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A novel form of JARID2 is required for
differentiation in lineage-committed cells
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Abstract

Polycomb repressive complex-2 (PRC2) is a group of proteins that
play an important role during development and in cell differentia-
tion. PRC2 is a histone-modifying complex that catalyses methyla-
tion of lysine 27 of histone H3 (H3K27me3) at differentiation genes
leading to their transcriptional repression. JARID2 is a co-factor of
PRC2 and is important for targeting PRC2 to chromatin. Here, we
show that, unlike in embryonic stem cells, in lineage-committed
human cells, including human epidermal keratinocytes, JARID2
predominantly exists as a novel low molecular weight form, which
lacks the N-terminal PRC2-interacting domain (DN-JARID2). We
show that DN-JARID2 is a cleaved product of full-length JARID2
spanning the C-terminal conserved jumonji domains. JARID2 knock-
out in keratinocytes results in up-regulation of cell cycle genes and
repression of many epidermal differentiation genes. Surprisingly,
repression of epidermal differentiation genes in JARID2-null kerati-
nocytes can be rescued by expression of DN-JARID2 suggesting
that, in contrast to PRC2, DN-JARID2 promotes activation of dif-
ferentiation genes. We propose that a switch from expression of
full-length JARID2 to DN-JARID2 is important for the up-regulation
differentiation genes.

Keywords cell differentiation; JARID2; N-terminal domain; polycomb;

proteolytic cleavage

Subject Categories Chromatin, Epigenetics, Genomics & Functional

Genomics; Stem Cells

DOI 10.15252/embj.201798449 | Received 19 October 2017 | Revised 15

October 2018 | Accepted 25 October 2018 | Published online 20 December 2018

The EMBO Journal (2019) 38: e98449

Introduction

Polycomb group (PcG) proteins are very important transcriptional

repressors and play a crucial role in regulating gene expression

during development (Margueron & Reinberg, 2011; Holoch &

Margueron, 2017). They function by catalysing histone modifi-

cations that result in repressive chromatin and down-regulation of

neighbouring genes. Polycomb group proteins form two major

complexes, polycomb repressive complex-1 (PRC1) and polycomb

repressive complex-2 (PRC2). PRC2 functions by catalysing

trimethylation of histone H3 at lysine 27 (H3K27me3; Simon &

Kingston, 2013). Polycomb repressive complex-2 consists of four

core proteins, SUZ12, EED, RbAp46/48 and the catalytic subunit

EZH2. At the molecular level, how PRC2 is recruited to its sites of

action is not yet completely clear. Recent proteomic studies have

revealed that PRC2 transiently associates with many proteins such

as MTF2, EPOP, AEBP2 and JARID2 that typically interact with

PRC2 in a mutually exclusive fashion resulting in different

subclasses of PRC2 (Kim et al, 2009; Peng et al, 2009; Shen et al,

2009; Landeira et al, 2010; Li et al, 2010; Pasini et al, 2010; Walker

et al, 2010; Casanova et al, 2011; Landeira & Fisher, 2011; Beringer

et al, 2016; Grijzenhout et al, 2016; Liefke et al, 2016; Holoch &

Margueron, 2017). Although the molecular roles of many of these

interacting proteins are not well understood, many of them can

modulate enzymatic activity or recruitment of PRC2 to chromatin

(Holoch & Margueron, 2017).

JARID2 is required for recruitment of PRC2 to chromatin in

embryonic stem cells (Peng et al, 2009; Shen et al, 2009; Landeira

et al, 2010; Li et al, 2010; Pasini et al, 2010; Landeira & Fisher,

2011; Holoch & Margueron, 2017). Multiple studies in mouse and

human show that N-terminal region of JARID2 (Fig 1A) is required

for PRC2 recruitment and modulation of PRC2 activity (Cooper, Son

et al, 2013; Kaneko et al, 2014a; da Rocha et al, 2014; Sanulli et al,

2015; Grijzenhout et al, 2016). The N-terminal region consists of a

nucleosomal binding domain and a RNA binding domain that

together modulate PRC2 binding to genomic DNA (Son et al, 2013;

Kaneko et al, 2014a; da Rocha et al, 2014). In addition, recently it

has been shown that this region of JARID2 is needed for recruitment

of PRC2- to PRC1-modified nucleosomes (Cooper et al, 2016). It is

clear from multiple studies that removal of JARID2 results in

reduced occupancy of PRC2 on chromatin (Peng et al, 2009; Shen

et al, 2009; Landeira et al, 2010; Li et al, 2010; Pasini et al, 2010;

Landeira & Fisher, 2011). But surprisingly, JARID2 removal does

not result in significant and consistent changes in H3K27me3 levels

(Landeira & Fisher, 2011). Although in some studies JARID2 deple-

tion in ES cells is observed to decrease H3K27me3 levels (Landeira

et al, 2010; Pasini et al, 2010), other studies have reported either no

change (Peng et al, 2009) or increased levels of H3K27me3 upon
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JARID2 removal (Peng et al, 2009; Shen et al, 2009). Further adding

to this lack of clarity on the role of JARID2 in modulation of PRC2

activity, in in vitro studies JARID2 appears to inhibit (Peng et al,

2009; Shen et al, 2009) as well as activate (Li et al, 2010) the

methyltransferase activity of EZH2. It has been suggested that

JARID2’s N-terminal domain interacts with RNAs as well as nucleo-

somes (Son et al, 2013; Kaneko et al, 2014b) and its post-transla-

tional modifications determine its effect on PRC2 activity (Sanulli

et al, 2015). A recent study has also shown that, in mouse ES cells,

JARID2 can modulate PRC2 activity through its interaction with

another histone methylase, setDB1 (Fei et al, 2015). JARID2-setDB1

interaction has also been identified in lineage-committed cells

including lymphocytes (Macian et al, 2002; Pereira et al, 2014) and

cardiomyocytes (Mysliwiec et al, 2011) where JARID2 is shown to

modulate other histone modifications such as H3K9me3.

The C-terminal of JARID2 has three conserved domains (jmjN,

ARID, jmjC) that are characteristic of the jumonji family of histone

modifiers (Fig 1A), which catalyse demethylation of histones. The

C-terminal ARID domain of JARID2 is required for DNA binding. In

addition, JARID2 C-terminus also has a zinc finger domain, which is

needed for its interaction with SUZ12, another component of PRC2

(Peng et al, 2009). The jmjC domain is required for demethylase

activity in other jumonji family members. However, two amino acid

changes in JARID2’s demethylase domain are thought to render it

inactive (Klose et al, 2006; Landeira & Fisher, 2011).

Despite its lack of demethylase activity, JARID2 acts as an impor-

tant regulator of gene expression in embryonic stem (ES) cells

where it is needed for cell signalling networks necessary for main-

taining the pluripotent state (Sun et al, 2008; Assou et al, 2009;

Yaqubi et al, 2015; Sahu & Mallick, 2016). Consistent with this, a

recent report suggests that forced expression of JARID2 alongside

PRDM14, ESRRB and SALL4A can efficiently induce pluripotency in

fibroblasts (Iseki et al, 2016). More importantly, a number of publi-

cations have shown that JARID2-deleted ES cells either cannot dif-

ferentiate or are delayed in differentiation (Peng et al, 2009; Shen

et al, 2009; Landeira et al, 2015; Sanulli et al, 2015). These findings

reflect a crucial role of JARID2 in early embryonic development at

the onset of ES cell differentiation. Indeed, JARID2 is indispensable

for normal embryonic development and its deficiency leads to defor-

mation of several tissues in mice as well as in humans (Jung et al,

2005; Takeuchi et al, 2006; Landeira & Fisher, 2011). Embryos with

a complete loss of JARID2 either do not survive or die soon after

the birth (Jung et al, 2005; Takeuchi et al, 2006; Shen et al, 2009;

Landeira et al, 2010).

Although the importance of JARID2 in ES cells has been estab-

lished, its role in lineage-committed cells has not been well studied,

mainly because of its much lower level of expression or perceived

absence (Zhang et al, 2011; Son et al, 2013). In this study, we show

that, in many lineage-committed cells including human epidermal

keratinocytes, JARID2 predominantly exists as a low molecular

weight (LMW) form. In the LMW form, the N-terminal region is

cleaved from full-length JARID2 resulting in a stable C-terminal frag-

ment (DN-JARID2). This form of JARID2 lacks N-terminal nucleo-

somal and RNA binding domains (Son et al, 2013; Kaneko et al,

2014a), implying a substantial effect on JARID2 functionality and its

interactions with PRC2 complex. Consistent with this, a recent study

showed that C-terminal region of JARID2 cannot restore H3K27me3

marks (Cooper et al, 2016). We show that the level of DN-JARID2

increases as differentiation of keratinocytes progresses. We find that

JARID2 knockout results in impaired differentiation of keratinocytes

and this effect is reversed by expression of DN-JARID2, indicating
that this form of JARID2 is needed for activation of polycomb target

genes during differentiation.

Results

A low molecular weight form of JARID2 exists in lineage-
committed cells

JARID2 has been extensively studied in embryonic stem (ES) cells

where it is reported as a 140 kDa protein (Fig 1B). It is thought that

JARID2 is not expressed or is expressed at very low levels in

lineage-committed cells (Zhang et al, 2011; Son et al, 2013). There-

fore, we investigated JARID2 mRNA as well as protein expression in

multiple types of lineage-committed human cells (Fig 1B and C). In

most cell types, JARID2 mRNA is present at detectable but lower

levels than in the ES cells (Fig 1C). Surprisingly, when we investi-

gated protein levels in lineage-committed cells (Fig 1B), we detected

another band at around ~80 kDa that has not been reported previ-

ously. We observed that in the majority of cell types we studied, this

band is much more dominant than the 140 kDa band corresponding

to the canonical full-length JARID2 isoform-1 (Fig 1B). To verify

that this low molecular weight form is encoded by JARID2 and is

not a non-specific band cross-reacting with our antibody, we trans-

fected keratinocytes (HaCaT cells), HEK293T and K562 cells

(Figs 1D and EV1A and B) with different JARID2 siRNAs designed

to target the 50 (exon 3) and 30-ends (exon 15) of JARID2 mRNA

(Appendix Table S1). Transfection of both siRNAs resulted in disap-

pearance of the ~80kDa band along with the canonical 140 kDa

band (Figs 1D and EV1A and B). The siRNA-mediated knockdown

and Western blot with an alternative JARID2 antibody (Fig EV1B)

confirmed that this is a low molecular weight (LMW) form of

JARID2. To rule out the possibility that this band is a degradation

product of JARID2, we also extracted protein in the presence of

increasing amount of protease inhibitor and observed no difference

in the levels of the LMW form (Fig EV1C).

LMW JARID2 is not a transcriptional isoform

Next, we sought to understand whether the LMW form is translated

from a distinct transcript of JARID2. According to latest ENSEMBL

annotations of human genes, three different mRNA isoforms of

JARID2 have been predicted (Fig 2A; Rosenbloom et al, 2015).

According to size predictions, the three isoforms would produce

proteins of sizes 140, 120 and 106 kDa, much larger than ~80 kDa

indicating that this LMW form might not correspond to one of the

annotated isoforms of JARID2. In addition, the mRNA for isoform-3

does not express exon 15, which is targeted by one of the siRNAs

used in our knockdown experiment (Figs 1D and 2A), indicating

that the ~80 kDa form is not a product of isoform-3. To test whether

it might be a product of a mRNA variant transcribed from an inter-

nal promoter that is not yet part of current annotations, we analysed

a large collection of CAGE (cap analysis gene expression) tag data

that is available through the ENCODE database (Rosenbloom et al,

2013). In CAGE analysis, short fragments from 50 ends of capped
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Figure 1. JARID2 exists as a LMW form (~80 kDa) in many cell types.

A A schematic diagram showing functional domains of JARID2: UIM, ubiquitin interaction motif; transcription repressive domain consisting of sub-domains 1-3; JmjN,
JumonjiN; ARID, AT-rich DNA binding domain; GSGFP which is a SUZ12 binding domain; JmjC, JumonjiC; and ZF, zinc finger domain. Domains 1-3 constitute PRC2-
associated domains. Domain 1 is required for PRC2 stimulation, domain 2 is needed for binding to EZH2, and domain 3 is needed for nucleosomal binding. The RNA
binding domain has been indicated with dashed box.

B Immunoblot of whole-cell lysates from multiple human lineage-committed cell lines using a C-terminal anti-JARID2 antibody. The size of canonical form is 140kDa,
but an additional strong band was detected at around ~80 kDa. The blot is divided according to cell types, which are indicated in the figure.

C qPCR measurements of JARID2 mRNA levels in different cell lines. The RNA levels were measured relative to 18S rRNA. Means and SEs are calculated over at least two
independent experiments and three technical replicates. The data are represented as mean � SE.

D Immunoblot showing that the ~80 kDa band disappears upon treatment of HEK293T and HaCaT cells with siRNAs against exon 3 and exon 15 of JARID2 RNA. Non-
silencing control (NSC) was used as a transfection control. Densitometric measurements corresponding to this experiment are shown in Fig EV1A.

Source data are available online for this figure.
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RNAs are sequenced and mapped back to the genome to find tran-

scription start sites. CAGE tag data clearly indicate that in most of

the cell types we tested (Fig 1B), JARID2 is predominantly tran-

scribed from single transcription start site matching that of JARID2

isoform-1 (Fig 2B). We also designed primers to specifically amplify

each isoform of JARID2 (Appendix Table S2) and carried out qPCR

analysis to detect levels of the three different isoforms. Our qPCR

measurements further confirmed that isoform-1 is the predominant

isoform in these cells (Fig 2C). To rule out the possibility that the

~80 kDA band is a product of an mRNA with same transcription

start site as isoform-1, but with a different splicing pattern, we

amplified JARID2 mRNA using RT–PCR with primers in exon 3 and

exon 15 (Appendix Table S3) which, according to our knockdown

experiments, are part of mRNA that produces this low molecular

weight isoform (Fig 1D). Using these primers, only one product was

amplified and its size as well as sequence confirmed that it

contained all the exons between exon 3 and exon 15 (Fig 2D, see

Appendix). In addition, RT–PCR using primers in the first and the

last exon also amplified only one product of the expected size

(Fig 2D). This confirmed that the LMW form of JARID2 is a product

of mRNA with a complete set of exons as in the case of full-length

mRNA of isoform-1. This suggested that LMW JARID2 is either a

cleaved protein product of full-length JARID2 or is translated from

an internal site that is distinct from the isoform-1 translation site.

LMW JARID2 is a cleaved product of isoform-1

To check whether JARID2 mRNA is translated from two distinct

translation start sites, one corresponding to the reported 140 kDa

product and other corresponding to the ~80 kDa low molecular

weight form, we analysed published ribosome profiling data (Michel

et al, 2015). We could only identify a single ribosome initiation site,

which corresponded to the 140 kDa product (Fig 2E). Taking into

consideration the above observations and the fact that we used a

JARID2 antibody that recognises the C-terminal region of JARID2,

we can predict that a ~80 kDa protein can be produced from transla-

tional start site which is far downstream of translational start site

of isoform-1. However, if LMW JARID2 is a cleaved product of

full-length JARID2, rather than a distinct isoform translated from an

internal start site, mutating the translation start site of JARID2

isoform-1 should also knockdown LMW JARID2. To test this, we

knocked out isoform-1 by CRISPR/Cas9-mediated targeting of its

translation start site (Fig EV2A and B). In knockout (KO) cells,

where we targeted the translation start site of isoform-1, we detected

the same level of mRNA as wild type (Fig EV2C). However, the

LMW JARID2 protein band disappeared (Figs 2F and EV2D). This

supports the hypothesis that the 80 kDa LMW form and JARID2

isoform-1 have identical translation start sites and that the LMW

form is a cleavage product of JARID2 isoform-1.

To further verify that the LMW form is indeed a cleavage product

of JARID2 isoform-1, we transfected HaCaT cells with N-terminally

flag-tagged ORF of full-length JARID2 (FL-JARID2) isoform-1

expressing plasmid vector. If LMW JARID2 is truly derived from

full-length JARID2, we predicted that exogenous expression of full-

length JARID2 would also result in an increase in the levels of the

LMW form. Consistent with this hypothesis, we observed that LMW

levels increased 2- to 3-fold upon exogenous expression of full-

length JARID2 (Figs 2G and EV2E and F). However, in a blot with

anti-Flag antibody, which should detect the N-terminal tag on

JARID2, we could not detect the full-length JARID2, 80 kDa band or

any other low molecular weight product (Fig EV2G), indicating that

the N-terminal portion of JARID2 is missing in these cells. To further

confirm this, we carried out mass spectrometry identification of the

LMW band. In this experiment, we detected peptides spanning only

the C-terminal of JARID2 (Figs 2H and EV3). All these observations

strongly support the hypothesis that the LMW form is a cleaved

product of full-length JARID2 isoform-1 and is missing the N-term-

inal portion. Accordingly, we designated the LMW form DN-JARID2.
To confirm the size of DN-JARID2 and to estimate the cleavage posi-

tion, we prepared plasmid constructs expressing different length C-

terminal fragments of JARID2 (Appendix Fig S1A) and checked if

their predicted protein products (103, 88 and 79 kDa) run at a simi-

lar size to DN-JARID2 (Appendix Fig S1B). We found that the frag-

ment spanning 554-1,246 amino acids produced a protein product

(79 kDa) that co-migrated with DN-JARID2 confirming that the size

of DN-JARID2 is ~80 kDa. This is also consistent with the mass

▸Figure 2. JARID2 LMW is a cleaved product of full-length JARID2 isoform-1.

A A schematic showing three different isoforms of human JARID2, as predicted by ensembl annotations. The translation start site of each isoform is labelled using green
arrow. Predicted sizes (140, 120 and 106 kDa) of proteins corresponding to three isoforms have been indicated.

B CAGE-seq data showing the transcription start sites of JARID2 in different cell lines. CAGE peak is mainly observed at JARID2 isoform-1 in most cell types. JARID2 gene
structure is shown at the top.

C qPCR measurements of RNA levels (n = 3) for the three isoforms of JARID2 in HaCaT cells. The RNA levels are plotted relative to 18S rRNA. Level of JARID2 isoform-1 is
significantly higher than that of isoform-2 (***P < 0.001) and isoform-3 (****P < 0.0001). Data for three independent experiments are represented as mean � SE.
Multiple comparisons were performed and P-values were calculated using one-way ANOVA.

D Agarose gel showing RT–PCR products amplified using primers in exon 3 and exon 15 (2.9 kb) as well as RT–PCR product corresponding to JARID2 isoform-1 (3.7 kb)
amplified using the first (exon 1) and the last exon (exon 18). Only one product at the right size is observed indicating that it is unlikely that JARID2 might be a
product of an alternatively spliced isoform of JARID2.

E Ribosomal profiling data mapped on JARID2 isoform-1 and isoform-2. Main translation site corresponding to isoform-1 is highlighted using a dashed box.
F CRISPR-Cas9 knockout of JARID2 using a sgRNA guide designed to target main translation start site as seen in (E). Immunoblot revealed that ~80 kDa form was

removed from JARID2 KO lines. Densitometric measurements corresponding to the experiment are shown in Fig EV2D.
G Immunoblot after a full-length JARID2 isoform-1 was expressed from an exogenous vector in HaCaT cells showed an increase (2- to 3-fold) in ~80 kDa level.

Densitometric measurements are shown in Fig EV2E. An immunoblot with exogenous expression of 140kDa band in a control cell line is shown in Fig EV2F.
H Immunoprecipitation using anti-JARID2 antibody and followed by mass spectrometry identification of the ~80 kDa band detected JARID2 peptides spanning only C-

terminus of JARID2. The identified peptides are shown as red arrows on schematic of JARID2 sequence.

Source data are available online for this figure.
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spectrometry data where the N-terminal-most peptide is detected at

amino acid position 589 of JARID2 sequence (Fig EV3).

DN-JARID2 is required for cell differentiation

Previous studies have shown that PRC2 and JARID2 play an impor-

tant role in epidermal development and differentiation (Ezhkova

et al, 2009, 2011; Mejetta et al, 2011; Wurm et al, 2015). Therefore,

we explored the role of DN-JARID2 in epidermal differentiation.

First, we examined expression of DN-JARID2 in keratinocytes

(HaCaTs), which represent a good model for human epidermal dif-

ferentiation (Wilson, 2014). We differentiated HaCaTs by growing

them to confluency in low calcium medium for 4 weeks before

switching to high calcium medium for up to 6 days (Fig 3A). We

confirmed differentiation by measuring levels of epidermal differen-

tiation markers such as involucrin (IVL) and trans-glutaminase1

(TGase1) on days 0, 1, 3 and 6 after switching to high calcium

medium (Fig 3B). Interestingly, as differentiation progressed, DN-
JARID2 levels also increased up to 2-fold (Fig 3C). Therefore, we

speculated that DN-JARID2 might be important for HaCaT differenti-

ation.

To test this hypothesis, we compared differentiation in JARID2-

null HaCaTs and wild-type HaCaTs by comparing RNA levels of dif-

ferentiation markers keratin-1, keratin-10 and involucrin on day 0

and day 3 of differentiation (Fig 3D and E). We predicted that

removal of JARID2 should result in de-repression of differentiation

genes. However, in JARID2-null cells, we observed significant

down-regulation of involucrin and keratin-1 genes, which are earlier

reported to be polycomb targets in Keratinocytes (Sen et al, 2008)

(Fig 3D and E). Given that DN-JARID2 is the main form of JARID2

in keratinocytes and its level increases during differentiation, we

speculated that the impaired differentiation seen in JARID2-null

cells is due to removal of the DN-JARID2 form rather than the full-

length form of JARID2. In such a case, exogenous expression of DN-
JARID2 should be sufficient to rescue down-regulation of differentia-

tion markers. We therefore transfected JARID2-null cells with plas-

mids expressing the C-terminal ~80 kDa fragment (Appendix Fig

S1). Since we are yet to identify exact cleavage site of JARID2, this

C-terminal fragment should mimic the DN-JARID2 form. Signifi-

cantly, expression of the C-terminal ~80 kDa fragment was sufficient

to rescue the expression of differentiation markers, indicating that

the effect of JARID2 knockout on differentiation is most likely due

to DN-JARID2 (Fig 3D and E). As wild-type cells express low levels

of full-length JARID2, it could be argued that the impaired differenti-

ation in JARID2 KO might be a combined effect of both full-length

and DN-JARID2. To rule out this possibility, we also studied the

effect of exogenously expressed full-length JARID2 (FL-JARID2).

However, on day 3, expression of full-length JARID2 leads to

suppression of differentiation markers (Fig 3E). This supports a role

for DN-JARID2 in promoting differentiation, whereas full-length

JARID2, like other polycomb proteins, functions to suppress dif-

ferentiation.

DN-JARID2 is required for genome-wide up-regulation of
differentiation genes

To understand the effect of JARID2 knockout on genome-wide

expression patterns in HaCaTs, we carried out RNA-sequencing

analysis. Using RNA-seq data, we compared changes in gene expres-

sion patterns in JARID2-null vs JARID2-expressing wild-type HaCaT

cells. We identified 645 genes which changed expression by more

than 2-fold (P < 0.0001) between wild-type and JARID2-null cells

which included 269 up-regulated genes and 376 down-regulated

genes.

To further understand the functions of JARID2-regulated genes,

we investigated the biological pathways these genes are involved in

using Database for Annotation, Visualization and Integrated Discov-

ery (DAVID; Jiao et al, 2012). We observed that several genes

involved in DNA replication and G1/S transition of cell cycle were

up-regulated in JARID2 KO cells (Appendix Fig S2A). On the other

hand, several developmental and epidermal differentiation genes

were down-regulated as compared to wild-type cells (Appendix

Fig S2B).

This effect was much more pronounced when gene expression

was profiled after 3 days of differentiation in wild-type (WT) and

KO cells. After 3 days of differentiation, in wild-type HaCaTs,

epidermal differentiation genes were highly up-regulated and cell

cycle genes were down-regulated, further validating our differentia-

tion protocol (Appendix Fig S2C and D).

As compared to WT, in JARID2 KO cells epidermal differentiation

genes, as well as genes involved in extracellular matrix organisa-

tion, were significantly down-regulated indicating significant impair-

ment of differentiation in the absence of JARID2 (Fig 4A). In

addition, cell cycle genes in the KO cells were expressed at higher

levels indicating continued proliferation and inhibition of cell cycle

exit (Fig 4B). In summary, gene expression changes (Fig 4A and B)

upon JARID2 removal indicate that JARID2 is needed for up-regula-

tion of differentiation genes in keratinocytes.

We therefore first checked if the down-regulated genes are

indeed JARID2 targets. Analysis of genome-wide JARID2 Chromatin

Immunoprecipitation (ChIP) data (Kaneko et al, 2014a) from human

pluripotent cells showed enrichment for JARID2 binding in the

down-regulated genes compared to up-regulated genes (Fig 4C). We

also examined if these genes are targeted by polycomb proteins

(Margueron & Reinberg, 2011). Interestingly, down-regulated genes

have GC-rich promoters that are characteristic of polycomb target

genes (Appendix Fig S3A; Mendenhall et al, 2010). In addition, a

multi-gene plot of EZH2 enrichment at these genes showed that they

are bound by EZH2 in human ES cells as well as in keratinocytes

(Fig 4D) indicating that these genes are PRC2 targets. The gene

expression changes we observed in JARID2 KO can be due to altered

targeting of PRC2. In such a scenario, we expect up-regulated genes

to be the PRC2 targets. However, as compared to down-regulated

genes, up-regulated genes showed lower enrichment of JARID2 and

PRC2 (Fig 4C and D). Making it less likely that the down-regulation

of differentiation genes we observed in JARID2 KO is due to mere

rearrangement or altered targeting of PRC2. As JARID2 is required

for PRC2 recruitment (Landeira & Fisher, 2011; Holoch &

Margueron, 2017; Chen et al, 2018) and DN-JARID2 lacks PRC2

interacting domain, we investigated the possibility that down-regu-

lation of differentiation genes in keratinocytes lacking JARID2 might

be a consequence of changes in PRC2 activity. Our co-immunopreci-

pitation experiment confirmed that PRC2 subunit, EZH2, interacts

with full-length JARID2 but not with DN-JARID2 (Appendix Fig S3B

and C). However, similar to previous publications, we did not

observe any significant change in global H3K27me3 levels in
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Figure 3. Effect of JARID2 knockout on differentiation markers.

A The calcium-induced differentiation protocol used in this study. Up until day 0, cells were maintained in low calcium media and then induced to differentiate by
growing them in high calcium medium for 6 days. Cells were harvested for immunoblot at day 0, day 1, day 3 and day 6 of differentiation.

B Immunoblot showing increase in expression levels of differentiation markers involucrin (IVL) and Transglutaminase-1 (TGase-1) as differentiation progressed
indicating that keratinocyte differentiation protocol was successful. Protein levels on day 0 (D0), day 1 (D1), day 3 (D3) and day 6 (D6) of differentiation are shown.

C Immunoblot for JARID2 during D0, D1, D3 and D6 of differentiation (as in B) are shown.
D Effect of JARID2 removal on levels of differentiation markers involucrin (IVL), keratin-1 (KRT1) and keratin-10 (KRT10) mRNAs as measured in qPCR experiment relative

to 18S rRNA and the rescue using exogenous expression of DN-JARID2. The effect of exogenous expression of full-length JARID2 (FL-JARID2) in JARID2 knockout is also
shown. Data from wild-type HaCaTs, two independent JARID2 knockout (KO1 and KO2) HaCaT lines and KO cells exogenously expressing empty vector control, DN-
JARID2 and FL-JARID2 are shown. Data from three independent experiments (n = 3) are represented as mean � SE, and multiple comparisons were performed using
one-way ANOVA (****P < 0.0001, ***P < 0.001, **P < 0.01 and *P < 0.05).

E Levels of involucrin (IVL), keratin-1 (KRT1) and keratin-10 (KRT10) mRNAs as above but measured on day 3 of differentiation.

Source data are available online for this figure.
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Figure 4. Gene expression changes in JARID2-null cells.

A, B Functional enrichment of (A) 2-fold down-regulated and (B) 2-fold up-regulated genes in JARID2-null cells as compared to WT on day 3 of differentiation.
Functional categories are plotted on vertical axes and –log(p) values are plotted on horizontal axes.

C A metagene plot showing enrichment of full-length JARID2 in human-induced pluripotent cells at down-regulated genes (blue) as compared to up-regulated genes
(grey) in JARID2 KO cells. The plot is centred on Transcription Start Sites (TSS) of genes and distance from TSS is indicated on the x-axis.

D Metagene plots of average enrichment of EZH2 in ES cells and keratinocytes at down-regulated genes (blue) as compared to up-regulated genes (grey) in JARID2 KO
cells. The plots are centred on Transcription Start Sites (TSS) of genes and distance from TSS is indicated on the x-axes.

E Levels of H3K27me3 in WT, JARID2 KO lines and JARID2 KO lines expressing DN-JARID2. Histone H3 and Ponceau staining is used as a loading control. Densitometric
measurements corresponding to this experiment are shown in Fig EV4A.

F A bar-plot showing percentage of down- and up-regulated genes among genes which lose H3K27me3 vs which do not lose H3K27me3 modification during
differentiation.

Source data are available online for this figure.
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JARID2 KO or DN-JARID2 expressing cells (Figs 4E and EV4A).

Although this method cannot rule out the possibility of altered

targeting of PRC2, enrichment of PRC2 at down-regulated genes

rather than up-regulated genes in keratinocytes (Fig 4D) implies an

alternative scenario. In addition, we found that EZH2 levels in wild-

type HaCaTs and JARID2 KOs are very similar (Fig EV4B), ruling

out the possibility that the changes in gene expression pattern in

JARID2 KO cells are simply result of changes in EZH2 expression.

An alternative explanation is that DN-JARID2 is required for activa-

tion of differentiation genes. Our data (Fig 3D and E) support this

hypothesis. We also observed that those epidermal genes that lose

the H3K27me3 mark upon differentiation (Sen et al, 2008) are

highly enriched in down-regulated genes. 4.2% of down-regulated

genes lose H3K27me3 upon day 3 of differentiation as compared to

only 1.6% of up-regulated genes and 1.4% of all genes (Fig 4F).

This suggests that JARID2 is mainly required for activation of genes

that lose their H3K27me3 mark.

Since DN-JARID2 contains conserved domains that are typical

of the jumonji family of demethylases, we explored a possibility

that at these genes DN-JARID2 helps in removal of the H3K27me3

mark. In such a scenario, inhibition of EZH2 enzymatic activity

should have the opposite effect to that of JARID2 knockout and we

should see up-regulation of differentiation genes. We therefore

treated wild-type cells expressing JARID2 with EZH2 inhibitor

UNC1999. Following 24-h treatment with UNC1999, H3K27me3

was reduced to very low level (Fig EV4C). However, this did not

result in activation of epidermal differentiation genes (Fig EV4D).

This is in agreement with a previous publication, which showed

that, in keratinocytes, removing EZH2-mediated repression is not

enough and additional factors are required for activation of poly-

comb targeted epidermal genes (Wurm et al, 2015). Another possi-

bility is that DN-JARID2 is required for activation of transcription

by aiding recruitment of certain transcription factors (Wurm et al,

2015) or RNA pol II (Landeira et al, 2010) or both. Indeed, an

analysis of promoter sequences of down-regulated genes showed

significant enrichment of motif of AP-1 transcription factor FOSL

(Fig EV4E), which is needed for activation of epidermal differentia-

tion genes (Wurm et al, 2015). Moreover, we did not observe

enrichment of AP-1 motif in up-regulated genes indicating that

down-regulated genes are targets of AP-1. This suggested that DN-
JARID2 might aid AP-1-mediated up-regulation of differentiation

genes. Interestingly, previous publication shows that interplay

between EZH2 and AP-1 transcription factors is needed for kerati-

nocyte differentiation (Wurm et al, 2015). EZH2-mediated methyla-

tion of AP-1 factor FOSL-2 inhibits its activity, which is relieved

upon differentiation. However, we could not detect a direct interac-

tion of either form of JARID2 with AP-1 (Appendix Fig S4A and B)

suggesting that DN-JARID2 might not directly interact but might

indirectly aid in activity of AP-1 transcription factors by relieving

their EZH2-mediated repression.

Discussion

It is well established that the N-terminal domain of JARID2 is

needed for its interaction with EZH2 and its recruitment to chro-

matin (Son et al, 2013; Kaneko et al, 2014a; Sanulli et al, 2015;

Cooper et al, 2016; Chen et al, 2018). By contrast, the C-terminal of

JARID2 has not been studied in detail. One of the reasons for this is

that it has been shown to be unnecessary for EZH2 enzymatic activ-

ity or binding (Son et al, 2013; Kaneko et al, 2014a; Cooper et al,

2016). This is despite the fact that C-terminal contains several

conserved domains typical of the jumonji family, as well as the zinc

finger and ARID domains that are involved in DNA binding (Li et al,

2010).

In this study, we discovered that JARID2 exists as an ~80 kDa

low molecular weight form that consists of the C-terminal domain.

This low molecular weight form (which we termed DN-JARID2) is a
cleavage product of full-length JARID2 that lacks PRC2-interacting

domains and is the predominant form in many lineage-committed

human cells including keratinocytes. This is a significant finding as

the presence of another form of JARID2 can provide answers to

multiple unsolved questions related to JARID2’s association with

polycomb function.

In keratinocytes, we could mainly detect C-terminal portion (or

DN-JARID2) of JARID2, but its N-cleaved portion was missing. This

suggests that N-terminal portion is not very stable in these cells.

This can explain the discrepancy in JARID2 mRNA level and DN-
JARID2 protein levels in lineage-committed cells. In these cells,

JARID2 mRNA is expressed at detectable but albeit low levels, while

DN-JARID2 protein levels are much higher. It can be hypothesised

that the cleavage of unstable N-terminal portion from full-length

JARID2 can make its C-terminus more stable leading to higher levels

of DN-JARID2 than expected from JARID2 mRNA levels.

We find that during keratinocyte differentiation DN-JARID2
levels increase. This can explain the reported decrease in JARID2

full-length levels during differentiation (Zhang et al, 2011; Sanulli

et al, 2015), which is likely due to increased cleavage of isoform-1

in addition to a decrease in RNA levels (Shen et al, 2009). We

show that in human keratinocytes, JARID2 removal leads to

suppression of PRC2 targets such as differentiation genes.

Although consistent with previous observations (Shen et al, 2009;

Landeira et al, 2010), this is puzzling, as it is expected that

JARID2 knockout should interfere with PRC2 targeting and hence

lead to de-repression of its target genes as observed in case of

removal of other PRC2 components (Azuara et al, 2006; Boyer

et al, 2006; Pasini et al, 2007; Shen et al, 2008). We show that

decreased expression of epidermal differentiation genes seen in

JARID2-null cells can be reversed by expression of the C-terminal

fragment similar to DN-JARID2. This raises the exciting possibility

that DN-JARID2 is needed for activation of differentiation genes.

Enrichment of AP1 transcription binding motifs at JARID2 regu-

lated genes suggests that DN-JARID2, directly or indirectly, might

aid in recruiting transcriptional activators such as AP-1 at these

genes. This is consistent with the previous observation, which

shows that JARID2 is required for RNA pol II recruitment during

differentiation (Landeira et al, 2010).

This is important as identification of DN-JARID2 and its role in

activation of differentiation genes implies that JARID2 might func-

tion in two ways. In its full-length form it acts as a transcriptional

co-repressor that functions through its interaction with PRC2

whereas in its cleaved form it acts as an activator for PRC2 target

genes. We speculate that this might be a general regulatory mecha-

nism of PRC2 components, as distinct molecular weight forms have

been also reported in the case of AEBP2 (Kim et al, 2015), another

subunit of JARID2 containing PRC2 complex. The presence of
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another form of JARID2 can also provide additional insight into how

polycomb target genes are activated during differentiation.

It is known that PRC2 preferentially binds to GC-rich regions.

However, it is not clear why PRC2 does not target CpG-rich promot-

ers at active genes. Given that the C-terminal of JARID2 also has a

preference for GC-rich sites (Mendenhall et al, 2010), it is possible

that DN-JARID2 form might bind to CpG-islands at active genes and

protect them from PRC2-mediated repression (Jermann et al, 2014;

Riising et al, 2014). Recently, it was shown that EZH2 binds to RNA

and nucleosomes in a mutually exclusive manner (Beltran et al,

2016). However, it is not clear what triggers EZH2’s release from

chromatin. It can be imagined that cleavage of JARID2 might lead to

release of EZH2 from chromatin. But how JARID2 is cleaved? Is not

entirely clear and needs to be studied further. However, strong

enrichment of AP-1 motif in the promoters of down-regulated genes

in JARID2-null cells suggests that directly or indirectly DN-JARID2
plays a role in AP-1-mediated gene regulation. Therefore, we

propose a model (Fig 5) where, upon differentiation, JARID2 is

cleaved leading to removal of PRC2 and probably H3K27me3 at

subset of genes. The resulting DN-JARID2 form, directly or indi-

rectly, aids in recruitment of transcriptional activators such as AP-1

resulting in up-regulation of differentiation genes. However, the

relation between AP-1 transcription factors and DN-JARID2 will

need further investigation.

Materials and Methods

Cell culture

A spontaneously immortalised human keratinocytes cell line HaCaT

and human embryonic kidney cells HEK-293T were grown in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco) supplement

with 5% foetal bovine serum (FBS) and 1% penicillin-streptomycin

(10,000 U/ml) in 5% humidified CO2 incubator at 37°C. To main-

tain HaCaT cells in undifferentiated phenotype as previously

described (Wilson, 2014), HaCaT cells were cultured in DMEM with

10% Ca2+-chelated FBS, 200 mM L-Glutamine and 0.03 mM

calcium at 75% confluence. For keratinocyte differentiation, HaCaT

cells were grown at full confluency in high calcium (2.8 mM)

growth medium for the indicated time points.

Transfections

JARID2 siRNAs targeting exon 3 and exon 15 were obtained from

Sigma. 2 × 105 HaCaT cells were transiently transfected with

80 pmol siRNAs using Lipofectamine RNAiMAX (Invitrogen) for

48 h. Non-silencing control (NSC) was used as control. HEK-293T

were transiently transfected as 3:1 ratio of reagent to DNA using X-

tremeGENE9 DNA transfection reagent (Roche). Full-length JARID2

was cloned in pEF6 vector with N-terminal flag-tag, and shorter

fragments of JARID2 (Appendix Fig S1A) were cloned in pcDNA3.1

vector. Stable HaCaT cells were generated by transfecting cells with

5 lg JARID2 expression constructs using Amxa Nucleofector kit V

(Lonza) for 24 h. After 24 h, medium was refreshed. Stable cells

were selected by growing them in DMEM medium containing

10 lg/ml of Blasticidin or 500 lg/ml Geneticin antibiotics. The

expression of the construct was tested by immunoblotting.

CRISPR/Cas9-mediated genome editing

sgRNA targeting JARID2 was designed using Wellcome Trust Sanger

Institute Genome Editing database (WGE) (Hodgkins et al, 2015).

sgRNA was selected with minimum off-target effects and close to

translational start site (ATG) of isoform-1. HaCaT cells were electro-

porated with 5 lg pX459 vector (Addgene) containing sgRNA target-

ing JARID2 using Amaxa Cell Line Nucleofector kit V (Lonza) for

24 h. Transfected cells were selected for 3 days in a medium

containing 0.5 lg/ml puromycin. After that cells were then main-

tained in DMEM for 5 days. Selected cells were serially diluted to

single cells and were let to grow till colonies were grown. Homozy-

gous mutations were confirmed by amplifying targeted loci using
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Figure 5. A model predicting the role of DN-JARID2 in differentiation.

Jarid2 is present as a full-length protein in multi-potent and undifferentiated
cells. Full-length JARID2 with the help of N-terminal PRC2 interacting domain
can recruit PRC2 and suppress differentiation genes. Upon differentiation N-
terminal of JARID2 is cleaved (DN-JARID2) which leads to reduction in PRC2
recruitment and possibly H3K27me3 levels at differentiation genes. However,
PRC2 removal is not sufficient for activation of differentiation genes and, in
addition, DN-JARID2 is required for their up-regulation likely through, directly or
indirectly, facilitating transcription factors such as AP-1.
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RT–PCR. RT–PCR products were cloned into pJET1.2 blunt vector

(ThermoFisher Scientific), and at least 10 bacterial colonies were

picked up for genotyping.

Immunoblotting

Cells were lysed with 20 mM Tris pH 7.5, 150 mM NaCl, 0.5%

Deoxycholic acid, 10mM EDTA and 0.5% Triton X-100 containing

protease inhibitor cocktail (complete ULTRA tablets, Roche).

Histones were extracted from cells by acid extraction method

(Halsall et al, 2015). According to standard procedure, lysates were

treated with loading buffer, separated by 12–10% SDS–PAGE, trans-

ferred onto nitrocellulose membrane (Bio-Rad) using Trans-Blot

Turbo Transfer System (Bio-Rad) and immunoblotted with follow-

ing primary antibodies: JARID2 (1:1,000, Cell Signaling Technology,

USA; 1:1,000, GTX129020, GeneTex), EZH2 (1:1,000, Cell Signaling

Technology, USA), involucrin (1:1,000, Sigma), transglutaminase-1

TGase-1 (1:1,000, Santa Cruz Biotechnology, INC), c-Jun (1:1,000,

Cell Signaling Technology, USA) and H3K27me3 (1:1,000, 07-449

Millipore). GAPDH (1:1,000, ThermoFisher Scientific) and C-

terminus of histone H3 (1:5,000, Abcam) are used as loading

controls. Immunoblots were visualised using fluorescence detection

and scanned using odyssey infrared detection system (LI-COR Bio-

sciences). Densitometry analysis was done using Image Studio Lite

(LI-COR Biosciences).

Immunofluorescence

Cells were cultured on cover slips and were fixed in PBS containing

4% (w/v) paraformaldehyde for 10 min at RT. The fixed cells were

permeabilised with 0.2% Triton X-100 in PBS for 3 min and then

blocked with 5% BSA for 1 h. Cells were incubated with 6X His

antibody overnight (1:500, Thermofisher) at 4°C, washed three

times using PBS and incubated with Fluorescein (FITC)-AffiniPure

donkey anti-Mouse IgG secondary antibody (Jackson Immuno-

Research Laboratories Inc) for 1 h. Coverslips were washed thor-

oughly, mounted using Vectorshield with DAPI and analysed using

a Nikon A1R confocal microscope.

RNA-sequencing and metagene analyses

RNA-sequencing was carried out on RNA extracted from wild-type

HaCaT cells and JARID2-null HaCaT cells at day 0 and day 3 of dif-

ferentiation. The sequencing was carried out on three biological trip-

licates. RNA-sequencing libraries were prepared using TrueSeq

method. All the libraries were paired-end sequenced on an Illumina

HiSeq 2500 machine (University of Birmingham). Sequences were

quality filtered and trimmed using cutadapt. The reads were mapped

using Tophat package (Trapnell et al, 2009) against human genome

(hg19). Differential analysis was done using cuffdiff programme.

Differential genes were identified using false discovery cut-off of

1 × 10�5 and used for further analysis. Analysis of functional anno-

tation was carried out using DAVID (Jiao et al, 2012). Metagene

plots and heatmap were generated using DeepTools package

(Ramirez et al, 2014). De novo motif finding was carried out using

Homer software (Heinz et al, 2010). Analysis of H3K27me3-positive

genes in HaCaTs was carried out using previously published data

(Sen et al, 2008).

Co-Immunoprecipitation

HEK-293T cells were transfected with Empty vector (Control), Flag-

tagged full-length JARID2 and DN-JARID2 vectors. After 72 h of

transfection, protein was extracted from all sample. For each IP,

protein G-coated magnetic Dynabeads� were suspended and incu-

bated with desired antibody (1–10 lg). After 10-min incubation with

antibody, beads were washed and Dynabeads�-Antibody complex

was incubated with protein samples. After washing the beads,

proteins were eluted in elution buffer and SDS sample buffer and

loaded on standard SDS–PAGE gel along with 5% whole-cell extract.

The presence of co-immunoprecipitated proteins was verified using

immunoblotting with respective antibodies.

Mass Spectrophotometric protein Identification

The immunoprecipitation of JARID2 was carried out using mono-

clonal anti-JARID2 antibody (Cell Signalling Technology, USA) as

mentioned in co-immunoprecipitation protocol. The eluted protein

sample was separated using an SDS–PAGE and silver stained.

80 kDa band was cut and peptides were identified using the Q-Exac-

tive HF mass spectrophotometer.

Statistical analysis

Result analysis was performed using GraphPad Prism version 6 soft-

ware. Data were represented as mean � SE of three independent

experiments. Student’s t-test was used to compare two groups.

Multiple comparisons were done using one-way ANOVA. A P-value

of < 0.05 was considered significant.

Data availability

The raw and processed RNA-seq data are deposited in GEO database

(accession no. GSE102116; https://www.ncbi.nlm.nih.gov/geo/que

ry/acc.cgi?acc=GSE102116). EZH2 metagene plots and H3K27me3

heatmap were generated using ES and Keratinocyte data deposited

in ENCODE database (GEO accession no.: GSE29611; https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE29611). JARID2 meta-

gene plots were created using previously published dataset (GEO

accession no: GSM1180131; https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSM1180131).

Expanded View for this article is available online.
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