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Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive loss of
motor neurons. ALS can be modeled in zebrafish (Danio rerio) through the expression of human ALS-causing
genes, such as superoxide dismutase 1 (SOD1). Overexpression of mutated human SOD1 protein causes
aberrant branching and shortening of spinal motor axons. Despite this, the functional relevance of this axon
morphology remains elusive. Our aim was to determine whether this motor axonopathy is correlated with
impaired movement in mutant (MT) SOD1-expressing zebrafish. Transgenic zebrafish embryos that express
blue fluorescent protein (mTagBFP) in motor neurons were injected with either wild-type (WT) or MT (A4V)
human SOD1 messenger ribonucleic acid (mRNA). At 48 hours post-fertilization, larvae movement (distance
traveled during behavioral testing) was examined, followed by quantification of motor axon length. Larvae
injected with MT SOD1 mRNA had significantly shorter and more aberrantly branched motor axons ( p < 0.002)
and traveled a significantly shorter distance during behavioral testing ( p < 0.001) when compared with WT
SOD1 and noninjected larvae. Furthermore, there was a positive correlation between distance traveled and
motor axon length (R2 = 0.357, p < 0.001). These data represent the first correlative investigation of motor
axonopathies and impaired movement in SOD1-expressing zebrafish, confirming functional relevance and
validating movement as a disease phenotype for the testing of disease treatments for ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS), also known as
motor neuron disease, is a fatal neurodegenerative dis-

ease characterized by progressive loss of motor neurons.1

Patients with ALS develop muscle atrophy and paralysis,
originating in either the limbs or bulbar regions, and usually
die within 3–5 years of diagnosis.2 While most cases of ALS
are considered sporadic, around 10% of ALS is inherited,
known as familial ALS (FALS).1 Several ALS-causing gene

mutations have been identified, including mutations in the
superoxide dismutase 1 (SOD1) gene (20% of FALS3), TDP-
43 gene (<5% of FALS cases),4,5 FUS/TLS gene (5% of
FALS6,7), and repeat expansions within the C9ORF72 gene
(*40%–50% of FALS).8,9

Unfortunately, there are currently no treatments available
to patients with ALS that can produce a meaningful increase
in patient’s life span and quality of life.10 Riluzole, an ap-
proved treatment for ALS, is only mildly efficacious, in-
creasing survival by an average of 2 months.11 To aid
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discovery and preclinical testing of novel disease treatments,
a range of animal models of ALS have been developed and
characterized. The most commonly used animal model of ALS is
the mutant (MT) human SOD1 (G93A) mouse model.12 Addi-
tional mouse models of ALS include those based on other SOD1
mutations,13,14 as well as mutations in TDP-43,15–17 FUS/
TLS,18,19 and C9ORF72.20–22 SOD1 mouse models have been
used in more than 1300 ALS studies,23 with over 60 different
molecules yielding protective effects. However, only one
of these treatments (riluzole) has proven to be beneficial in
ALS patients.10 Therefore, additional ALS animal models are
needed to aid the testing of potential therapeutics.

Small animal models such as zebrafish (Danio rerio) and
nonvertebrates such as worms (Caenorhabditis elegans) and
flies (Drosophila melanogaster) offer a range of advantages
for the study of neurodegenerative diseases, particularly for
testing of potential therapeutic candidates.24 Zebrafish are a
particularly useful tool because large numbers of zebrafish
can be housed in a small space, at relatively low cost, and
bred rapidly to provide large sample sizes.25 Zebrafish also
possess many physiological and anatomical similarities to
humans,25–27 are transparent during development,28 and can
be genetically modified to express fluorescent proteins.29

Finally, zebrafish can absorb compounds added to water,30 and
they develop movement within 30 hours postfertilization
(hpf)31,32 providing a simple and rapid readout of therapeutic
efficacy. For these reasons, zebrafish have been used extensively
in recent years to study neurodevelopmental and neurodegen-
erative disorders such as Parkinson’s disease, Huntington’s
disease, spinocerebellar ataxia, hereditary spastic paraplegia,
ALS, and spinal muscular atrophy.5,25,33–44

Several of these studies have demonstrated that expression of
human disease-causing proteins can result in development of
motor axon abnormalities in zebrafish models of movement
diseases.25,33,35,40,41,43–45 For example, transient overexpression
of mutated human SOD1 has been shown to lead to the de-
velopment of short and aberrantly branched spinal motor
axons.35,38,40 Interestingly, these effects appear to be specific
to motor neurons with no defects detected in other neuronal
populations such as Mauthner neurons or Rohon-Beard sensory
neurons.35 Despite these findings, studies are yet to confirm
whether the presence of motor axon abnormalities in zebrafish
embryos or larvae is directly correlated with the development of
impaired movement in zebrafish. The present study aims to test
for a correlation between motor axon abnormalities and im-
paired movement in a transient overexpression model of SOD1,
by measuring both parameters in the same animals. We hy-
pothesize that zebrafish overexpressing mutated human SOD1
will travel a shorter distance in response to a light stimulus and
will display aberrantly branched or shortened motor axons.
More so, we predict those that have shorter motor neuron axons
will swim shorter distances during testing. Investigating whether
this correlation is present will confirm the functional relevance
of abnormal motor axon morphology and validate the usefulness
of transient SOD1 overexpression models for high-throughput
drug screening studies.

Materials and Methods

Experimental animals

All experiments were performed in compliance with the
Animal Ethics Committee and the Biosafety Committee,

Macquarie University (NSW, Australia) under ARA 2015-
034 and NLRD 52014007. Adult zebrafish from the
Tg(-3.0mnx1:mTagBFP)mq10 (ZFIN ID: ZDB-TGCONSTRCT-
160815-5)29 zebrafish line (which express blue fluorescent
protein in motor neurons) were mated and embryos were
collected for injection of the human SOD1 messenger ribo-
nucleic acid (mRNA). The data presented here are pooled
from four different rounds of the experiment, resulting in a
total of 121 embryos collected from five clutches. Each clutch
of embryos were divided into one of three groups; embryos
injected with MT human SOD1 mRNA, embryos injected
with wild-type (WT) human SOD1 mRNA, and noninjected
embryos as a control. Any embryos deemed to be developing
abnormally, lacking expression of fluorescent proteins or
dead, were excluded from the experiment (Table 1).

Preparation of human SOD1 mRNA and microinjection

Human SOD1 mRNA was generated through the use of a
T7 In Vitro Transcription kit (Ambion; Applied Bioscience).
First, a human SOD1 plasmid (WT or containing A4V mu-
tation, within pCMV construct, a kind gift from Wim Rob-
berecht) was linearized with PciI and the deoxyribonucleic
acid (DNA) was purified. One microgram of purified DNA
was then transcribed through the use of an mMessage Machine
T7 In Vitro Transcription kit (Ambion; Applied Bioscience)
and purified by a MEGAclear Kit (Ambion; Applied Bio-
science) followed by lithium chloride precipitation.

Microinjection of the human mRNA was performed at 1–4
cell stage with a bolus of 1.15 nL injected into each embryo
containing 250 ng/lL of the SOD1 mRNA and 200 ng/lL of
mKate2 mRNA encoding a red fluorescent protein to allow
selection of appropriately injected embryos. At 30 hpf, the
zebrafish embryos were screened for successful injection
(expression of the red fluorescent protein) and the embryos
were manually dechorionated with surgical forceps. At
48 hpf, positive embryos were then distributed into a 96-well
plate, with one embryo placed within each well containing
250 lL of E3 medium (5 nM NaCl, 0.17 mM KCl, 0.33 mM
CaCl2, and 0.33 mM MgSO4). The plate was incubated at
28�C for 10 min before behavioral testing.

Motor behavioral testing

Motor function testing was performed within a Zebrabox
(Viewpoint) automated zebrafish movement recording de-
vice with ZebraLab (Viewpoint) software. At 48 hpf, the 96-

Table 1. Pooled Data Relating to the Number

of Embryos That Were of Normal Morphology,

Abnormal Morphology, or Undeveloped/Dead

for Each Group

Group Normal Abnormal
Undeveloped/

dead
Total

N

Noninjected 40 1 51 92
WT SOD1 44 15 36 95
MT SOD1 37 8 46 91

The data were pooled from four separate experiments. Only
larvae with normal morphology were studied within the remaining
experiments.

WT, wild type; MT, mutant; SOD1, superoxide dismutase 1.
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well plates, containing the zebrafish larvae, were moved to
the Zebrabox and acclimatized to dark conditions for 10 min.
A photomotor response test was then performed, involving
exposing the animals to a 1-s, 300 W flash of light. The light
stimulus was repeated three times at 1-min intervals. The
total distance traveled by each animal during the 4-min test
period was calculated. The photomotor response was selected
as the behavioral test for this experiment as it is a nonvisual
reflex that results in a motor response.46 The photomotor
response can be elicited from 30 hpf and can be performed
using a 96-well plate, thus is a suitable behavior test for high-
throughput analysis.

Tracking of 6 days post-fertilization (dpf) larvae was
conducted in 24-well plates within a Zebrabox tracking ma-
chine (Viewpoint). The escape response to darkness involved
conditions of 6-min light, 4-min dark, and 4-min light. The
total distance traveled by each larva within the dark phase
was calculated (first light phase was for acclimatization).

Imaging and quantification of motor axon abnormalities

Following movement testing, larvae were individually
anesthetized through addition of 30 lL of 3 mg/mL tricaine
(MS222) to each well of the 96-well plate. Larvae were in-
dividually wet mounted onto glass slides and imaged using a
fluorescent microscope (Leica DMi8 inverted microscope,
Wetzlar, Germany). The average axonal length for each larva
was determined by measuring the length of the first five

ventral projections of the primary motor neuron axons
(ventral root) immediately caudal to the yolk sac (a simple
landmark and a region where the axons were of similar
length). The axon length was measured using ImageJ with the
NeuronJ plugin by measuring the length from the cell body
to the distal tip of the axon. The morphology of these first
five axons was also examined and the number of aberrantly
branched motor axons was counted. Experimenters were
blinded to experimental groups during behavioral testing and
image analysis stages of the experiment.

Manual cell counting

The number of cell bodies present within a region caudal to
the yolk sac spanning five motor axons long was counted using
the particle analysis function within ImageJ (NIH). These cell
body counts were performed on the same spinal cord images
that the axonal length measurements were performed on.

Western blotting

Protein lysates were prepared from whole zebrafish
embryos in RIPA buffer (10 mM Tris-Cl [pH 8.0], 1 mM
ethylenediaminetetraacetic acid [EDTA], 0.5 mM ethylene
glycol-bis(b-aminoethyl ether)-N,N,N¢,N¢-tetraacetic acid
tetrasodium [EGTA], 1% Triton X-100, 0.1% sodium de-
oxycholate, 0.1% sodium dodecyl sulfate [SDS], 140 mM
NaCl), by performing hand homogenization using a manual

FIG. 1. (A) Expression of human SOD1 protein in zebrafish embryos injected with WT or MT (A4V) human SOD1 was
confirmed via Western blot analysis (human SOD1 detected at *20 kDa). GADPH was used as a loading control (37 kDa).
(B) Representative images of the first five spinal motor neurons after the zebrafish yolk sac are shown for zebrafish larvae at
48 hours postfertilization. Control (noninjected) and larvae that expressed WT human SOD1 displayed long, J-shaped motor
axons, while those that expressed MT SOD1 had axons that were shorter in length (arrows). (C) Motor neuron axon length
analysis revealed larvae that expressed MT SOD1 had significantly shorter axons than noninjected controls (****p < 0.001)
or larvae that expressed WT SOD1 (**p = 0.004). There was no statistically significant difference in motor axon length
between controls and larvae that expressed WT SOD1. (D) Larvae that expressed MT SOD1 had significantly more
aberrantly branched axons per embryo than noninjected controls (****p < 0.001) or those expressing WT SOD1
(***p = 0.001). Each dot represents an individual larva; noninjected: n = 40; WT SOD1: n = 44; MT SOD1: n = 37. WT, wild
type; MT, mutant; SOD1, superoxide dismutase 1.
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Dounce homogenizer. Protein concentration was quantified
via BCA protein concentration assay (Pierce; Thermo Fisher
Scientific) and equal amounts of protein sample (50 lg) were
loaded for separation via SDS-PAGE. Proteins were trans-
ferred from the gel to a polyvinylidene fluoride (PVDF)
membrane and blocked with 5% milk solution. Human SOD1
was probed for using a monoclonal SOD1 antibody (1:5000;
Santa Cruz, Catalog # SC-17767, RRID:AB_628301) and
anti-mouse horseradish peroxidase secondary antibody (Pro-
mega), followed by ECL chemiluminescence imaging. GAPDH
was probed as a loading control using mouse anti-GAPDH
(Proteintech; Cat # 60004-1-lg, 1:10,000).

Statistical analysis

Data were compared using one-way analysis of variance
(ANOVA), followed by Tukey post-hoc analysis using SPSS
(version 21.0). The presence of a correlation between the
axonal length of each animal with the distance that the animal
swam during the photomotor response was measured using
a Pearson’s correlation test, calculating the relevant R2 and
p-value.

Results

Expression of the human SOD1 protein (WT or MT
[A4V]) was confirmed via Western blotting analysis of pro-
tein lysates extracted from injected embryos (Fig. 1A).
Measurement of the length of motor axons within the injected
zebrafish larvae revealed that expression of human MT SOD1
affected the axonal outgrowth (one-way ANOVA, p < 0.001).
Noninjected and WT SOD1 expressing larvae possessed long
J-shaped motor axons, while those overexpressing MT SOD1
had axons that were shorter in length (Fig. 1B, C). Tukey
post-hoc analysis revealed that larvae injected with MT
SOD1 had significantly shorter axons than larvae injected
with WT SOD1 (151.53 – 5.00 vs. 173.64 – 4.56; n = 37–44;
p = 0.004) and noninjected larvae (188.34 – 4.78; n = 44;
p < 0.001) (Fig. 1C). Larvae injected with MT SOD1 also had
significantly more axons with aberrant branching than larvae
injected with WT SOD1 (1.432 – 0.179 vs. 0.409 – 0.164;
p < 0.001) or noninjected larvae (0.100 – 0.172, p < 0.001)
(Fig. 1D). Despite the presence of aberrant motor axons, cell
counting did not reveal any neuronal loss present within MT
SOD1-expressing compared with WT SOD1 or noninjected
larvae ( p = 0.7381, Supplementary Fig. S1).

Examination of the movement of the zebrafish to a flash of
light (photomotor response) also revealed an effect of human
SOD1 expression, as indicated by images of the trajectory of
movement of zebrafish in response to flash of light (Fig. 2A).
One-way ANOVA comparison revealed that there was a
significant group effect on the movement of animals (Fig. 2B,
p = 0.004) and Tukey post-hoc analysis revealed that MT
SOD1 larvae traveled a significantly shorter distance than
those expressing WT human SOD1 (12.11 – 3.04 vs.
25.50 – 2.79; n = 37–44; p = 0.004), and noninjected larvae
(23.39 – 2.92; n = 40; p = 0.023). No difference was found
between the movement of the animals during an escape re-
sponse to darkness test at 6 dpf, at which point the human
SOD1 protein was no longer expressed ( p = 0.2152; Sup-
plementary Fig. S2).

Examination of the axon length and distance traveled, both
measured within the same individual animals, revealed that

there was a positive correlation between distance traveled
and axon length (Fig. 3, R2 = 0.359), which was statistically
significant ( p < 0.001).

Discussion

In this study, we present the first quantitative correlative
report of motor axonopathy and impaired movement in
zebrafish larvae overexpressing human MT (A4V) SOD1.
We observed a significant axonopathy (shorter and aberrantly
branched spinal motor neuron axons), similar to that de-
scribed in previous studies examining transient over-
expression of MT SOD1 in zebrafish.35,38,40 We found
that the shorter motor axon length was correlated with
an impaired movement phenotype in the same animals.
While other studies have reported movement phenotypes in
MT SOD1-expressing zebrafish,37,38,40,47 we have used the

FIG. 2. (A) Representative images displaying the trajec-
tory of movement of individual larvae during a photomotor
response test within a 96 multiwell plate (red lines indicate
fast movement, green lines indicate slow movement, and
black lines indicate inactivity). (B) Larvae injected with MT
SOD1 traveled a significantly shorter distance during the
photomotor response test compared with noninjected con-
trols (*p = 0.023) and those that expressed WT SOD1
(**p = 0.004). There was no statistically significant differ-
ence in the distance traveled by WT SOD1 and control
larvae. Each dot represents an individual larva; noninjected:
n = 40; WT SOD1: n = 44; MT SOD1: n = 37.

FIG. 3. Decreased axonal length of MT SOD1 expressing
spinal motor axons is moderately correlated with impaired
movement in zebrafish expressing mutant SOD1 (R2 = 0.359,
p < 0.001). Each dot represents an individual larva; non-
injected: n = 40; WT SOD1: n = 44; MT SOD1: n = 37.
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photomotor response assay, which is a useful movement as-
say for drug screening studies because the behavioral re-
sponses can be detected as early as 30 hpf in an automated
manner, reducing experimenter labor (e.g., no need to manu-
ally induce movement of each animal). Furthermore, the
photomotor response consistently delivers the same stimulus
to all examined larvae, as opposed to touch-evoked escape
responses that can vary in the intensity, timing, and location of
applied stimuli. The test does not rely on the visual system,
instead a motor response is elicited following activation of
photoreceptors in the hindbrain of the zebrafish.46 In this study,
we chose to perform the photomotor response assay and im-
aging for axonopathies both at 48 hpf, as we found that this was
the most suitable time point for detecting larvae in the tracking
device, due to pigment development, while still allowing clear
imaging of the developing motor axons. While previous
studies have measured motor axons at earlier time points (e.g.,
30 hpf35), we found that the enlarged yolk sac at that age
complicated imaging of motor axons and we were unable to
perform automated movement tracking at that age. While we
did not detect any decrease in motor neuron numbers produced
by expression of MT SOD1, findings by Sakowski et al.40

suggest that motor neuron loss may occur at a later stage.
In future studies, it would be valuable to confirm the

finding of axonal outgrowth defects, and correlated move-
ment impairment, in transgenic zebrafish larvae that stably
express MT SOD1, rather than zebrafish transiently over-
expressing human SOD1. Use of a stable transgenic SOD1
zebrafish line, such as those reported previously,37,40,42,47

would reduce labor and experimental variation associated
with mRNA injection. It would also be useful to explore
whether the phenotypes are present when human SOD1
protein is expressed at closer to endogenous levels, rather
than through use of an overexpression model. Transient
overexpression of human mRNA, such as MT and WT
SOD1, can cause toxicity, as evidenced by heightened mor-
tality and abnormal morphology in injected animals in this
experiment. Such abnormal development could contribute to
the axonal and behavioral changes we observed and may
explain why motor axonopathies have not been previ-
ously reported to occur in transgenic SOD1 zebrafish mod-
els.37,40,42 To prevent developmental abnormalities from
occurring, the amount of human SOD1 mRNA injected, and
human SOD1 protein expressed, was kept at a lower level
than in a previously reported transient SOD1 zebrafish
model.35 Furthermore, we were careful to only study animals
with normal gross morphology (body shape and length), to
limit the effect of developmental delay.

This study only examined one SOD1 mutation (A4V).
Further studies of the effect of other SOD1 mutations and
other MT ALS genes on zebrafish larva movement would be
useful for establishing drug screening studies. We previously
reported correlation of axonopathy and impaired movement
in a zebrafish model of ALS linked to MT cyclin F.43 This
suggests that this could be a common occurrence in zebrafish
models of ALS.

This is the first time that decreased axonal length in em-
bryos overexpressing SOD1 has been found to be quantita-
tively correlated with a functional impairment. Our findings
validate previous investigations that have examined axono-
pathy as the sole measure of neurodegeneration, including
studies that screened for genetic modifiers.48 We confirm that

the motor neuron axonopathy is a relevant disease readout for
such studies, but we also suggest that measuring zebrafish
movement may provide another useful and potentially more
high-throughput readout for such studies, with a clear rele-
vance to movement disorders such as ALS.

We conclude that zebrafish that transiently express MT
human SOD1 protein develop abnormal motor axon morphology
that is correlated with impaired movement. This indicates that
behavioral measures, such as movement, will be useful when
investigating ALS in zebrafish models of disease, including in
studies to discover and test potential therapeutic agents.
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