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Abstract

This paper describes the X-ray crystallographic structure of a derivative of the antibiotic 

teixobactin and shows that its supramolecular assembly through the formation of antiparallel β-

sheets creates binding sites for oxyanions. An active derivative of teixobactin containing lysine in 

place of allo-enduracididine assembles to form amyloid-like fibrils, which are observed through a 

thioflavin T fluorescence assay and by transmission electron microscopy. A homologue, bearing 

an N-methyl substituent, to attenuate fibril formation, and an iodine atom, to facilitate X-ray 

crystallographic phase determination, crystallizes as double helices of β-sheets that bind sulfate 

anions. β-Sheet dimers are key subunits of these assemblies, with the N-terminal 

methylammonium group of one monomer and the C-terminal macrocycle of the other monomer 

binding each anion. These observations suggest a working model for the mechanism of action of 

teixobactin, in which the antibiotic assembles and the assemblies bind lipid II and related bacterial 

cell wall precursors on the surface of Gram-positive bacteria.
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The peptide antibiotic teixobactin has been the subject of intensive research efforts for its 

promise of addressing antibiotic-resistant Gram-positive pathogens such as MRSA and VRE 

(Figure 1).1,2,3,4,5,6,7,8,9 Teixobactin is thought to bind highly conserved prenyl-

pyrophosphate-saccharide regions of lipid II and related membrane-bound cell wall 

precursors.1 Here we describe the first X-ray crystallographic structure of a full-length 

teixobactin analogue, which reveals an amphipathic amyloid-like assembly that acts as a 

multivalent receptor for sulfate anions. This crystallographic structure suggests a working 

model for the mechanism of action of teixobactin in which teixobactin forms fibrils or 

smaller assemblies that bind to the pyrophosphate groups of lipid II and related cell wall 

precursors on the bacterial cell membrane and thus disrupt cell wall biosynthesis. These 

findings should be of value both in understanding the mechanism of action of teixobactin 

and in rationally designing new antibiotics that target lipid II and related cell wall 

precursors.

While studying structure-activity relationships among teixobactin analogues, we have 

observed that teixobactin and analogues with good antibiotic activity (low MIC values) form 

gels, while analogues with poor activity (high MIC values) do not.10 For example, Lys10-

teixobactin (2), a homologue of teixobactin in which allo-enduracididine at position 10 is 

replaced with lysine (Figure 1), has an MIC of 0.5-1.0 μg/mL against S. aureus and forms a 

gel in PBS buffer, while D-Ala5,Lys10-teixobactin (MIC≥16 μg/mL) does not.10 This 

observation suggested that supramolecular assembly of teixobactin analogues could be 

involved in antibiotic activity.

We began exploring the supramolecular assembly of teixobactin and its analogues by 

performing thioflavin T (ThT) fluorescence assays and transmission electron microscopy 

(TEM) studies upon Lys10-teixobactin. When we incubated Lys10-teixobactin with PBS 

buffer and ThT and monitored fluorescence, we observed a lag phase of ca. 1 day, followed 

by an increase in fluorescence (Figure 2A).11 This behavior is a hallmark of amyloidogenic 

peptides and proteins. To further explore the assemblies that formed, we performed TEM 

studies. TEM images of the aggregated Lys10-teixobactin revealed amyloid-like fibrils 

(Figure 2B). The fibrils range from individual or paired filaments, ca. 8 nm across, through 

bundles of filaments ca. 100-200 nm in diameter.

To further study teixobactin supramolecular assembly, we turned to X-ray crystallography. 

Although we had successfully crystallized a truncated teixobactin analogue containing only 

residues 6–11, all efforts to crystallize full-length teixobactin analogues failed, giving only 

amorphous aggregates.12 We postulated that N-methylation of the peptide backbone would 

attenuate the aggregation and permit the growth of crystals.13,14 We discovered that N-

methylation of D-Gln4 indeed facilitated crystallization. We also incorporated an iodine atom 

in N-Me-D-Phe1 to give N-methyl-p-iodo-D-phenylalanine (N-Me-D-PheI
1), to permit 

determination of the X-ray crystallographic phases.15,16 Figure 1 illustrates the structure of 

the resulting teixobactin analogue 3, a homologue of Lys10-teixobactin (2). Teixobactin 

analogue 3 does not form a gel and exhibits only modest activity against S. aureus (MIC=16 

μg/mL).
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We began our crystallization efforts by screening teixobactin analogue 3 in 864 conditions in 

a 96-well plate format using crystallization kits from Hampton Research (PEG/Ion, Index, 

and Crystal Screen). Rectangular rod-shaped crystals grew in conditions containing sulfate 

salts (Li2SO4, MgSO4, Na2SO4, K2SO4, (NH4)2SO4) and polyethylene glycol (PEG) 3,350. 

With further optimization in a 24-well plate format, 0.19 M Na2SO4 and 15% PEG 3,350 

afforded crystals suitable for X-ray diffraction. Four X-ray diffraction datasets were acquired 

at the Stanford Synchrotron Radiation Lightsource (SSRL) at a wavelength of 2.07 Å. The 

datasets were processed using XDS17 and merged using BLEND18. The structure was solved 

by single-wavelength anomalous diffraction (SAD) phasing using the iodine anomalous 

signal from N-Me-D-PheI
1. The structure was refined with REFMAC519 in the P212121 

space group at 2.20 Å resolution. The asymmetric unit contains 32 crystallographically 

independent teixobactin analogue molecules, as well as 32 sulfate anions and 53 ordered 

water molecules.

The 32 molecules of teixobactin analogue 3 form a double helix of β-sheet fibrils in which 

each fibril is composed of 16 peptide molecules. Each fibril may be thought of as 

comprising hydrogen-bonded dimers. Figure 3 illustrates the structure of a representative 

hydrogen-bonded dimer. In the dimer, two molecules of teixobactin analogue 3 come 

together to form an antiparallel β-sheet in which Ile2 hydrogen bonds with Ile6, N-Me-D-

Gln4 pairs with N-Me-D-Gln4, and Ile6 hydrogen bonds with Ile2. The N-methyl groups of 

the two N-Me-D-Gln4 residues tilt upward, allowing the β-sheet to form in spite of the 

disruption of the hydrogen-bonding pattern. As a result, the β-sheet has four hydrogen bonds 

instead of six hydrogen bonds.

In the X-ray crystallographic structure, the dimer acts as a receptor for two sulfate anions. 

The amide NH groups of the macrocyclic ring of each monomer subunit act in conjunction 

with the N-terminus of the other monomer subunit to bind each sulfate anion. Each sulfate 

anion hydrogen bonds to the amide NH groups of D-Thr8, Ala9, Lys10, and Ile11 of one 

monomer subunit and the methylammonium group of the N-Me-D-PheI
1 of the other subunit. 

The β-sheet dimer is amphipathic: the side chains of N-Me-D-PheI
1, Ile2, D-allo-Ile5, and Ile6 

create a hydrophobic surface, and the side chains of Ser3, N-Me-D-Gln4, and Ser7, as well as 

the N-terminal methylammonium group, create a hydrophilic surface. The macrocyclic rings 

and the sulfate anions lie above the hydrophilic surface.

Sixteen molecules of teixobactin analogue 3 assemble to form each β-sheet fibril (Figure 4). 

The molecules assemble in an antiparallel fashion to form an extended amphiphilic β-sheet, 

with the hydrophobic residues on one face and hydrophilic residues on the other face. At 

each β-sheet interface between the dimers, Ser3 hydrogen bonds with Ser7, D-allo-Ile5 

hydrogen bonds with D-allo-Ile5, and Ser7 hydrogen bonds with Ser3. Each dimer interface is 

thus shifted by two residues, which results in an offset fibril structure.20 (In an aligned fibril 

structure, N-Me-D-PheI
1 would hydrogen bond with Ser7, Ser3 would hydrogen bond with D-

allo-Ile5, D-allo-Ile5 would hydrogen bond with Ser3, and Ser7 would hydrogen bond with 

N-Me-D-PheI
1.)

Two β-sheet fibrils wrap around each other to form a right-handed double helix of β-sheets, 

with the hydrophobic surfaces in the interior and the hydrophilic surfaces on the exterior 
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(Figure 5). Each double helix contains 32 molecules of teixobactin analogue 3 and 

corresponds to the asymmetric unit. The double helices are discrete structures in the crystal 

lattice and are not part of extended superstructures. The double helix is ca. 9 nm in length 

and ca. 4 nm in diameter in the middle, tapering to ca. 2 nm at the two ends. The ends of the 

double helix are closed, but the middle has a central cavity of ca. 1 nm in diameter and ca. 5 

nm in length that is surrounded by the hydrophobic side chains of N-Me-D-PheI
1, Ile2, D-

allo-Ile5, and Ile6 (Figure S5). The ordered water molecules surround the hydrophilic 

exterior of the double helix.

The X-ray crystallographic structure of the discrete double helix of β-sheets formed by 

teixobactin analogue 3 suggests a molecular model for the assembly of teixobactin analogue 

2 into the filaments and fibrils observed by TEM (Figure 2). In this model, teixobactin 

analogue 2 assembles to form extended networks of β-sheet fibrils, which wrap around each 

other to form extended double helices of β-sheets. Figure 6 illustrates this model. Unlike the 

discrete structures formed by N-methylated analogue 3, these double helices persist for 

many hundreds of nanometers and contain thousands of molecules. These fibrils further 

wrap or bundle together to form the fibrils and bundles observed by TEM. Although the N-

methyl group in teixobactin analogue 3 does not prevent β-sheet formation, it impedes the 

formation of extended fibrils by reducing the stability of the β-sheets that form.

The amphipathic assembly formed by teixobactin analogue 3 explains many of the 

previously reported structure-activity relationships in teixobactin analogues.10,21,22 Our 

laboratory has previously reported that substituting residues 1, 2, 5, 6, and 7 with L- or D-

alanine dramatically reduces or eliminates the antibiotic activity of Lys10-teixobactin, while 

substituting residues 3 and 4 with L- or D-alanine has much smaller effects upon activity.10 

Similar effects have been observed upon replacement of residues 2–7 with L- or D-lysine.21 

The densely packed hydrophobic surface formed by residues 1, 2, 5, and 6 on the interior of 

the double helix of β-sheet fibrils (Figure 4B) explains why mutating any of these bulky 

hydrophobic residues to L- or D- alanine or lysine disrupts supramolecular assembly and 

causes loss of activity. The hydrophilic side chains of residues 3 and 4 are on the hydrophilic 

exterior of the double helix of β-sheet fibrils (Figure 4A) and are substantially more tolerant 

of substitution. The hydrophilic side chain of residue 7 is also on the hydrophilic exterior of 

the double helix of β-sheet fibrils, however the X-ray crystallographic structure does not 

appear to explain the loss of activity upon mutating this residue to Ala or Lys. Additional 

studies have reported that substituting L-amino acids for D-amino acids at residues 1, 4, and 5 

in Arg10-teixobactin also dramatically reduces or eliminates antibiotic activity.22 Each of 

these stereochemical mutations disrupts the amphipathic β-sheet formed by residues 1–7 and 

causes loss of antibiotic activity.

The X-ray crystallographic structure of teixobactin analogue 3, in conjunction with the 

observation that Lys10-teixobactin (2) forms amyloid-like fibrils, suggest that 

supramolecular assembly may be involved in the antibiotic activity of teixobactin. We thus 

propose a working model for the antibiotic activity of teixobactin in which teixobactin forms 

dimers, higher-order assemblies, or fibrils through antiparallel β-sheet interactions.23 The 

dimers or dimer subunits create binding sites for the pyrophosphate groups of lipid II and 

related membrane-bound cell wall precursors, perhaps adhering strongly to the surface 
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through contacts with multiple lipid molecules.24 In the binding site, the amide NH groups 

of residues 8–11 of one teixobactin molecule in the dimer and the N-terminus of the other 

teixobactin molecule interact with each bound pyrophosphate group. In teixobactin (1), the 

guanidinium group of allo-End10 may make additional contacts to the pyrophosphate group.

This model shares a number of features in common with those observed for other antibiotics 

that target lipid II and related cell wall precursors, including ramoplanin and nisin.25,26 

Ramoplanin forms fibrils with lipid II analogues, and supramolecular assembly through the 

formation of antiparallel β-sheet dimers is thought to be important in its mechanism of 

action. 27,28,29,30,31 Nisin binds the pyrophosphate group of lipid II by means of a 

pyrophosphate cage formed by amide NH groups in and adjacent to the 16-membered 

lanthionine A ring.32,33

The unique pattern of hydrophobicity and stereochemistry of residues 1–7 of teixobactin 

makes fibril formation possible. By having evolved a D-L-L-D-D-L-L pattern of stereochemistry 

with a hydrophobic-hydrophobic-hydrophillic-hydrophilic-hydrophobic-hydrophobic-

hydrophilic pattern of side chains, Eleftheria terrae has achieved an amyloidogenic non-

ribosomal peptide that can assemble to form amphiphilic β-sheets and amyloid-like fibrils 

that can bind oxyanions. On the basis of our crystal structure, we have proposed a working 

model for the mechanism of action of teixobactin involving the formation of β-sheet dimers 

or higher-order supramolecular assemblies. We further recognize that the crystallographic 

observation of supramolecular assembly 34,35 and its potential involvement in antibiotic 

activity 36,37 does not assure its biological relevance.38,39 We envision the model put forth 

here to be worthy of further study and anticipate reporting these studies in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Teixobactin (1), Lys10-teixobactin (2), and N-Me-D-PheI

1,N-Me-D-Gln4Lys10-teixobactin 

(3).
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Figure 2. 
(A) ThT fluorescence assay of Lys10-teixobactin (2, four replicate runs with 120 μM peptide 

in PBS buffer at pH 7.4). (B) TEM images of the fibrils formed by Lys10-teixobactin (2).
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Figure 3. 
X-ray crystallographic structure of a representative dimer of N-Me-D-PheI

1,N-Me-D-

Gln4,Lys10-teixobactin (3). (A) Top view. (B) Side view.
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Figure 4. 
β-Sheet fibril formed by N-Me-D-PheI

1,N-Me-D-Gln4Lys10-teixobactin (3). (A) Top view. 

(B) Bottom view with hydrophobic side chains shown as spheres.
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Figure 5. 
Double helix of β-sheet fibrils formed by N-Me-D-PheI

1,N-Me-D-Gln4,Lys10-teixobactin (3). 

Sulfate anions are shown as spheres.
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Figure 6. 
Crystallographically based molecular model of an extended double helix of β-sheet fibrils 

formed by teixobactin analogue 2 and observed by TEM (Figure 2).
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