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Abstract Angiotensin (Ang)-(1–7) is an important biolog-

ically-active peptide of the renin-angiotensin system. This

study was designed to determine whether inhibition of

Ang-(1–7) in the hypothalamic paraventricular nucleus

(PVN) attenuates sympathetic activity and elevates blood

pressure by modulating pro-inflammatory cytokines (PICs)

and oxidative stress in the PVN in salt-induced hyperten-

sion. Rats were fed either a high-salt (8% NaCl) or a

normal salt diet (0.3% NaCl) for 10 weeks, followed by

bilateral microinjections of the Ang-(1–7) antagonist

A-779 or vehicle into the PVN. We found that the mean

arterial pressure (MAP), renal sympathetic nerve activity

(RSNA), and plasma norepinephrine (NE) were signifi-

cantly increased in salt-induced hypertensive rats. The

high-salt diet also resulted in higher levels of the PICs

interleukin-6, interleukin-1beta, tumor necrosis factor

alpha, and monocyte chemotactic protein-1, as well as

higher gp91phox expression and superoxide production in

the PVN. Microinjection of A-779 (3 nmol/50 nL) into the

bilateral PVN of hypertensive rats not only attenuated

MAP, RSNA, and NE, but also decreased the PICs and

oxidative stress in the PVN. These results suggest that the

increased MAP and sympathetic activity in salt-induced

hypertension can be suppressed by blockade of endogenous

Ang-(1–7) in the PVN, through modulation of PICs and

oxidative stress.
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Introduction

The hypothalamic paraventricular nucleus (PVN) is well

known as the control center for arterial blood pressure, and

a predominant region for coordinating neural signals

regulating blood pressure [1, 2]. The renin-angiotensin

system (RAS) also plays a central role in the regulation of

cardiovascular activity and the pathogenesis of hyperten-

sion. Recent studies have shown that angiotensin (Ang)-

(1–7) is an important biologically-active peptide in the

RAS family [3]. Ang-(1–7) is formed either directly from

Ang II or indirectly from Ang I through angiotensin-

converting enzyme 2 [4]. Most of the functions of Ang-

(1–7) are mediated by its Mas receptors (MasRs) and can

be selectively blocked by the specific antagonist D-Ala-

nine-Ang-(1–7) (A-779) [5, 6]. Previous studies have

shown that Ang-(1–7) antagonizes the effects of Ang II

in peripheral tissues [7, 8]. However, other groups have

shown that microinjection of Ang-(1–7) into the rostral

ventrolateral medulla increases the mean arterial pressure

(MAP) and renal sympathetic nerve activity (RSNA) in

normal rats [9, 10]. It has also been reported that

microiontophoretic application of Ang-(1–7) into the

PVN augments the excitability of neurons in this region

[11, 12], and this effect is selectively blocked by

A-779[12, 13]. In addition, there is an abundant increase

in immunoreactive staining of Ang-(1–7) in the rat

forebrain [14] and in the hypothalamus of rats with aortic

coarctation-induced hypertension [15]. More importantly,

strong staining for the Ang-(1–7) MasR has also been

observed in the PVN. Furthermore, the MasR staining is

predominantly present in neurons [14, 16]. These findings

indicate a possible role for the neuromodulatory action of

Ang-(1–7) in the PVN.

The pro-inflammatory cytokines (PICs) in the PVN,

such as tumor necrosis factor alpha (TNF-a), interleukin-6

(IL-6), and interleukin-1beta (IL-1b), contribute to the

sympathetic activity and pathophysiology of cardiovascular

diseases [17–19]. Reactive oxygen species (ROS) are

involved in the pathophysiology of hypertension. However,

the effect of microinjection of A-779 into the PVN on the

PICs in the PVN during hypertension remains unclear.

The main objective of this study was to test whether

endogenous Ang-(1–7) in the PVN contributes to the

maintenance of MAP and sympathetic activity in rats with

high salt-induced hypertension. We found that blockade of

endogenous Ang-(1–7) by microinjection of A-779 into the

PVN attenuated hypertensive responses. We further

explored the underlying mechanisms by investigating the

PICs and oxidative stress in the PVN.

Materials and Methods

Animals

Experiments were performed on male Sprague-Dawley rats

weighing 250 g–275 g. They were housed in a climate-

controlled room with a 12-h light-dark cycle and allowed

access to standard rat chow and tap water ad libitum. These

experiments were approved by the Animal Care and Use

Committee of Xi’an Jiaotong University. All the experi-

ments conformed to the Guidelines for the Care and Use of

Experimental Animals of the United States National

Institutes of Health (NIH Publication No. 85-23, revised

1996).

One week after habituation to the new environment,

rats were fed with a normal-salt (0.3% NaCl; NS) or a

high-salt (8% NaCl; HS) diet for 10 weeks. Then the rats

were randomly selected to receive A-779 or vehicle.

Therefore, they were divided into 4 groups: (1) HS ?

vehicle, (2) HS ? A-779, (3) NS ? vehicle, and (4) NS

? A-779. A total of 145 rats were used in the study. The

successful rate of bilateral PVN cannulation was about

65%.

Measurement of Mean Arterial Pressure

During the 10-week experimental period, MAP was

measured weekly in the HS and NS groups. The AP was

noninvasively measured with a tail-cuff (BP100A,

Chengdu Techman Software Co., Ltd, China). Awake rats

were warmed in an ambient temperature of 30�C by

placing them in a holding device mounted on a thermo-

statically-controlled warming plate. All animals were

habituated to the blood pressure measuring system and to

the holders daily for one week prior to the initiation of

experimental measurements. Each rat was allowed to

accommodate to the cuff for 10 min before the pressure

measurement. The value was the average of six measure-

ments per day in each rat [22].

At the end of week 10, rats were anesthetized with a

ketamine (90 mg/kg) and xylazine (10 mg/kg) mixture via

intraperitoneal injection (i.p.). A polyethylene catheter was

inserted into the carotid artery for MAP and heart rate (HR)

recording [23, 24]. The catheter was pre-filled with 0.1 mL

heparinized saline (50 units/mL) and connected to a

pressure transducer attached to a digital BP monitor and

a polygraph (BL420, Chengdu Techman Software Co.,

Ltd). MAP and HR recording lasted 30 min and the

averages were calculated.
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Microinjection of Drugs into the PVN

Microinjection of vehicle or A-779 (3 nmol) into the PVN was

carried out in HS and NS rats as described previously

[6, 25, 26]. Briefly, each rat was placed in a stereotaxic frame.

The stereotaxic coordinates for the PVN are 1.8 mm caudal to

bregma, 0.4 mm lateral to the sagittal suture, and 7.9 mm

below the skull surface according to the rat atlas of Paxinos

and Watson. Microinjection into the PVN was completed in 1

min and the volume was 50 nL in the PVN on each side. At the

end of each acute administration, 50 nL of 2% Evan’s Blue

was injected into each microinjection site. The sites were

histologically verified under a light microscope (Eclipse 80i,

Nikon). Rats with sites outside of the PVN were excluded

from data analysis. The RSNA, MAP, and HR were recorded

before and after, and blood and tissue samples were collected

24h after the microinjections.

Collection of Blood and Tissue Samples

Rats were decapitated under anesthesia (mixture of 90 mg/

kg ketamine and 10 mg/kg xylazine, i.p.), and then blood

and tissue samples were collected. The PVN was isolated

using the microdissection procedure of Palkovits as

previously described [17, 19, 27, 28]. Plasma and tissue

samples were stored at - 80 �C for the next steps.

Renal Sympathetic Nerve Activity Recording

The rats were anaesthetized with a ketamine (80 mg/kg)

and xylazine (10 mg/kg) mixture (i.p.) for RSNA record-

ing. The general methods for recording and analyzing

RSNA were as described previously [18, 29–31].

Immunofluorescence and Immunohistochemistry

The immunofluorescence and immunohistochemical meth-

ods were performed as described previously to immunolo-

calize IL-1b, IL-6, gp91phox, and TNF-a expression in the

PVN [32, 33]. The primary antibodies against IL-1b (sc-

1251, polyclonal goat anti-rat), IL-6 (sc-1265, polyclonal

goat anti-rat), gp91phox (sc-5827, polyclonal goat anti-rat),

and TNF-a (sc-8301, polyclonal rabbit anti-rat) were from

Santa Cruz Biotechnology Inc. (Dallas, TX).

Western Blotting

Western blotting was used to measure gp91phox, IL-1b, IL-

6, and MCP-1 expression in the PVN. The methods were as

described previously [34, 35]. Protein loading was con-

trolled by probing all blots with b-actin antibody (Thermo

Scientific, Waltham, MA) and the protein intensity was

normalized to that of b-actin. Band density was analyzed

with ImageJ (NIH, Bethesda, MD) [36, 37].

Biochemical Assays

The level of norepinephrine (NE) in plasma and levels of

TNF-a, IL-6 in PVN were quantified using rat ELISA kits

(Invitrogen, Carlsbad, CA) [21, 22]

Statistical Analysis

All data are presented as mean ± SEM and P\0.05 was

considered statistically significant. Statistical analyses were

performed using Prism version 5.0 (GraphPad Software Inc.,

San Diego, CA). Repeated measures ANOVA was used to

analyze the MAP of the tail blood pressures. One-way

ANOVA with Tukey’s post hoc test was applied to perform

the statistical analyses for RNSA, cytokine levels in PVN,

plasma NE, the number of positive neurons, fluorescent

intensity and Western blotting data. Two-way ANOVA

followed by Bonferroni’s post-hoc test was used to analyze

cardiovascular and autonomic parameters after A-779 or

vehicle (MAP and heart rate before and after application).

Results

Effect of High-Salt Diet on MAP

During the 10 weeks of an HS or NS diet, weekly monitoring of

arterial blood pressure was performed using the tail-cuff

method. The HS diet induced a significant increase in MAP

from 6 to 10 weeks as compared to the beginning (week 0). At

the end of 10 weeks, the MAP in the HS rats was 163% of that of

the NS rats (156 ± 6.3 vs 95.5 ± 7.8 mmHg, P\0.05; Fig. 1).
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Fig. 1 Effect of diet on mean arterial pressure (MAP). MAP

increased significantly in rats with a high salt diet (8% NaCl) for 6

weeks and beyond. But the rats with a normal salt (NS) diet (0.3%

NaCl) maintained normal MAP. Values are presented as mean ±

SEM. *P\ 0.05 versus NS rats.
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Effect of Microinjection of A-779 into the PVN

on MAP and HR

To assess the effect of microinjection of A-779 into the

PVN on hypertensive responses in salt-induced hyperten-

sion, MAP and HR were monitored using a non-invasive

computerized system. The MAP was significantly higher in

the HS rats than in the NS rats. Microinjection of A-779

into the PVN caused a significant reduction in MAP in the

HS ? A779 group while microinjection of vehicle did not

change the MAP. In addition, PVN microinjection of

A-779 or vehicle in the NS groups (NS ? A-779 and NS ?

vehicle) did not cause any significant change in MAP. And

Table 1 Mean arterial pressure

(MAP) and heart rate (HR)

before and after microinjection

of A-779 into the PVN.

Group Before After

MAP (mmHg) HR (beats/min) MAP (mmHg) HR (beats/min)

HS ? PVN A-779 145 ± 4* 369 ± 4 126 ± 7*� 365 ± 6

HS ? PVN vehicle 144 ± 3* 382 ± 4 145 ± 5* 384 ± 6

NS ? PVN A-779 103 ± 5 358 ± 5 99 ± 6 355 ± 6

NS ? PVN vehicle 100 ± 6 349 ± 7 99 ± 5 344 ± 4

NS, normal salt diet; HS, high salt diet; PVN, paraventricular nucleus. All values are presented as mean ±

SEM (n = 7); *P\0.05 versus NS groups; �P\0.05 after versus before microinjection of A-779 into the

PVN.
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Fig. 2 Effect of microinjection of A-779 into the PVN on superoxide

and gp91phox in the PVN of rats with salt-induced hypertension.

Immunofluorescence for the NAD(P)H oxidase subunit gp91phox and

dihydroethidium (DHE) was performed on PVN tissue sections.

A Immunofluorescence for gp91phox (bright red) and superoxide

(bright red, labeled by DHE) in the PVN in different groups. Nuclei

were labeled with DAPI (blue). B, C Histograms showing the effects

of microinjection of A-779 into the PVN on the number of gp91phox-

positive cells (B) and superoxide-positive cells (C) in the PVN of

different groups. Values are presented as mean ± SEM; *P\ 0.05

versus NS groups (NS ? PVN A-779 or NS ? PVN vehicle); �P\
0.05 HS ? PVN A-779 versus HS ? PVN vehicle.
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there was no significant difference in HR between the HS

and NS groups (Table 1).

Effect of Microinjection of A-779 into the PVN

on Superoxide and NAD(P)H Oxidase in the PVN

Immunofluorescence studies revealed that the number of

gp91phox-positive neurons and superoxide production were

higher in the PVN of the HS rats than in the NS rats (P\
0.05). The number of gp91phox-positive neurons and

superoxide production in the PVN were reduced after

microinjection of A-779 into the bilateral PVN in hyper-

tensive rats from the HS ? A-779 group than in the HS?

vehicle group, while both were higher than in the NS

groups. The number of gp91phox-positive neurons and

superoxide production in the PVN did not significantly

differ between the NS ? A-779 and NS ? vehicle groups

(P[ 0.05; Fig. 2).

Effect of Microinjection of A-779 into the PVN

on Pro-inflammatory Cytokine-Positive Neurons

in the PVN

The immunohistochemistry and immunofluorescence

results showed that the numbers of neurons positive for

IL-1b, IL-6, and TNF-a in salt-induced hypertension were

much greater than those in the NS ? A-779 and NS ?

vehicle groups (P\ 0.05). The numbers of IL-1b-, IL-6-

and TNF-a-positive neurons in the PVN were decreased

after microinjection of A-779 into the bilateral PVN in the

HS ? A-779 group compared to the HS ? vehicle group,

while they were higher than those in both of the NS groups.

The numbers did not significantly differ between the NS ?

A-779 and NS ? vehicle groups (P[0.05; Figs. 3 and 4).
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Fig. 3 Effect of microinjection of A-779 into the PVN on inter-

leukin-1b (IL-1b) and interleukin-6 (IL-6) in the PVN. Immunoflu-

orescence was used to detect pro-inflammatory cytokines in the PVN

in different groups. A IL-1b (bright red) and IL-6 (bright green) were

both found in the PVN in the different groups. Nuclei were labeled

with DAPI (blue). B, C Histograms showing the numbers of IL-1b-

positive (B) and IL-6-positive neurons (C) in the PVN of rats in

different groups. Values are presented as mean ± SEM; *P\ 0.05

versus NS groups (NS ? PVN A-779 or NS ? PVN vehicle); �P\
0.05 HS ? PVN A-779 versus HS ? PVN vehicle.
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Effect of Microinjection of A-779 into the PVN

on Protein Levels of gp91phox, IL-1b, MCP-1,

and IL-6 in the PVN

Western blotting results showed that the HS rats had higher

levels of gp91phox, IL-1b, MCP-1, and IL-6 proteins in the

PVN than NS rats (P\0.05). Microinjectionof A-779 into

the PVN prevented these increases, but did not restore them

to the levels in the NS rats (P \ 0.05). Meanwhile, the

levels of these proteins in the PVN did not significantly

differ between the NS ? A-779 and NS ? vehicle groups

(P[ 0.05; Fig. 5).

Effect of Microinjection of A-779 into the PVN

on Renal Sympathetic Nerve Activity and Plasma

Noradrenaline

To evaluate the effect of microinjection of A-779 into the

PVN on sympathetic activity in hypertension, we measured

the RSNA and plasma NE. Our results showed that the HS

diet induced significant increases in both RSNA and

plasma NE levels compared with the NS diet (P\ 0.05).

Microinjection of A-779 into the PVN decreased the RSNA

and NE levels in the HS hypertensive rats compared to

those microinjected with vehicle, while both remained

higher than the NS groups. The RSNA and NE levels in the
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Fig. 4 Effect of microinjection of A-779 into the PVN on tumor

necrosis factor alpha (TNF-a) in the PVN. A Immunohistochemical

staining for TNF-a (bright brown) in the PVN in different groups.

Scale bar, 10 lm. B Histogram showing the number of TNF-a-

positive neurons in the PVN in different groups. Values are presented

as mean ± SEM; *P\0.05 versus NS groups (NS ? PVN A-779 or

NS ? PVN vehicle); �P\0.05 HS ? PVN A-779 versus HS ? PVN

vehicle.
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Fig. 5 Effects of microinjection of A-779 into the PVN on gp91phox,

IL-1b, IL-6, and monocyte chemotactic protein-1 (MCP-1) protein

expression in the PVN. Western blotting was used to determine the

expression of these proteins. A, B Representative immunoblots

(A) and densitometric analysis (B) of protein expression in different

groups. Values are presented as mean ± SEM; *P\ 0.05 versus NS

groups (NS ? PVN A-779 or NS ? PVN vehicle); �P\ 0.05 HS ?

PVN A-779 versus HS ? PVN vehicle.
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PVN did not significantly differ between the NS ? A-779

and NS ? vehicle groups (P[ 0.05; Fig. 6).

Effect of Microinjection of A-779 into the PVN

on PICs in the PVN

To determine the effect of microinjection of A-779 into the

PVN on inflammatory responses in hypertension, we

assessed the levels of IL-6 and TNF-a using ELISA. Our

results showed that the levels of both in the HS rats were

significantly higher than those in the NS rats (P\ 0.05).

Their levels were decreased after microinjection of A-779

in the hypertensive rats compared to the HS ? vehicle

group, while remaining higher than the NS groups. The

levels of IL-6 and TNF-a did not significantly differ

between the NS ? A-779 and NS ? vehicle groups (P[
0.05) (Table 2).

Discussion

The primary findings in the present study were that

blockade of endogenous Ang-(1–7) in the PVN not only

attenuated MAP and sympathetic activity, but also reduced
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NS+PVN A-779 (n = 7)

NS+PVN vehicle (n = 7)

A

RNSA
0

20

40

60

80

100

%
 o

f m
ax

B

NE in plasma
0

100

200

300

400

500C
N

E
  (

pg
/m

l)

HS+PVN A-779

HS+PVN vehicle

NS+PVN A-779

NS+PVN vehicle

2.5s

Fig. 6 Effect of microinjection of A-779 into the PVN on renal

sympathetic nerve activity (RSNA) and the plasma levels of

norepinephrine (NE) in the PVN. RSNA was higher in HS rats and

this was normalized by microinjection of A-779. A Representative

RSNA in rats from different groups. B Bar graph of the maximum

values of RSNA in different groups. C Bar graph of plasma NE levels

in rats in different groups. Values are presented as mean ± SEM;

*P \ 0.05 versus NS groups (NS ? PVN A-779 or NS ? PVN

vehicle); �P\ 0.05 HS ? PVN A-779 versus HS ? PVN vehicle.
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PICs expression and ROS production in rats with salt-

induced hypertension.

Recent studies indicate that RAS and ROS are involved

in the pathogenesis of hypertension [38–40]. RAS activa-

tion is one of the major factors in the progression of

hypertension [41]. Ang-(1–7) is one of the important

factors that contribute to the modulation of sympathetic

drive and blood pressure in hypertension [10, 42]. Ang-

(1–7) in the PVN is as effective as Ang II in enhancing the

elevated cardiac sympathetic afferent reflex (CSAR) and

increasing sympathetic outflow in hypertension. Ang-(1–7)

in the PVN potentiates the effects of Ang II in hyperten-

sion, and A-779 abolishes the effects of Ang-(1–7) [10]. It

has been found that expression of the MasR protein in the

PVN is significantly higher in 2K1C rats than in sham rats.

However, there is no significant difference in the Ang-

(1–7) level in the PVN between 2K1C and sham rats. These

results suggest that the enhanced effects of Ang-(1–7) in

the PVN on the RSNA, MAP, and CSAR in 2K1C rats

arise from the upregulation of MasRs in the PVN rather

than the production or release of Ang-(1–7) in the PVN.

This increased MasR expression contributes to the tonic

control of RSNA, MAP and CSAR in 2K1C rats [6].

Recently, several researchers have shown that ROS is a

vital signaling factor in the PVN, playing an important role

in modulating blood pressure and sympathetic activity.

Increased superoxide anions in the PVN assist in enhancing

RSNA in hypertension [39, 43]. Microinjections of an

oxygen free-radical scavenger (Tempol) into the bilateral

PVN not only reduce the ROS response and MAP but also

attenuate sympathetic activity in hypertension [25]. A

recent study from our laboratory showed that microinjec-

tions of losartan (an AT1-R antagonist) into the bilateral

PVN attenuate the expression of gp91phox in the PVN of

rats with heart failure [29]. In this study, bilateral

microinjections of the Ang-(1–7) antagonist A-779 into

the PVN attenuated MAP and RSNA and also reduced

gp91phox expression and superoxide production in rats with

hypertension induced by HS. These results indicate that

Ang-(1–7) in the PVN contributes to regulating MAP and

RSNA by attenuating oxidative stress in high salt-induced

hypertension.

Furthermore, the level of plasma NE (a marker of

sympathetic activity) was increased in the salt-induced

hypertensive rats, and bilateral microinjections of A-779

into the PVN resulted in a substantial decrease in plasma

NE, suggesting that excitation of the brain RAS can

promote sympathetic activity in hypertension. PICs play an

important role in regulating autonomic nervous activity and

cardiovascular function in hypertension. TNF-a, IL-1b,

and IL-6 can be produced locally in the brain by microglia

and neurons, thereby contributing to the pathogenesis of

hypertension [44]. Direct microinjection of TNF-a or IL-

1b into the PVN has been demonstrated to increase MAP

[45], consistent with our finding that increased PICs in the

PVN result in sympathoexcitation [20, 21]. Suppression of

central angiotensin-converting enzyme has been found to

down-regulate the PICs in the heart of the spontaneously

hypertensive rat [46, 47]. These results further support the

idea that hypertension is an inflammatory state and PICs

are involved in the pathogenesis of hypertension. In this

study, bilateral microinjections of the Ang-(1–7) antagonist

A-779 into the PVN significantly attenuated RSNA, and

decreased the expression of MCP-1, IL-1b, TNF-a, and IL-

6 in the PVN in rats with hypertension induced by HS. Our

results are consistent with the recent report that inhibition

of angiotensin-converting enzyme decreases the levels of

PICs (IL-1b and IL-6) and increases the level of anti-

inflammatory cytokine (IL-10) in the PVN and plasma

during Ang II-induced hypertension [47]. These findings

suggest that blockade of endogenous Ang-(1–7) in the PVN

PVN

PIC

RAS

A-779

Sympathoexcitation

Hypertension

High salt diet

ROS

Fig. 7 Schematic of the hypothesis. Angiotensin-(1–7) modulates

PIC expression and oxidative stress in the paraventricular nucleus

(PVN) and contributes to sympathetic nerve activity and blood

pressure in salt-induced hypertension. Microinjection of A-779 blocks

the function of MasRs, and reduces the effects of angiotensin-(1–7).

Table 2 Effect of microinjection of A-779 into the PVN on pro-

inflammatory cytokines in the PVN.

Group Protein level in the PVN (pg/mg)

TNF-a IL-6

HS ? PVN vehicle 8.8 ± 0.6* 60.3 ± 5.9*

HS ? PVN A-779 5.8 ± 0.5*� 41.7 ± 4.1*�

NS ? PVN vehicle 3.7 ± 0.4 29.2 ± 3.4

NS ? PVN A-779 3.5 ± 0.3 26.5 ± 3.2

NS, normal salt diet; HS, high salt diet; PVN, paraventricular nucleus.

Values are presented as mean ± SEM (n = 7); *P\ 0.05 versus NS

groups; �P\ 0.05 HS ? PVN A-779 versus HS ? PVN vehicle.
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attenuates MAP and sympathetic activity probably through

reducing PICs and attenuating ROS production in HS-

induced hypertension (Fig. 7).
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