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curacy than two open search
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the PTMs in a draft map of hu-
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1.7 million modifications confi-
dently identified and localized.
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PTMiner: Localization and Quality Control of
Protein Modifications Detected in an Open
Search and Its Application to Comprehensive
Post-translational Modification Characterization
in Human Proteome*□S

Zhiwu An‡�‡‡, Linhui Zhai§‡‡, Wantao Ying¶, Xiaohong Qian¶, Fuzhou Gong‡�**,
Minjia Tan§ §§, and Yan Fu‡�¶¶

The open (mass tolerant) search of tandem mass spectra of
peptides shows great potential in the comprehensive de-
tection of post-translational modifications (PTMs) in shot-
gun proteomics. However, this search strategy has not
been widely used by the community, and one bottleneck of
it is the lack of appropriate algorithms for automated and
reliable post-processing of the coarse and error-prone
search results. Here we present PTMiner, a software tool
for confident filtering and localization of modifications
(mass shifts) detected in an open search. After mass-shift-
grouped false discovery rate (FDR) control of peptide-spec-
trum matches (PSMs), PTMiner uses an empirical Bayesian
method to localize modifications through iterative learning
of the prior probabilities of each type of modification occur-
ring on different amino acids. The performance of PTMiner
was evaluated on three data sets, including simulated data,
chemically synthesized peptide library data and modified-
peptide spiked-in proteome data. The results showed
that PTMiner can effectively control the PSM FDR and
accurately localize the modification sites. At 1% real
false localization rate (FLR), PTMiner localized 93%, 84
and 83% of the modification sites in the three data sets,
respectively, far higher than two open search engines
we used and an extended version of the Ascore local-
ization algorithm. We then used PTMiner to analyze a
draft map of human proteome containing 25 million
spectra from 30 tissues, and confidently identified over
1.7 million modified PSMs at 1% FDR and 1% FLR, which
provided a system-wide view of both known and un-
known PTMs in the human proteome. Molecular &
Cellular Proteomics 18: 391–405, 2019. DOI: 10.1074/
mcp.RA118.000812.

In the common practice of shotgun proteomics, tandem
mass spectrometry (MS/MS)1 data are used to identify pep-
tide sequences and the post-translational modifications
(PTMs) via sequence-matching using a certain algorithm. The
most commonly used peptide identification approach is re-
strictive protein sequence database search, in which a tight
tolerance for peptide precursor masses is used and a few
modification types are considered (1). However, this approach
fails to detect unspecified or unknown types of modifications
which have been shown to widely exist in the proteome data
(2–5). In order to detect both known and unknown types of
modifications, various unrestrictive approaches for peptide
identification have been proposed in recent years (6), includ-
ing the open (mass-tolerant) database search (7–20), the de
novo sequencing (21–23), the spectral clustering (24–26), the
curated modification search (27, 28), and the comprehensive
variable modification search with speeding-up technologies
such as refinement search or ion indexing (29–32). Among
them, the most typical way is the open database search
strategy, in which a very large peptide precursor mass toler-
ance, e.g. 500 Da, is allowed and the precursor mass shifts
between the experimental spectra and the theoretical spectra
of candidate peptides in database are considered as potential
unanticipated modifications.

However, the open search strategy has not been widely
adopted in current proteomic community, because of two
major bottlenecks. The first one is the dramatically reduced
search speed because of the greatly expanded search space.
This issue was addressed recently by the MSFragger software
which uses a fragment-ion indexing technique to speed up
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the database search (20). Another bottleneck that leaves to be
overcome is the lack of appropriate algorithms for automated
post-processing of the error-prone search results, such as
misidentified peptide sequences or misplaced modification
sites. Firstly, the common target-decoy approach (33) to es-
timating the FDR of peptide-spectrum-matches (PSMs) can
be problematic if directly used for quality control of modifica-
tion identifications. This is mainly because of the different
abundances of modified peptides in the spectra and in the
search space of candidate peptides, as has been demon-
strated in the restrictive search strategy (34–36). In an open
search, the abundances of peptides with different mass shifts
in the search space are similar but their abundances in the
spectra can be dramatically different, resulting in the hetero-
geneity of FDRs for different mass shifts at the same score
level. Kong et al. (20) tried to solve this problem by extending
the mass model in the PeptideProphet algorithm, in which
mass shifts are first discretized into bins of 1 Da in size, and
then their distribution is modeled to estimate the likelihoods of
observing a correct versus incorrect identification among all
PSMs belonging to a bin. However, in the open search results
there are typically many modifications detected in a very small
number of spectra, and accurate FDR estimation for them is
very challenging and remains unresolved. An effective solu-
tion applicable to various search engines is needed.

More importantly, even though the FDRs of PSMs can be
properly controlled, determining which residue site on a pep-
tide bears the mass shift is a more challenging task (37, 38).
Some open search engines simply localize the mass shift to
the site yielding the highest PSM score, e.g. PTMap (13) and
MODa(16), whereas others do not localize the mass shifts at
all, e.g. SEQUEST (18) and MSFragger (20). For example,
when scoring candidate peptides, MSFragger does not look
for modified fragments, which is a major reason for its fast
search speed but also leaves modifications un-localized.
Therefore, dedicated mass-shift localization algorithms are
in great need to improve the reliability and interpretability of
the open search results. Existing modification localization
algorithms were mostly designed for specific types of mod-
ifications, e.g. phosphorylation, which are identified by the
traditional restrictive search (39–53), but there were few
algorithms available for open search results.

Modification localization for open search results is much
more challenging than restrictive search results (37, 38). In an
open search, every residue site on the peptide can possibly

be responsible for the mass shift, and there is only one dis-
criminative b- or y-ion between two adjacent sites. Because
of the common absence of some fragment ions and the
existence of noise peaks in a spectrum, the determination of
modification site could be very difficult and error-prone in
many instances. In fact, the intensity information of fragment
ion peaks is very useful to distinguish between real and ran-
dom peak matches but is rarely used by existing localization
algorithms (50, 51). For example, an extended version of
Ascore, which allows all amino acids to be modified by any
mass, is based on a simple probabilistic model of the number
of matched peaks and does not take full advantage of the
peak intensity information (18). On the chemical basis of pro-
tein modification, the knowledge on the modification speci-
ficity is another important source of information to discrimi-
nate ambiguous sites (37). This prior knowledge is often
absent in practice but can be potentially learned from the data
of large scale. For example the open search algorithms MS-
Alignment (7) and MODa (16) use a “strength in numbers”
strategy to move some modifications from rarely localized
amino acids to richly localized ones. Similarly, another algo-
rithm PTMClust (54) corrects the modification locations by
formally considers the empirical probability of each amino
acid to be modified by each type of modification. However,
PTMClust depends on existed localization results of search
engines and does not make use of spectrum information. The
PTMFinder algorithm (55) uses a peptide-level method to
re-localize modifications by grouping partly overlapped mod-
ified peptide sequences to assess the accuracy of modifica-
tion sites. Hence, it is limited to modified peptides that occur
multiple times in the same data set. In summary, a modifica-
tion localization algorithm, which is dedicatedly designed for
open search results and built on a flexible mathematical
model to make full use of multiple types of information, is still
lacking.

In this article, we developed a software tool named PTMiner
for intelligent post-processing of open search results to pro-
duce reliable, localized and annotated PTM identifications.
PTMiner mainly includes an extended version of the transfer
FDR approach (34) for accurate grouped FDR estimation, and
an unrestrictive modification localization algorithm that uses a
Bayesian model to provide a site-specific probability score to
measure the localization certainty. Validation experiments on
simulated and real spectra demonstrated that PTMiner can
effectively control the FDRs of different types of modifications
and reliably localize their sites, much superior in performance
than the two used open search engines (pFind (56–58) and
MODa (16)) and the popular localization algorithm Ascore (18).
We applied PTMiner to the draft map of human proteome
containing 25 million spectra from 30 human tissues (59).
More than 3 million modified PSMs were identified at 1%
FDR, and the mass shifts of over 1.7 million PSMs were
localized at 1% FLR, providing a system-wide view of com-
prehensive modifications in the human proteome.

1 The abbreviations used are: MS/MS, tandem mass spectrometry;
PTM, post-translational modification; FDR, false discovery rate; FLR,
false localization rate; PSM, peptide-spectrum match; MSFS, modi-
fication specificity frequencies of sample; GMM, gaussian mixture
model; LC-MS, liquid chromatography mass spectrometry; CID, col-
lision-induced dissociation; HCD, higher-energy collision dissocia-
tion; SDS-PAGE, sds-polyacrylamide gel electrophoresis; bRP, basic
reversed-phase liquid chromatography; SNP, single nucleotide poly-
morphism; SAV, single acid variation; PPM, parts per million.
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EXPERIMENTAL PROCEDURES

PTMiner Algorithm Overview—As shown in Fig. 1, given the PSMs
from an open search, PTMiner first performs PSM filtering and FDR
estimation. A modified version of transfer FDR (34) is used for
grouped FDR estimation. Then, for the filtered PSMs, PTMiner con-
ducts clustering of precursor mass shifts, and regards each cluster as
one type of modification. Next, the mass shifts in each cluster are
localized by estimating the posterior probability of each site on the
peptide being the modification location. The posterior probability is
computed from two parts, i.e. a prior probability and a conditional
probability. The former is derived from the MSFS vector (defined in
the Mass Shift Localization section), which measures the probabilities
that the modification occurs on different amino acids and is learned
iteratively from the data. The latter is computed from an intensity
distribution model that is fitted from the matched peaks of unmodified
PSMs. Finally, based on the localization results, PTMiner annotates
the modification types of mass shifts according to the Unimod mod-
ification database (60). Note that PTMiner does not use any informa-
tion of the Unimod database when localizing mass shifts. The details
of each step are given below.

PSM FDR Estimation—The FDRs of unmodified and differently
modified peptides are likely to be different at the same score thresh-
old (supplementary Note S1, supplemental Fig. S1). We call the FDR
estimated for all PSMs the global FDR, and the FDR estimated sep-
arately for a group of PSMs the group FDR. The basic idea of transfer
FDR used by PTMiner is to calculate the group FDR from the global
FDR that is easy to estimate in general. Here, we group mass shifts
into bins that are 1-Da in size and are centered at integer values, e.g.
[15.5, 16.5] Da, and follow the same framework as in our previous
work (34) to build up the quantitative relationship between group and
global FDRs as follows,

FDRî�x� �
N�x�

Ni�x�
�i�x�FDR�x� (Eq. 1)

where the symbol i denotes the i-th bin of mass shifts, N�x� is the
number of all target PSMs with scores greater than x, Ni�x� is the
number of target PSMs in the i-th bin with scores greater than x,
FDR�x� is the global FDR at the score threshold of x, and �i�x� is the
probability that a PSM belongs to the i-th bin given that the PSM is
random and is scored better than x.

Following our previous work (34), �i�x� is approximated by a linear
function of x

�i�x� � ax � b (Eq. 2)

Because the matches to the decoy sequences are definitely false
identifications, we make use of decoy PSMs to estimate the two
coefficients a and b. Specifically, we calculate the proportion of decoy
PSMs falling into the i-th bin at varying score threshold and use the
proportions as training samples to fit the above linear function (ex-

ample shown in supplemental Fig. S2). Briefly, the principle behind
the transfer FDR approach is that because the decoy PSMs observed
in a bin might often be too few to perform accurate FDR estimation
directly, the transfer FDR uses the fitted function to extrapolate the
number (proportion) of decoy PSMs for the effective score threshold
for FDR control.

Mass Shift Clustering—There may be more than one types of
modifications falling into a 1-Da mass-shift bin, e.g. acetylation
(42.010565 Da) and tri-methylation (42.046950 Da) in the bin of [41.5,
42.5] Da. In order to distinguish mass shifts coming from different
types of modifications, PTMiner carries out clustering analysis for
mass shifts within each bin using the Gaussian mixture model (GMM)
and treats each cluster as one modification type in the localization
algorithm. First, a discrete convolution algorithm is invented to learn
the initial parameters of GMM, i.e. component number K, initial means
(Ms) and variances (Vs) (supplementary Note S2). Next, GMM is used
to fit the mass shifts with the initial parameters. A component, whose
variance is less than 1.5 times of the system measure variance VAR
(the variance of mass shifts falling into the interval of [-T, T]) and has
mass shifts more than a user-specified number (default is 5), will be
regarded as one modification type. These clustered mass shifts will
be localized using the iteratively updated prior probabilities whereas
un-clustered will not.

Distribution Fitting of Matched-peak Intensities—Before mass-shift
localization, each spectrum is preprocessed as follows. First all the
peak intensities are divided by the maximal intensity in this spectrum
to generate relative intensities, then the peaks with relative intensities
less than 0.01 are removed, and finally the relative intensities of
remaining peaks are rescaled by taking their square roots. The inten-
sity distribution of matched peaks is fitted based on the matched
peaks of unmodified PSMs assuming the distribution form is lognor-
mal (example shown in supplemental Fig. S3).

Mass Shift Localization—We assume that the mass shifts in one
cluster come from the same type of modification and do modification
localization for these mass shifts in combination. As described below,
for clustered mass shifts PTMiner iteratively updates their prior prob-
abilities on different amino acids, but for un-clustered mass shifts,
PTMiner does not use the prior probability and takes the conditional
probability as the final posterior probability.

Taking one mass shift cluster as example, we suppose there are
total N PSMs in this cluster, marked as PSMi, with i � �1, . . . , N�. PSMi

consists of spectrum Speci and matched peptide sequence Pepi with
length Li. Let Pepi� j� denote the amino acid in position j of Pepi, with
j � �0, 1, . . . , Li � 1� where Pepi�0� and Pepi�Li � 1� represent the
N-terminus and C-terminus of Pepi, respectively, and Pepij denote the
modified peptide sequence with modification occurring on Pepi� j�.
PTMiner uses a Bayesian model to calculate the posterior probability
that a modification occurs at the j-th site on Pepi as follows,

FIG. 1. Algorithm workflow of
PTMiner. The processes in the red block
is the localization algorithm, and the red
arrows in it represent iterative updating
of prior probabilities.
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Pr�Pepij �Speci� �
Pr�Pepij�Pr�Speci �Pepij�

�k�0
Li�1 Pr�Pepik�Pr�Speci �Pepik�

(Eq. 3)

where Pr�Pepij� denotes the prior probability that this modification
occurs at Pepi� j� and Pr�Speci�Pepij� denotes the conditional probabil-
ity that the Speci is generated from Pepij.

In order to calculate the posterior probability, we need two types of
probabilities, i.e. the conditional probability Pr�Speci�Pepij� and the
prior probability Pr�Pepij�. To evaluate the conditional probability
Pr�Speci�Pepij�, we first match the experimental peaks of Speci with all
the theoretical peaks of the unmodified and all modified forms of
fragment ions of Pepi. After matching, we get the corresponding
matched peaks in Speci, forming the peak set Peaksi

*. We assume that
matched peaks are independent, which yields,

Pr�Speci�Pepij� � �
Peak � Peaksi

*

Pr�Peak�Pepij� (Eq. 4)

Let F�x� denote the cumulative distribution function of matched-peak
intensity that is learned from unmodified peptides. We define

Pr�Peak�pepij� � �F(I), if peak and pepij are consistent
1 � F�I�, otherwise

(Eq. 5)

where I is the intensity of Peak, and Peak and Pepij are consistent if
Peak matches one of the theoretical peaks of Pepij.

Next, we illustrate how to calculate the prior probability Pr�Pepij�. As
we know, every modification has its amino acid specificities. For
example, phosphorylation mainly occurs on Ser, Thr and Tyr. We
define the ratios of amino acid specificities of one modification as
modification specificity frequencies (MSF), which are represented by
a K-dimensional vector 	� � ��1,�2. . .,�K�T composed of K (� 104)
possible combinations of sites (i.e. 20 types of amino acids, and
N-/C-terminus) and positions (i.e. N-/C-terminus of peptide/protein,
or anywhere on peptide). For example, the MSF vector 	� of phos-
phorylation can be set equally as 1/3 for ‘S, Anywhere’, ‘T, Anywhere’
and ‘Y, Anywhere’, respectively, and zeros for the others. For different
protein samples, the frequencies may be very different, e.g. prokary-
otic versus eukaryotic samples or enriched versus non-enriched sam-
ples (61). To consider the sample dependence, we introduce the term
Modification Specificity Frequencies of Sample (MSFS), which we will
learn from data using an EM-like algorithm (details given later). We
derive prior probability Pr�Pepij� from MSFS as follows,

Pr�Pepij� � Pr�Pepi� j�� �
�h�Pepi� j���q�h�Pepi�q��

(Eq. 6)

where h is a mapping from the set of all modification specificities
to their corresponding indexes in MSFS vector 	� , i.e. h:x3 y,
x � �all modification specificities� and y � �1, 2, . . . , K�.

We regard the site owning the maximal posterior probability, de-
noted by p*, as the location of the modification. Finally, we estimate
the FLR of a set of localized mass shifts by averaging their posterior
error probabilities

FLR �
1
n�

i�1

n

�1 � pi
*� (Eq. 7)

where n is the size of the set.
EM-like algorithm for prior probability updating—We use an EM-like

algorithm to estimate the MSFS vector 	� as follows,
(0) Set initial values 	� �0� and set t � 0. Each element is set to be 1/K

by default;

(1) Generate the prior probability of each amino acid of Pepi from

	� �t�, that is � �h�Pepi�0��
�t�

�q�h�Pepi�q��
�t� �, . . . ,

�h�Pepi�Li�1��
�t�

�q�h�Pepi�q��
�t� , for i � �1,2,. . .,N�.

(2) Calculate the posterior probabilities for all sites using Eq. 3;

(3) Update 	� �t � 1� using �k
�t � 1� �

1
N

�i � 1
N �j � � j:h�pepi� j�� � k,0 � j � Li �1�

Pr�Pepij�Speci�, where k � �1, 2, . . . , K�;

(4) Calculate the change of MSFS, 
� � �
k�1

K

��k
�t�1� � �k

�t��. If 
� is

less than a given threshold (0.01 in our study), stop and output;
otherwise, set t � t�1 and return to step (1).

Modification Annotation—To determine the identity of a mass shift,
PTMiner compares the localized mass shift with each modification in
the Unimod database. If the mass shift is matched to the mass of
some modification within the precursor mass tolerance of the mass
spectrometer, PTMiner further examines whether the localization of
the mass shift is consistent with the modification specificity definition.
If both the mass and the specificity conform to the modification, the
mass shift is regarded as fully annotated. If only the mass is matched
but the specificity is not, the mass shift is regarded as partially
annotated. Otherwise, the mass shift is regarded as un-annotated.

Because some mass shifts might have been induced by in-source
fragmentation, nonspecific digestion or missed cleavages, PTMiner
conducts a check procedure for all the PSMs. PTMiner adds amino
acids one by one (up to 5) to the peptide N- or C-termini and checks
whether the altered mass shift can be fully annotated. Note that the
added amino acids come from the corresponding protein sequence in
the database. At the same time PTMiner also deletes amino acids one
by one (up to 5) from peptide N- or C-termini and checks the altered
mass shift.

RESULTS

We used three data sets to evaluate PTMiner, including the
simulated data generated by computer program, the chemi-
cally synthesized peptide data (62) and the complex proteome
data with spiked-in modified peptides. Besides, a draft map of
human proteome (59) was used to demonstrate PTMiner
utility.

Simulated Data—To evaluate the accuracy of PTMiner in
modification localization, some test data with standard an-
swers are needed. For this purpose, we generated a large
data set containing 956,550 simulated spectra from random
peptide sequences, each of which either had no modification
or one of the nine designed types of modifications, including
oxidation (M), deamidation (N), methylation (K), phosphoryla-
tion (S) and so on (supplementary Note S3). The simulated
spectra were divided into eleven subsets, including nine mod-
ification subsets, one un-modification subset and one con-
tamination subset (supplemental Table S1). To evaluate how
realistic these simulated spectra were, we made a compari-
son between the simulated and real spectra (supplemental
Fig. S4).

Chemically Synthesized Peptide Library Data—The experi-
mental MS/MS spectra in this data set came from part of the
ProteomeTools project (62, 63). Briefly speaking, about 5,000
synthesized peptides carrying 21 different modifications in-
cluding several types of lysine acylation, lysine and arginine
methylation, tyrosine phosphorylation and nitration as well as
proline hydroxylation were analyzed by mass spectrometry. A
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total of 25 raw files (including 4 types of unmodified peptides)
were downloaded from the PRIDE data repository (https://
www.ebi.ac.uk/pride/, dataset identifier PXD009449), and
converted to mgf format using the msconvert.exe tool from
ProteoWizard (3.0.7069 64-bit version) (64). Conversion was
performed using vendor-provided centroiding and default pa-
rameters. This data set contained 1,023,540 mass spectra.

Modified-peptide Spiked-in Complex Proteome Data—Six
modified peptides were chemically synthesized, each con-
taining one modification site (supplemental Table S2). The
synthetic peptide mixture (50 pmol of each one) was mixed
with 1 	g trypsin digested HeLa or E. coli whole cell proteins,
respectively. Mass spectrometry data were acquired by Q
Exactive mass spectrometer in HCD mode. See supplemen-
tary Note S4 for details of LC-MS/MS analysis.

Draft Map of Human Proteome—The MS/MS spectra in this
data set were from the draft map of human proteome de-
scribed in Kim et al. (59) and was downloaded from the PRIDE
data repository (https://www.ebi.ac.uk/pride/, dataset identi-
fier PXD000561). Briefly, samples from 30 human tissues,
including 17 adult tissues, 7 fetal tissues, and 6 hematopoietic
cell types, were fractionated at the protein level by SDS-
polyacrylamide gel electrophoresis (SDS-PAGE) or at the
peptide level by basic reversed-phase liquid chromatography
(bRP), and then analyzed on high-resolution Fourier-transform
mass spectrometers (LTQ-Orbitrap Elite and LTQ-Orbitrap
Velos) using HCD fragmentation, resulting in a total of
24,954,916 MS/MS spectra (59). All these spectra were ana-
lyzed in this paper. Thermo RAW files were converted to mgf
format using the pParse tool (65) with default parameters
except that the co-elute option was set to 0.

pFind Search Engine—MS/MS spectra were searched us-
ing pFind (version 2.8.5) (56–58) in the open search mode
(Open_KSDP score selected). Open_KSDP treats the precur-
sor mass shift as a potential modification and localizes it to
the site that yields the highest peptide score. The simulated,
synthesized peptide library and human proteome map data
were searched against the random protein sequences, the
sequences of chemically synthesized peptides and the Swiss-
Prot human protein sequences (downloaded on October 28,
2015), respectively. For the modified-peptide spiked-in pro-
teome data, the combined sequences of the Swiss-Prot hu-
man or E. coli proteins (downloaded on June 27, 2018) and
the proteins that the spiked-in peptides belongs to were
searched. All the sequences were concatenated with their
reversed protein sequences for target-decoy based FDR es-
timation. For simulated data, chemically synthesized peptide
data, modified-peptide spiked-in proteome data and the human
proteome map data, the precursor mass tolerances were all set
to 500 Da and the fragment mass tolerances were set to 0.05
Da, 20 PPM, 20 PPM and 0.05 Da, respectively. For all the data
sets, candidate peptides were fully tryptic with up to 2 allowed
miss-cleavages, and carbamidomethylation on Cys was con-
sidered as a fixed modification except for the simulated data.

No variable modification was considered for the simulated data
and the human proteome map data, and oxidation on Met was
set as variable modification for the chemically synthesized pep-
tide data and the modified-peptide spiked-in E. coli proteome
data. For the modified-peptide spiked-in HeLa proteome data,
oxidation on Met and acetylation on protein N-terminal were set
as variable modifications.

MODa Search Engine—MODa (v1.23) (16) was run in the
single-blind mode with a maximum modification size of 500
Da for the simulated and the chemically synthesized peptide
data. Parent mass tolerances of the mass spectrometer were
set to be 10 PPM and 20 PPM for the simulated and the
chemically synthesized peptide data, respectively. Fragment
mass tolerances were both set to 0.05 Da. No fixed modifi-
cation was specified for simulated data set and carbamidom-
ethylation on Cys was specified as fixed modification for the
chemically synthesized peptide data. High-resolution MS/MS
search was enabled and fully tryptic digestion was specified
with at most two missed cleavages for both data set. Other
parameters were set as default. The “anal_moda.jar” program
bundled with the MODa software was used to estimate the
global FDR of PSMs. In order to do separate and transfer FDR
estimation, we first used “anal_moda.jar” to export all PSMs
of MODa by setting a wrong prefix of decoy proteins, and then
estimated the separate and transfer FDRs for the exported
PSMs at varying score threshold.

Extended Ascore—The Ascore algorithm was initially de-
signed for localization of phosphorylations to amino acids
serine, threonine, or tyrosine (40). To compare it with PTMiner,
we extended it to allow for the localization of any modification
mass to any type of amino acids as done by Chick et al.
recently (18). In order to validate our implementation, we
tested the extended Ascore on phosphorylated peptides and
compared with the original Ascore software. The phosphoryl-
ated peptides and original Ascore localization results came
from the original Ascore web site (http://ascore.med.harvard.
edu/ascore.php). The comparison results showed that our
extended Ascore was almost equivalent to the original Ascore
software (supplemental Fig. S5, supplemental Table S3).

Correctness Judgment of Peptide Identification and Modi-
fication Localization—(A) The simulated data. A peptide iden-
tification is judged as true if it conforms to one of the following
three situations, (1) the identified sequence is the same as the
real one; (2) the identified sequence is part of the real one; and
(3) the identified sequence covers the real one. For modifica-
tion localization, there are four criteria as follows, (1) if the
identified peptide sequence is the same as the real one, we
consider the localization is correct when the location is the
same as designed; (2) if the identified peptide is part of or
covers the real peptide sequence, we also consider the local-
ization is correct when the localized amino acid is the de-
signed modification site. For example, if the real peptide
sequence is RM(oxidation)DSSSLRAYSK and the identified
peptide is MDSSSLRAYSK, we consider the localization is
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correct when the mass shift (oxidation � Arg) is localized to
the first Met; (3) if a peptide identification is false, then the
localization is certainly false; (4) if there are multiple locations
(with equal probabilities), we regard all of them as false even
when they include the true one. (B) The chemically synthe-
sized peptide data and the modified-peptide spiked-in pro-
teome data. We considered only those PSMs matching to the
sequences of synthetic peptides with expected correspond-
ing mass shifts to evaluate PTMiner localization accuracy. If
one mass shift was localized at the designed site, then we
thought the localization was correct.

Validation Results On Simulated Data—Because the corre-
sponding peptide sequences and modification locations of
these simulated spectra were known, the accuracies of
PTMiner in FDR estimation and modification localization could
be evaluated. We searched these simulated spectra using two
search engines pFind (56–57) and MODa (16) in the open
search mode, and then analyzed their search results using
PTMiner and Ascore (18). In FDR analysis, we compared the
transfer FDR with the global FDR (the traditional target-decoy
based FDR estimation executed on the whole set of PSMs)
and the separate FDR (the traditional target-decoy based FDR
estimation executed on the subsets/groups of individual mod-
ification types). In modification localization, we compared
PTMiner with the search engines themselves and the ex-
tended Ascore algorithm.

Performance Comparison of Transfer, Global and Separate
FDRs—We compared the transfer, global and separate FDRs
on the open search results of pFind and MODa (Table 1,
supplemental Table S4, and supplemental Fig. S1). First, we
evaluated the performance of global FDR. Our analysis results
show that although the global FDR was accurately estimated
for the whole set of PSMs (unmodified and various modified
peptides), it was too conservative for each of the subsets of
designed modifications. For example, on the search result of
pFind (Table I), the real global FDR was 0.97%, very close to
the control level 1%, but the real group FDRs of both unmod-
ified and modified peptide identifications with designed mod-
ification types were almost zero. This overly conservative FDR

estimation resulted in a quite low spectral identification rate,
i.e. only 14.6% in total. Note that the 0.97% global FDR was
from PSMs with mass shifts out of the design set.

Next, we compared the two group FDR approaches, i.e. the
separate FDR and our transfer FDR. Results show that the
separate FDR could control the FDRs for large group but
failed for small groups (Table I, supplemental Table S4). For
example, on the search result of pFind, the real FDR of phos-
phorylation group was up to 4.55% at 1% estimated global
FDR. On the other hand, our transfer FDR can effectively
control the FDRs for all designed modification groups and is
therefore a better choice of FDR control method for open
search results, in which small groups are very common.

Mass-shift Localization Results—On the PSMs filtered at
1% transfer FDR, we compared the mass shift localization
results of different methods, including the search engines
themselves (pFind and MODa), the extended Ascore algo-
rithm, and our PTMiner. We sorted the localization results of
each method in descending order by their localization score,
e.g. the posterior probability in PTMiner, and evaluated the
real FLR and the proportion of localized mass shifts at varying
score threshold. For search engines, we used the PSM score
as the localization score because they do not have a specific
localization score to measure the localization reliability. For
pFind and MODa, we used the E-value and Probability score,
respectively.

Fig. 2A–2B plot the localization proportion against the real
FLR for different methods. It is shown that the two search
engines performed poorly in localizing the mass shifts, both
PTMiner and Ascore greatly improved the localization accu-
racy, and PTMiner was much superior to Ascore. For exam-
ple, at the 1% real FLR, the localization proportions were only
0.07% and 0.13% for pFind and MODa, respectively. Ascore
increased the localization proportions to 0.52% and 17.43%,
whereas PTMiner achieved 93.06% and 79.18%, respec-
tively. These results indicate that the PSM scores of search
engines are not suitable for the measurement of localization
confidence, and the simple extension of restrictive localization
algorithms to open search results is helpful but cannot pro-

TABLE I
The real FDRs and the numbers of spectral identifications obtained with three FDR estimation approaches (global, separate and transfer FDRs)
at 1% FDR control level on the pFind search results of the simulated spectra. “Sub-Correct” means the identified peptide is part of or covers

the real peptide sequence.

Total Spectra
Real FDR Identification number

Global Separate Transfer Global Separate Transfer

Unmodified 800,000 0.00% 0.29% 0.29% 127,148 601,375 601,375
Oxidation 30,000 0.02% 0.84% 0.86% 6,343 23,265 23,369
Deamidation 15,000 0.00% 0.86% 0.56% 2,240 9,506 8,940
Tri-Methyl & Acetyl 10,000 0.00% 1.06% 1.08% 1,513 5,072 5,166
Methyl 1,000 0.00% 2.30% 0.45% 133 305 222
Di-Methyl 500 0.00% 1.44% 1.63% 70 139 123
Phospho 50 0.00% 4.55% 0.00% 13 22 17
Sub-Correct – 0.00% 0.00% 0.00% 956 1,152 681
Other Modifications – 100% 100% 100% 1,358 951 372
Sum 856,550 – – – 139,744 641,787 640,265
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vide satisfactory sensitivity. In contrast, by full consideration
of the features of the open search strategy, PTMiner showed
remarkable superiority.

Besides, PTMiner can also estimate the FLR based on the
localization probabilities. For the open search results of both
pFind and MODa, the estimated FLRs showed good linear
relationship with the real FLRs (Fig. 2C–2D). The probability
thresholds of for 1% real FLR pFind and MODa search results
were 0.837 and 0.775, respectively. The Ascore thresholds for
1% real FLR of pFind and MODa results were 60 and 27,
respectively (supplemental Fig. S6).

Validation Results on Chemically Synthesized Peptide Li-
brary Data From the ProteomeTools Project—We searched
these synthetic peptide spectra using pFind (56, 57) and
MODa (16) in the open search mode, and analyzed their
search results using PTMiner and Ascore (18).

FDR Estimation—Different from the simulated data, we did
not exactly know the peptide sequences of spectra, so we
cannot calculate the precise real FDR. The golden criterion for
the correctness of a PSM is that the peptide is one of the
chemically synthesized peptides and bears the given modifi-
cation in the ProteomeTools project. However, by using this
criterion, we found that the FDR could not be accurately
calculated, because some quality control peptides and impu-
rities (byproducts) existed in this dataset. Some of them could
be confidently identified by the search engines, e.g. a
spiked-in quality control peptide (supplemental Fig. S7A) and

a byproduct LQKbiotinQSVVYGGK from the expected product
TLQKbiotinQSVVYGGK (supplemental Fig. S7B).

In the pFind search results, global, separate and transfer
FDR approaches achieved 949619, 1003346 and 998114
PSMs at 1% FDR, respectively. In the MODa search results,
800534, 805484 and 796297 PSMs were accepted by the
three FDR approaches at 1% FDR, respectively. We found
that the numbers of filtered PSMs by the three FDR ap-
proaches were almost the same, which was mainly because
of the similar abundances of unmodified and different modi-
fied peptides in the spectra.

Mass-shift Localization Results—For the PSMs filtered at
1% FDR, we first used PTMiner to localize these mass shifts.
We selected those results matching to synthetic peptide se-
quences and mass shifts of the expected modifications to
compare PTMiner with the search engines (pFind and MODa)
and the extended Ascore algorithm. As similarly did for the
simulated data, we used E-value for pFind, Probability score
for MODa, Ascore for Ascore algorithm and posterior proba-
bility for PTMiner to sort the localization results in descending
order to calculate the real FLR and the proportion of localized
mass shifts at varying score threshold. At 1% real FLR, the
localization proportions for pFind and MODa were almost
zero. Ascore increased the proportion to 16% for the results
of pFind but remained around zero for the results of MODa,
whereas PTMiner increased the proportions to 84% and 71%,
respectively, for the results of pFind and MODa (Fig. 3). There-

FIG. 2. PTMiner confidently localized the mass shifts on the simulated data. A–B, PTMiner increased the localization proportions greatly
compared with the search engines (A for pFind and B for MODa) and the extended Ascore at the same real FLR thresholds. C–D, The real and
estimated FLRs were fitted using linear regressions (C for pFind and D for MODa).
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fore, the localization results on chemically synthesized pep-
tide data also indicated that PTMiner behaved better in local-
izing the mass shifts in open search results than search
engines (pFind and MODa) and Ascore.

Validation Results on Modified-peptide Spiked-in Complex
Proteome Data—We searched the two modified-peptide
spiked-in data sets using pFind (56, 57) in the open search
mode and analyzed the search results using the three FDR
estimation methods. For the HeLa data set, a total of 267
designed PSMs (both sequences and mass shifts were de-
signed) were obtained, from which 104, 117, and 175 PSMs
were kept by the global, separate and transfer FDR ap-
proaches at 1% FDR level, respectively. For the E. coli data
set, a total of 260 designed PSMs were obtained, from which
126, 142, and 163 PSMs were kept by the global, separate
and transfer FDR approaches at 1% FDR level, respectively
(Table. 2). These results indicated that transfer FDR per-
formed best among the three FDR estimation approaches. We
then used PTMiner and Ascore to localize these mass shifts.
At 1% real FLR, PTMiner, Ascore and pFind correctly local-
ized 146, 46, and 3 mass shifts from the 175 designed PSMs
of the HeLa data set, respectively. From the 163 designed
PSMs of the E. coli data set, PTMiner, Ascore, and pFind
correctly localized 91, 35, and 18 mass shifts at the same 1%
FLR level, respectively (Fig. 4). This result indicated, again,
that PTMiner is significantly more accurate than pFind and
Ascore in localizing mass shifts.

Application to the Draft Map of Human Proteome—We next
used a large-scale public-accessible data set, the draft map
of human proteome (59) to test the performance of PTMiner.
This data set, which contains �25 million MS/MS spectra
generated from 30 human tissues, was searched using pFind
in the open search mode with a 500-Da precursor window. In
line with the findings on simulated data, we observed the big
FDR heterogeneity among different modification types (exam-
ples shown in Supplemental Fig. 8), indicating that global FDR
control alone is not reliable for unrestrictive PTM analysis. We
used PTMiner to analyze the search results. The FDR of PSMs
was controlled at 1% within each 1-Da mass shift bin using
the transfer FDR approach. This resulted in a total of

9,272,908 PSMs accepted at 1% FDR, of which 3,347,581
(36.10%) had mass shifts outside [-0.5, 0.5] Da and were
potentially modified peptides (Fig. 5A). These mass shifts
were then localized by PTMiner to specific amino acids on
peptides, and the FLR was estimated. Of the modified PSMs,
1,755,278 (52.43%) were kept at 1% estimated FLR. The
histogram of the mass shifts of these PSMs showed heavy
clusters (Fig. 5B). For example, 502,315 (28.62%) of them
were around 15.996 Da, very close to the mass of oxidation
modification.

The localized mass shifts were next compared with the
modifications in the Unimod database for annotation. In total,
83.51% (1,465,908/1,755,278) of the confidently localized
mass shifts were fully annotated by their mass values and
amino acid specificities. If one mass shift was annotated by
multiple modifications, we manually determined which was
the most possible one, and then increased its count by one
(supplemental Table S5). Among them 38 types of modifica-
tions had �1000 PSMs, including the commonly reported
oxidation on Met, formylation on peptide N-terminus, deami-
dation on Asn, acetylation on protein N-terminus and so on
(supplemental Table S6). Their localized sites were consistent
with expectation. For example, 97.59% of oxidations were
localized to Met, and 89.21% of deamidations were localized
to Asp (Fig. 6A). Besides, a total of 148,583 (8.46%) mass
shifts were annotated by their mass values only whereas their
localized amino acids were not included in the Unimod data-
base, and among them 21 types of modifications had �1,000
PSMs (supplemental Table S7). The remaining 140,787
(8.02%) mass shifts could not be annotated by Unimod, and
among them 28 1-Da bins had �1,000 PSMs (supplemental
Table S8).

Analysis of Fully Annotated Modifications—Apart from the
common artificial modifications probably introduced during
sample processing (such as oxidation on Met), we also de-
tected many well-documented but less studied PTMs such as
oxidation on Pro, di-oxidation on Met, deamidation on Arg,
succinylation on Lys, etc (supplemental Fig. S9, supplemental
Fig. S10). We showed the tissue specificities for the fully
annotated modifications with more than 1000 PSMs in Fig.

FIG. 3. PTMiner confidently local-
ized the mass shifts on the chemically
synthesized peptide data. A–B, PTMiner
increased the localization proportions
greatly compared with the search en-
gines (A for pFind and B for MODa) and
the extended Ascore at the same real
FLR thresholds.
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6B. Some of these modifications could possibly be artifacts
introduced by sample handling, such as carbamylation and
dehydration. Interestingly, we found some PTMs, which
showed strong preference to specific tissues, could possibly
be biologically meaningful. Notably, deamidation on Arg (sup-
plemental Fig. S10A) was mainly detected in adult spinal cord
and adult retina, which has been reported in the central nerv-
ous system and is associated with a number of neurological
diseases (66), and succinylation on Lys (supplemental Fig.
S10B) was mainly observed in adult front cortex and adult
liver. In order to understand the possible roles of these PTMs
that differentially occurred in the tissues, we performed en-
richment analysis using the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database (Fig. 6C–6D). For example, in the
KEGG metabolic pathway analysis, the arginine-deamidated
proteins were significantly enriched in phototransduction in
adult’s retina. Phototransduction is important for the visual
system, which could convert light into electrical signals in
the retina of the eye (67). As for the adult’s spinal cord, the

arginine-deamidation modified proteins were mostly en-
riched in neuron cell related bioprocess, such as gap junc-
tion, tight junction and axon guidance (68). For the lysine-
succinylation, the modification proteins were significantly
enriched in chronic neurodegenerative diseases in adult
frontal cortex, such as the Parkinson’s disease (69). How-
ever, in adult’s liver, the succinylation modified proteins
were mostly enriched in cytochrome P450-involved meta-
bolic pathways, suggesting succinylation could be closely
associated with the xenobiotic metabolism role of liver.
Therefore, the KEGG pathway enrichment analysis sug-
gested that these two modifications are closely associated
with tissue-specific functions (70).

We observed a total of 1,968 mass shifts which were an-
notated as succinyl:2H(4), succinyl:13C(4) or benzoyl, which
were known to be derived from chemical labeling reagents
(400 PSMs had E-Value scores 
1e-30, one example shown
in supplemental Fig. S11). However, no isotopic labeling re-
agents were used in these samples. A very recent study
reported that lysine benzoylation is a new type of protein
PTMs (71), which exactly matches to this mass shift we ob-
served here. Therefore, it is likely that some PSMs of this
mass shift could possibly be in vivo benzoylation. This case
further suggested that some mass shifts annotated as arti-
facts or chemical labels could be unreported biological pro-
tein modifications.

In addition to modifications, some single amino acid varia-
tions (SAVs) were also detected and annotated by PTMiner. In
order to make sure that they were truly caused by single nucle-
otide polymorphisms (SNPs), we further compared our results
with the UniProt database, and found 3874 of the detected
SAVs had SNP annotations. Some SAVs are tissue specific. For
example, rs16967510, localized to protein myosin-11 (V1289A),
was found mainly in adult colon and adult urinary bladder,
rs6085324 localized to protein secretogranin-1 (S93T), was
found mainly in adult adrenal gland. The spectra of peptides
with these SAVs show excellent consistency with those of cor-

TABLE II
The identification numbers of chemically synthesized peptides from the modified-peptide spiked-in proteome data with three FDR approaches
(global, separate and transfer FDRs) at 1% FDR. “PSMs” was the number when no filtering was used. Here “ph,” “me,” “ac,” and “pr” represent

phosphorylation, methylation, acetylation, and propionyl, respectively.

Separate FDR (1%) P62805 P0A870 P0A7K2 P62807 A4FNV9 A4FBI4

Species Homo E. coli E. coli Homo S. erythraea S. erythraea
Sequence DNIQGITKPAIR EYAPAEDPGVVSVSEIYQYYK GATGLGLKEAK KESKYSVYVYK TYKLYVGGK HGGGAFSGKDPSK
Mod 7,T (ph) 7,D (me) 9,E (me) 4,K (ac) 3,K (pr) 9,K (pr)
HeLa

PSMs 21 86 19 68 41 32
Global FDR (1%) 5 48 0 33 4 14
Separate FDR (1%) 0 67 8 33 0 9
Transfer FDR (1%) 21 61 1 19 41 32

E. coli
PSMs 24 77 22 69 37 31
Global FDR (1%) 9 52 0 33 17 15
Separate FDR (1%) 9 63 10 17 26 17
Transfer FDR (1%) 0 56 1 69 22 15

FIG. 4. Comparison of PTMiner with pFind and Ascore on the
modified-peptide spiked-in proteome data. “All” indicates correct
PSMs (both peptide sequence and mass shift were correct) obtained
at 1% transfer FDR. “PTMiner,” “Ascore,” and “pFind” indicate cor-
rect localization results given by PTMiner, Ascore and pFind at 1%
FLR, respectively.
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responding non-variant peptides (without SAVs), justifying the
confidence of these SAV identifications by PTMiner (supple-
mental Fig. S12, supplemental Table S9).

Moreover, we observed that some modifications showed
strong difference between two sample preparation meth-
ods, i.e. bRP and SDS-PAGE (supplemental Fig. S13).
These mass shifts could be method-specific in vitro modi-
fications. For example, methylation on Glu was mainly ob-
served in SDS-PAGE samples whereas dehydrated on Thr
was mainly found in bRP samples. Therefore, more careful
attention should be paid and more evidences are needed if
these mass shifts were considered as endogenous PTMs in
future experiment.

Analysis of Partially and Un-annotated Modifications—We
noted that in the open search results, the ‘mass shifts’ might
also be resulted from other events than modifications, such
as in-source fragmentation, nonspecific digestion and
missed cleavages. PTMiner features the detection of some
of such events that could not be fully annotated. In brief,

PTMiner attempts to consider some amino acid addition to
the N- or C-terminus of identified peptide sequence, or
deletion of some amino acids from the N- or C-terminus, to
check whether such mass shift can be logically explained.
From the 289,370 partially and un-annotated PSMs, PT-
Miner recovered 116,057 (40.11%) new peptide sequences
in this way. For example, 4528 (�76%) mass shifts in the bin
of [240.5, 241.5] Da were explained as the loss of two amino
acids of Ile/Leu and Lys (samples shown in supplemental
Table S10).

We also found that some mass shifts that could not be
annotated or explained by Unimod showed amino acid spe-
cific preference. For example, the mass shifts falling in [11.99,
12.01] Da, which coincides with the mass of thiazolidine mod-
ification, were mainly localized to peptide N-termini (99.39%,
12104/12178) (Fig. 7, supplemental Fig. S14). This modifica-
tion cannot be added on peptide N-terminus except in form-
aldehyde treated samples, but there is no mention of such
treatment (59). Another example is the 149 mass shifts falling

FIG. 5. Result summary of unrestrictive modification identification in an open search and modification localization by PTMiner for the
draft map of human proteome. A, The numbers of total MS/MS spectra, PSMs with 1% FDR, modified PSMs among them, and modified
PSMs with 1% FLR, as well as the proportions of fully annotated (by both mass and location specificity), partially annotated (by mass only) and
unannotated PSMs. B, Histogram of 1,755,278 mass shifts with 1% FDR and 1% FLR.
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FIG. 6. Modification analysis of the human proteome data. A, Modification specificity distributions on amino acids and protein/peptide
termini for the fully-annotated modifications with 1% FDR and 1% FLR. Normalization was performed so that the sum of modification
specificities of each modification was equal to 1. Only fully annotated modifications with more than 1,000 PSMs were shown. B, Modification
distributions across the 30 human tissues. For each modification, the number of modified PSMs from each tissue was divided by the total
number of the spectra from that tissue, and then the derived ratios were normalized across all tissues such that the sum for this modification
was 1. These fully annotated modifications with more than 1,000 PSMs were shown in this figure. C–D, KEGG enrichment analysis results of
deamidation and succinylation modifications that were differentially observed in the tissues.
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into [33.993, 34.013] Da, which were mainly localized to His
(90%, 133/149). However, they could not be annotated by any
type of modification in Unimod (Fig. 8, supplemental Fig. S15).
They might be probably from some unknown types of modi-
fication but deducing the identities of unannotated mass
shifts is more than a computational problem and has been
outside the scope of this article.

DISCUSSION

We presented in this article a software tool named PTMiner
for accurate estimation of modification-specific FDRs and
probability-based modification localization to support more
reliable PTM detection in an open search. We validated our
approach using extensive data sets, including simulated data,
chemically synthesized peptide data and modified-peptide
spiked-in complex proteome data. We also searched and
analyzed a draft map of human proteome to comprehensively
characterize the PTMs in human proteome. PTMiner aims at
reducing the enormous uncertainty in the data produced in an
open search, which is becoming increasingly popular and
promising for the field of proteomics.

Particularly, the reliable localization of detected mass shifts
can provide great help to verify their correctness and determine
their identities, which is critical for protein PTM analysis. For
example, some modifications, which have identical or very sim-
ilar masses but occur on different amino acids, e.g. the amino
acid mutation Ala-�Ser and oxidation modification (their
masses are both 15.994915 Da), cannot be distinguished with-
out localization information. On the other hand, the open search
results are very complicated because of the intrinsic complexity
of PTMs in the cellular proteome and the simplistic implemen-
tation of open search engines, and we cannot address every
problem. For example, PTMiner is currently unable to handle
multiple modifications existing on a peptide. Also, PTMiner is to
some extent dependent on the Unimod modification database
which may not be complete and error-free at present. However,
as the knowledge on protein modifications increases in the
future, the accuracy of our method will be also improved. In
summary, we expect that PTMiner, as a first statistical analysis
tool for open database search results, will facilitate more reliable
discovery-oriented PTM studies in proteomics.

FIG. 7. The mass shift of 12.0054 Da was localized to peptide N-terminus. MS/MS spectra of modified (top) and unmodified (bottom) forms
of the peptide are shown and compared. Red arrows between two spectra indicate the shift of fragment ion peaks. It can be seen that the two
spectra are very similar to each other in terms of their peptide fragmentation patterns, justifying the reliability of identification and localization.
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Data and Software Availability—The chemically synthesized
peptide data and the draft map of human proteome were
downloaded from the ProteomeXchange Consortium (http://
proteomecentral.proteomexchange.org) with the dataset
identifiers PXD009449 and PXD000561, respectively. The
modified-peptide spiked-in proteome data have been depos-
ited to iProX (a full member of the ProteomeXchange con-
sortium, http://www.iprox.org) with the dataset identifier
IPX0001318000. All of the spectra identified as modified pep-
tide have been uploaded to MS-Viewer data sets (72) (the
search keys for the simulated data, the chemically synthe-
sized peptide library data, the modified-peptide spiked-in
complex proteome data and the draft map of human
proteome are 9yxuedofcl, qjgpjpgwsg, nsdxlsv1qu and
jr8wrhwar6, respectively).The PTMiner software and the ex-
tended Ascore algorithm coded with Matlab are available at
http://fugroup.amss.ac.cn/software/ptminer/ptminer.html.

PTMiner now supports spectra generated using collision-
induced dissociation (CID) or HCD in ‘mgf’ format as data
input, and the output of pFind, Sequest or MSFragger as the

search result input. Besides, PTMiner can also read in tab-
delimited files transferred from any search engines.
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