.91 0.875 (0.826, 0.923) 0.860 (
Model 2 0.012 0.91 0.930 (0.892, 0.967) 0.918 (
with TUBB6 0.015 0.88 0.932 (0.894, 0.970) 0.917 (
Model 3 0.021 0.90 0.682 (0.614, 0.750) 0.661 (

a Model 1 compared neoplasia with control; Model 2 compared dysplasia with control; Mod
b Optimism and shrinkage were estimated from internal validation using bootstrap samplin
predictor variables. This created an additional 15 models, the coeffi-
cients for which are reported in Supplementary Table 4.

4. Discussion

In this study we have demonstrated that a five marker methylation
marker panel accurately predicts ulcerative colitis associated dysplasia
and invasive neoplasia from formalin fixed mucosal biopsies taken at
endoscopy, both dysplastic and “normal” mucosa within the potential
field of epigenetic change. The generalisability of these findings is in-
creased through evaluation across a diverse population. The study has
also identified a second marker panel found in the background mucosa
that is (moreweakly) associatedwith neoplastic change. Our panels uti-
lise epigenetic biomarkers, which are emerging as a reproducible
method of quantifying disease risk in a population and suggest that
these markers may add value to endoscopic detection of colitis associ-
ated neoplasia.

Specific patterns of methylation change have been observed in colo-
rectal cancer [24] as well as specific changes observed in the transition
from dysplastic colorectal adenoma to malignant adenocarcinoma [25]
suggesting that methylation has good sensitivity as a biomarker of dis-
ease. To our knowledge, this is the first multiplex methylation bio-
marker panel in colorectal cancer.

Other cancer types have demonstrated potential utility of methyla-
tion analysis in screening for invasive disease. The UroMark study [26]
investigated the utility of a multiplex bisulphite PCR amplicon next
ete case adjusted for
sm AUC (95% CI)

Multiple imputation
AUC (95% CI)

Multiple imputation adjusted
for optimism AUC (95% CI)

0.810, 0.907) 0.845 (0.799, 0.891) 0.833 (0.787, 0.879)
0.811, 0.908) 0.848 (0.802, 0.894) 0.833 (0.787, 0.879)
0.880, 0.955) 0.892 (0.849, 0.934) 0.880 (0.837, 0.922)
0.879, 0.955) 0.894 (0.852, 0.937) 0.879 (0.837, 0.922)
0.593, 0.729) 0.696 (0.640, 0.751) 0.675 (0.619, 0.730)

el 3 compared matched non-neoplastic with control.
g.
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generation sequencing in the detection of muscle invasive bladder can-
cer in voided urine. Using a 150 marker panel based on differentially
methylated CpG loci in a discovery study, they validated their marker
panel in a cohort of 274 patients with muscle invasive bladder cancer,
finding an overall AUC = 0.97. A significant advantage of their cohort
was the ability to develop a marker panel based on a large sample
number epigenome wide association study, an approach that might be
appropriate in UC associated dysplasia, which has a heterogeneous ge-
netic profile.
Fig. 2.ROC curves forfinalfitted predictivemodels (aftermultiple imputation). A=Model
1 Neoplasia vs control; B = Model 2 Dysplasia vs control; C = Model 3 Matched non-
neoplastic vs control. X-axis = 1-specificity; Y-axis = Sensitivity.
Generally it is accepted that AUC N 0.80 represents a “good” bio-
marker panel for the detection of disease and multiple marker panels
using several different technologies have been developed across
multiple disease types that have reached this target [27–29]. The AUC
for detection of colitis associated neoplasia suggests this is a reliable
test for neoplasia, however we are seeking to enhance detection, not re-
place colonoscopy. Ultimately it is the early detection of occult disease
thatwill determine the value of this assay, and that requires prospective
evaluation, which is already underway.

It is likely with more extensive epigenetic analysis of this retrospec-
tive cohort we could enhance our observed AUC level. The study has
established that a reliable and robust assay can be developed for these
patients. We are currently developing an NGS based multiplex assay
to increase clinical utility. Whilst we under recruited tumour blocks
(113 rather than the planned 160) this still provided over 20 events
per variable for generating our 5-marker models, but will have in-
creased the maximum 95% confidence interval width for sensitivity by
3%. The study was however carried out on a genetically and geographi-
cally diverse population, supporting the generalisability of our findings.

This study has also developed a novel marker set for predicting the
presence of co-existing neoplasia from analysis of the background mu-
cosa. Unsurprisingly, the AUC value for this is significantly lower, and
the test therefor less robust. But the impact of these markers can only
be determined in a longitudinal analysis. These methylation changes
are present in a subset of the UC population, without associated neopla-
sia. Follow up of these patients will be required to determine whether
this represents a high risk population for whom therapeutic cancer pre-
vention strategies can be developed.

Three markers (SFRP1, MINT1 and RUNX3) were not taken forward
due to poor amplification rates during PCR, which we hypothesised
was because of the high GC content of these regionsmaking primer de-
sign difficult across FFPE derived DNA. Also, WIF1 methylation was
found not to contribute to the disease model, presumably because be-
cause its methylation levels were similar to other genes that were
analysed within this study that are all modulators of theWnt signalling
pathway. We also noticed that the direction of methylation (towards
hypomethylation) differing for themarkers in model 3, we hypothesise
that this is because of the previously demonstrated “wave” of hypome-
thylation [30] that occurs as a precursor to invasive malignancy and
therefore should occur in the disease associated non-dysplastic mucosa
we sampled here.

This study has proposed a methylation marker panel developed
fromanalysed a retrospectivemulticentre cohort of ulcerative colitis pa-
tients with and without colitis associated dysplasia. We are now com-
pleting a prospective diagnostic accuracy study, of 820 UC patients
within a surveillance programme, to evaluate the diagnostic utility of
this panel test.

In conclusion, we have successfully developed a multiplex methyla-
tion marker panel for the detection of ulcerative colitis associated dys-
plasia and neoplasia which has validated in a retrospective cohort and
is currently being evaluated in the context of a prospective clinical trial.
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