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Abstract

Combining statistical significances (P-values) from a set of single-locus association tests in genome-wide association
studies is a proof-of-principle method for identifying disease-associated genomic segments, functional genes and biological
pathways. We review P-value combinations for genome-wide association studies and introduce an integrated analysis tool,
Omnibus P-value Association Tests (OPATs), which provides popular analysis methods of P-value combinations. The software
OPATs programmed in R and R graphical user interface features a user-friendly interface. In addition to analysis modules
for data quality control and single-locus association tests, OPATs provides three types of set-based association test: window-,
gene- and biopathway-based association tests. P-value combinations with or without threshold and rank truncation are
provided. The significance of a set-based association test is evaluated by using resampling procedures. Performance of the
set-based association tests in OPATs has been evaluated by simulation studies and real data analyses. These set-based
association tests help boost the statistical power, alleviate the multiple-testing problem, reduce the impact of genetic
heterogeneity, increase the replication efficiency of association tests and facilitate the interpretation of association signals
by streamlining the testing procedures and integrating the genetic effects of multiple variants in genomic regions of biological
relevance. In summary, P-value combinations facilitate the identification of marker sets associated with disease susceptibility
and uncover missing heritability in association studies, thereby establishing a foundation for the genetic dissection of complex
diseases and traits. OPATs provides an easy-to-use and statistically powerful analysis tool for P-value combinations. OPATs,
examples, and user guide can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/genetics/association/OPATs.htm.
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Introduction

The P-values from a set of statistical tests in the same or differ-
ent studies have been combined to summarize the statistical
significance of multiple tests. Tippett [1] proposed the min-
imum P-value method (MPM), Fisher [2] proposed the product
P-value method (PPM) and Good [3] proposed the weighted PPM
(WPPM). Other P-value combination methods have been de-
veloped by Stouffer et al. [4], Pearson [5], Wilkinson [6] and
Edgington [7] but did not attract as much attention as did the
PPM and MPM in real applications.

Zaykin et al. [8] proposed the truncated PPM (TPPM), which
combines only P-values less than a prespecified P-value thresh-
old (e.g. s ¼ 0:05) in the PPM. In this study, the TPPM was

introduced as a multilocus association test with a multiple-test
adjustment that aimed to increase the statistical power of mul-
tiple individual tests in a genetic association study. Neuh€auser
and Bretz [9] suggested an adaptive TPPM (ATPPM) procedure
and applied it to clinical trials. Since 2006, we have applied the
TPPM in practical studies and extended the method. Yang et al.
[10] introduced a sliding window empirical P-value test as one
of the earliest pooled DNA multipoint association tests by im-
plementing the MPM, PPM, TPPM, sum P-value method (SPM)
and truncated SPM (TSPM) in each slide window. The method
was implemented in the PDA software [10]. Yang et al. [11] pro-
posed a unified (weighted) P-value combination method that
incorporated linkage disequilibrium (LD) and/or physical dis-
tance (PD) as weights; the MPM, PPM, TPPM, SPM and TSPM
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became special cases of this approach. For example, the WPPM-
LD, WPPM-PD and WPPM-LDPD are three weighted tests of the
PPM. This approach supersedes the conventional unweighted
approaches by alleviating the false-positive rate and increasing
the testing power when nuisance markers are included. Yang
et al. [12] further proposed the kernel-based association test
(KBAT) by modifying the weight functions reported in Yang et al.
[11]; the KBAT-PD uses a PD weight, and the KBAT-PDLD com-
bines PD and LD weights. In addition to sharing merits with the
weighted methods in Yang et al. [11], the KBAT is invariant to
the genetic map scale. The method was implemented in the
KBAT software. Yang et al. [13] applied the TPPM to a genome-
wide gene-based association study, and Yang and Chen [14] fur-
ther applied the TPPM to region- and biopathway-based quanti-
tative trait locus mapping in a DNA sequencing study.

In contrast to the TPPM, some researchers developed their P-
value combination methods by using the rank truncated PPM
(RTPPM) [15], which combines a fixed number of the most sig-
nificant P-values (e.g. K¼ 10) in the PPM. Statistical power of the
RTPPM is sensitive to the choice of the prespecified number K,
particularly in a genome-wide association study involving of a
large number of statistical tests. To address this problem of the
choice of rank truncation, the adaptive RTPPM (ARTPPM), which
calculates the minimum of RTPPM statistics over different can-
didate K’s, has been developed [16–18]. Zhang et al. [19] and
Chen et al. [20] have further considered all possible rank trunca-
tion points in the RTPPM.

In addition to the PPMs, Taylor and Tibshirani [21] proposed
the tail strength method (TSM), which calculates the mean devi-
ations of P-values from their expected values. Jiang et al. [22]
proposed the truncated TSM (TTSM), which combines only P-
values less than a prespecified P-value threshold in the TSM.
Recently, Hu et al. [23] proposed the group-combined P-value
(GCP) method. The GCP statistic is defined as the product of the
group-level P-values; each of the group-level P-values was esti-
mated using the TPPM or TTSM. Some P-value combination
methods have been advocated to use additional data informa-
tion such as LD and map information [10–12], gene information
[13, 24], pathway information [14, 16, 25–27] and effect size in-
formation [28].

The exact sampling distributions of some P-value combin-
ations, including the PPM [2], WPPM [3], TPPM [8] and RTPPM
[15], can be derived under the independence assumption of
P-values. However, the distribution becomes intractable if the P-
values are dependent. Some studies have accounted for P-value
dependency, but strong model assumptions are required. The
sampling distribution approximations highly rely on the model
assumptions and restrict their real applications (Brown [29];
Kost and McDermott [30]). To address this problem, resampling
procedures [e.g. permutation (PT) and Monte Carlo (MC)] have
been used to calculate empirical P-values [8, 31]. Phenotype-
based PT, which randomly shuffles phenotypic data [32], is a
method to generate a large amount of replicated data according
to a null hypothesis (i.e. no genetic association between a gen-
etic marker and disease). This procedure is computationally in-
tensive and requires phenotypic data. Genotype-based PT is an
alternative to phenotype-based PT. However, this procedure is
not recommended in a genetic association study because (1)
highly intensive PTs are required, particularly for a genome-
wide association study and (2) the original LD structures are
destroyed. The MC method is another suitable resampling pro-
cedure, particularly for P-value combinations [8, 11, 12]. This
method can generate P-value sequence data according to a null
hypothesis without needing raw phenotype and genotype data.

Typically, this method involves less computation compared
with PT, but some parametric assumptions are required. With
PT or the MC method, the computational burden is a concern,
particularly in a large-scale genome-wide association study.
Some computationally efficient sampling procedures were pro-
posed to reduce computation burden and not sacrifice the esti-
mation accuracy of empirical P-values [33]. Additional methods
have been introduced to evaluate the statistical significance of
dependent P-values, such as the estimation of an effective num-
ber of independent tests [17, 34] and decorrelation procedure
[17, 25].

In contrast to single-locus association tests, a P-value com-
bination method is a set-based association test (i.e. a multilocus
association test) in genetic and genomic research. This method
is advantageous because it can boost the statistical power by
incorporating the joint effects of multiple genetic variants, alle-
viate the multiple-testing problem by reducing the number of
association tests, reduce the impact of genetic heterogeneity,
increase the replication efficiency of association tests by con-
sidering all genetic variants in the same biological units (region,
gene or pathway) and facilitate the interpretation of association
signals through reference to biologically relevant annotations of
genes and pathways [24, 35]. According to study aims, a set is
defined as a sliding window, gene, biopathway or other
biological units of interest (e.g. an LD block). In addition to a sin-
gle-nucleotide polymorphism (SNP)-based association study
[36], P-value combination methods have been broadly applied in
various fields, including transcriptomics [37–40], proteomics
[41] and DNA sequencing studies [14, 42].

Although some software, such as PLINK [43], VEGAS2 [44]
and GCTA-fastBAT [45], address set-based genome-wide associ-
ation tests, Omnibus P-value Association Tests (OPATs), which
comprises threshold and rank truncation procedures, repre-
sents a user-friendly and statistically powerful analysis tool
with reasonable computational efficiency for set-based associ-
ation tests in a genetic or genomic association study.

Method
Window-based association test

Let fpk; k ¼ 1; . . . ; cg from SNP-based association tests indicate a
P-value sequence of c SNPs ordered according to physical pos-
ition on a chromosome. Let I j;mð Þ ¼ fj�m; j�mþ 1; . . . ; j; . . . ; j
þm� 1; jþmg indicate a window anchored at the jth SNP
that contains m SNPs before and after the anchor SNP. Let wk in-
dicate a weight assigned to the kth SNP in the window. The func-
tion f ðpÞ indicates a P-value transformation (e.g. log
transformation). The constant s is a threshold for P-value trunca-
tion. The indicator function I½A� corresponds to 1 in case of event
A; otherwise, the value is 0. The threshold-truncated Window-
based association test (WBAT) partitions fpk; k ¼ 1; . . . ; cg into
sliding windows and the following P-value combinations are cal-
culated in each window as follows:

X
k2Iðj;mÞwk � f ðpkÞ � I½pk < s�;

where the weights satisfy
P

k2Iðj;mÞwk � I½pk < s� ¼ 1. The rank-
truncated WBAT is written as follows:

XK

k¼1
w0k � f ðpðkÞÞ;

where fpðkÞ; k ¼ 1; . . . ;Kg are the K smallest order statistics of
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fpk; k 2 Iðj;mÞg, and the corresponding weights satisfyPK
k¼1 w0k ¼ 1.

Let fdk; k 2 Iðj;mÞg and frk; k 2 Iðj;mÞg indicate standardized
PD and LD between the kth SNP and the anchor SNP j in window
Iðj;mÞ, respectively. The weight of the kth SNP in window Iðj;mÞ
is defined as a function of PD and/or LD [11, 12] as follows:

dk � rkP
k2Xfdk � rkg

;

where X ¼ Iðj;mÞ when calculating wk in the threshold-
truncated WBAT and X ¼ f1; . . . ;Kg when calculating w0k in the
rank-truncated WBAT. PD can be obtained from SNP positions
or further transformed by using a kernel function [12]. LD can be
obtained from public databases such as the International
HapMap Project [46] and the 1000 Genomes Project [47], or calcu-
lated based on genotype data.

The empirical P-value of a WBAT is calculated using resam-
pling procedures, as shown in the ‘Resampling’ subsection, and
this empirical P-value is used to examine the genetic associ-
ation of the sliding window with a study disease. OPATs pro-
vides several test statistics of the WBAT, namely, the MPM,
PPM, weighted PPM (WPPM-PD, WPPM-LD and WPPM-PDLD) and
KBAT (KBAT-PD and KBAT-PDLD).

Gene-based association test

For notational convenience, the gene-based association test
(GBAT) and biopathway-based association test (BBAT) are intro-
duced in a three-layer structure of P-values as follows. Let pi;j;k

indicate the P-value of the kth SNP in the jth gene involved in
the ith biopathway from a single-locus association test. Let wi;j;k

indicate a weight assigned to the kth SNP in the jth gene
involved in the ith biopathway. Let ni;j indicate the number of
SNPs in the jth gene involved in the ith biopathway, ni indicate
the number of genes involved in the ith biopathway and n indi-
cate the number of biopathways. In a single-locus association
analysis, pi;j;k is used to identify SNPs associated with a study
disease. In a threshold-truncated gene-based association ana-
lysis, a gene-based P-value pi;j of the jth gene involved in the ith
biopathway is calculated according to the following P-value
combination of ni;j SNPs by using a resampling procedure:

Xni;j

k¼1
wi;j;k � f ðpi;j;kÞ � I½pi;j;k < s�; i ¼ 1; . . . ;n; j ¼ 1; . . . ;ni;

where weights satisfy
Pni;j

k¼1 wi;j;k � I½pi;j;k < s� ¼ 1. The rank-
truncated GBAT is written as follows:

XK

k¼1
w0k � f p kð Þ

� �
;

where fpðkÞ; k ¼ 1; . . . ;Kg are the K smallest order statistics of
fpi;j;k; k ¼ 1; . . . ;ni;jg, and the corresponding weights satisfyPK

k¼1 w0k ¼ 1. The weight in the threshold-truncated GBAT (i.e.
wk) and the weight in the rank-truncated GBAT (i.e. w0k) can be
assigned according to SNP importance (e.g. effect size, biological
functionality and marker informativeness) that the information
can come from the studied data or external resources. The de-
tails about weight assignment in OPATs can refer to the ‘Data
input’ section in the online user guide.

The obtained empirical P-value p�i;j is used to identify genes
associated with a study disease. If a gene is not involved in any
biopathway, the aforementioned procedures still apply. Index i
can be omitted or imagined as an index for pseudo biopathway

containing the gene. OPATs provides several test statistics of
the GBAT, namely the MPM and PPM. In addition to SNPs in a
gene region, OPATs provides several options for GBAT to include
important SNPs outside a gene body (e.g. SNPs on promoters or
transcription starting sites). OPATs enables a gene region to be
extended upstream and downstream by a prespecified width.
Moreover, two analysis strategies, namely a pure gene-based
analysis and a SNP/gene-based analysis, are implemented. A
pure gene-based analysis only analyzes intragenic SNPs. In a
SNP/gene-based analysis, intergenic SNPs are analyzed indi-
vidually through SNP-based association tests and intragenic
SNPs are analyzed through GBATs.

Biopathway-based association test

The BBAT is divided into two types: gene- and SNP-level BBATs.
To consider a gene-level BBAT, a threshold-truncated biopath-
way-based P-value pG

i of the ith biopathway is calculated ac-
cording to the following P-value combination of ni genes by
using a resampling procedure:

Xni

j¼1
wi;j � f pi;j

� �
� I pi;j < s
� �

; i ¼ 1; . . . ;n

where pi;j ¼ p�i;j and weights satisfy
Pni

j¼1 wi;j � I½pi;j < s� ¼ 1. The
rank-truncated BBAT is written as follows:

XK

k¼1
w0k � f ðpðkÞÞ;

where fpðkÞ; k ¼ 1; . . . ;Kg are the K smallest order statistics of
fpi;j; j ¼ 1; . . . ;nig, and the corresponding weights satisfyPK

k¼1 w0k ¼ 1. The empirical P-value p�Gi is used to identify the
biopathways associated with a study disease.

To consider a SNP-level BBAT, a threshold-truncated bio-
pathway P-value pS

i of the ith biopathway can be calculated ac-
cording to the following P-value combination of

Pni
j¼1 ni;j SNPs

by using a resampling procedure:

Xni

j¼1

Xni;j

k¼1
wi;j;k � f ðpi;j;kÞ � I½pi;j;k < s�; i ¼ 1; . . . ;n

where the weights satisfy
Pni

j¼1

Pni;j

k¼1 wi;j;k � I½pi;j;k < s� ¼ 1. The
rank-truncated BBAT is written as follows:

XK

k¼1
w0k � f p kð Þ

� �
;

where fpðkÞ; k ¼ 1; . . . ;Kg are the K smallest order statistics of
fpi;j;k; j ¼ 1; . . . ;ni; k ¼ 1; . . . ;ni;jg, and the corresponding weights
satisfy

PK
k¼1 w0k ¼ 1. This empirical P-value p�Si can also be used

to identify the biopathways associated with a study disease.
Similar to the GBAT, weights in BBAT can be assigned according
to SNP or gene importance and study purposes. The details can
refer to the ‘Data input’ section in the online user guide.

OPATs provides several test statistics of the BBAT, namely,
the MPM and PPM. The test statistics are provided with and
without P-value truncations. Similar to the GBAT, gene regions
in a biopathway can be extended. OPATs provides both pure
gene-level and SNP-level biopathway analyses.

OPATs can apply the adaptive rank truncation or adaptive
threshold truncation procedure to the test statistics in the
‘Window-based association test’, ‘Gene-based association test’
and ‘Biopathway-based association test’ subsections by provid-
ing multiple truncation thresholds or ranks. For a specific test
statistic, the minimum of the empirical P-values of the test
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statistic over different truncation thresholds s’s or truncation
ranks K’s is calculated. Finally, the empirical P-value of the min-
imum statistic is calculated by resampling procedures to evalu-
ate the genetic association of the window, gene and biopathway
with a study disease.

Resampling

Two resampling procedures for the calculation of an empirical
P-value are implemented in OPATs. One is a MC procedure pro-
posed by Zaykin et al. [8]. This resampling procedure can be
applied to P-value sequence data analysis. The other is a PT pro-
cedure that requires phenotype and genotype data. Genotype
data are fixed, but phenotypes of all study samples are ran-
domly shuffled in a continuous phenotype analysis, or sample
groups (e.g. case and control) are randomly shuffled in a cat-
egorical phenotype analysis.

To maintain a balance between the computational time of a
resampling and accuracy of the estimated empirical P-value, an
adaptive procedure is implemented in OPATs. Resampled sam-
ples are generated batchwise rather than as a large initial num-
ber. To save computational time, resampling is stopped in an
early batch if a low confidence limit for empirical P-value esti-
mates according to a binomial model is higher than a prespeci-
fied significance level (default setting: 0.05) [43]. Moreover, to
increase the accuracy of the estimated empirical P-value, more
resampling samples are continuously generated batchwise (de-
fault setting: 1000 samples in a batch), and empirical P-values
are calculated if no test statistics in the resampling samples ex-
ceed the statistic of the real data in the early batches. The pro-
cedure continues at least until an excess is observed or a
Bonferroni level is achieved (see the ‘Implementation’ subsec-
tion). To alleviate the computational burden, OPATs applies the
one-layer resampling procedure [16] to calculate the empirical
P-values of the gene-level BBAT and adaptive truncation statis-
tics. Structure of OPATs is shown in Figure 1.

Initialization, implementation and input and
output of OPATs
Initialization

Once OPATs is downloaded and unzipped, all files must be
saved in the same destination directory, such as ‘D:/OPATs’.
OPATs can be initialized by double clicking the executable file
OPATs.bat; then, the OPATs’ interface is activated, as shown in
Figure 2.

Implementation

As shown in Figure 2, the OPATs’ interface comprises three
parts. The first part is a preface to introduce OPATs. The second
part contains the directories of data input and output. Users can
either directly type the paths of directories into the edit boxes
or press the Browse button to select directories. The input direc-
tory must be specified. An output directory named Output
under the input directory is automatically generated if not
specified. The final part contains the following three function
tabs.

The first function tab: P-value Combination
This tab comprises the following components (Figure 2): (1) as-
sociation analysis, (2) test statistic and (3) empirical P-value.

1. The association analysis component provides three types of
set-based association analyses, namely, the WBAT, GBAT
and BBAT.

• The WBAT inherits a sliding window analysis from the KBAT,

which was developed to analyze P-value sequence data

(see the ‘Window-based association test’ subsection). When

the directory of data input is specified, OPATs automatically

detects the total number of genetic markers in the P-value

file (.pv) (see the ‘Data input’ section in the online user guide)

and displays the numbers of the first and last markers in the

study region. These numbers can be changed to restrict the

analysis to a subset of markers. The number of markers m

and bandwidth h in size are used to determine the sliding

window.
• The GBAT offers two types of gene-based association ana-

lyses, namely, the pure gene-based analysis and SNP/gene-

based analysis (see the ‘Gene-based association test’

subsection). Moreover, by typing a value (unit: kb) in gene

region extension, OPATs extends the study gene regions to

a range between this value upstream of the first marker and

downstream of the last marker. Physical positions of the

first and last markers on a gene are provided in an

Annotation file (.anno) (see the ‘Data input’ section in the

online user guide).
• The BBAT offers two types of biopathway-based association

analyses, namely, gene-level analysis and SNP-level analysis

(see the ‘Biopathway-based association test’ subsection).

Similar to the GBAT, users can extend the study gene regions

by typing a value (unit: kb) in gene region extension.

Biopathway information is provided in a gene set file (.gmt)

(see the ‘Data input’ section in the online user guide).

2. The test statistic component offers several P-value combin-
ation statistics, namely, the MPM, PPM, WPPM-US, WPPM-
PD, WPPM-LD, WPPM-PDLD, KBAT-PD and KBAT-PDLD.
OPATs can run multiple statistics simultaneously. However,
not all statistics are suitable for every set-based association
analysis; the statistics not suitable to the specified set-based
association analysis are disabled. OPATs provides a general
P-value combination procedure combined with adaptive
rank or threshold truncation. Users can consider different
truncation methods individually or simultaneously and dif-
ferent truncation values by specifying multiple truncation
points.

3. The empirical P-value component offers two empirical P-
value calculation methods and two multiple-testing correc-
tion methods.

• Resampling procedure offers MC and PT options. MC is suit-

able for analyzing P-value sequence and genotype data,

and PT is only suitable for analyzing genotype data. When

using LD information is applied, OPATs uses LD information

in MC. The number of replications for MC and PT must be

provided in replications (R). A minimum value of 1000 is

recommended.
• Multiple-testing correction provides Bonferroni correction

and false discovery rate (FDR). A significance level must be

specified in the significance level (a).
• The attaining Bonferroni’s level option allows OPATs con-

tinue redrawing samples to increase the accuracy of the esti-

mated empirical P-value when no test statistics in the

resampling samples exceed the test statistic in the real data.

For example, if the number of single-locus association tests

is 106, and significance level is 0.01, then at most 108 replica-

tions can be resampled.
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If only P-value data are provided, after the settings in the
aforementioned steps, users can press the Run button at the
bottom of OPATs to start the analysis. If genotype data are pro-
vided, users must set quality control criteria in the second func-
tion tab (Data Quality) and select a genetic model in the third
function tab (Model and Test).

The second function tab: Data Quality
As shown in Figure 3, users can eliminate poor-quality individ-
uals and markers by using genotypic data. For sample quality
control, thresholds in the call rate (CR) cutoff and Het rule are
set to exclude individuals with a low CR (i.e. a high missing rate)
or with outliers of heterozygosity rates in terms of mean (Mean
rule) or interquartile range (IQR; IQR rule), respectively. For
marker quality control, thresholds in the CR, minor allele

frequency (MAF) and Hardy–Weinberg equilibrium (HWE) P-
value cutoffs are set to eliminate markers with a low CR, small
MAF or deviation from the HWE, respectively. OPATs evaluates
the HWE in a control group in a case-control study; otherwise,
the HWE is assessed for all samples.

The third function tab: Model and Test
After data quality control, users must set genetic models and
single-locus association tests in the third function tab (Model
and Test; Figure 4). This tab comprises two components:
(1) Model and (2) Single-locus test. OPATs cooperates with
PLINK, one of the most popular data analysis toolsets with high
computational efficiency for genome-wide association study, to
conduct single-locus association tests.

Figure 1. Structure of OPATs.
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1. The Model component is used to specify the following three
settings:

• Trait: This window lists all variables in the phenotype file

(.pheno) (see the ‘Data input’ section in the online user

guide). Users select one response variable. According to the

variable type (continuous or dichotomous), OPATs suggests

the suitable single-locus association tests in test.
• Genetic model: Users can select dominant, recessive, codo-

minant (genotypic and allelic) and/or additive models.
• Covariate: This window lists all variables in a covariate file

(.cov) (see the ‘Data input’ section in the online user guide).

Users select the variables to be adjusted for in a regression

model. When a covariate(s) is selected, the regression model

is the only choice in test.

2. The Single-locus test component provides several single-
locus association tests, namely, v2 test, genomic control [48]
and two regression models (logistic regression and linear re-
gression). Selection of the tests is related to the setting in
trait and covariate. For a continuous trait, only linear regres-
sion can be selected. For a dichotomous trait, v2 test, gen-
omic control and logistic regression can be selected if no
covariate adjustment is applied, and only logistic regression
can be selected if a covariate adjustment is applied.
In addition to the Windows graphical user interface (GUI)

environment, OPATs can be executed using command lines

under the Windows and Linux environments. The commands
and options are provided in the ‘Initialization and
Implementation’ section in the online user guide.

Data input

The WBAT and GBAT analyze P-value data (or genotypic data)
and annotation data. The BBAT analyzes P-value data (or geno-
typic data), annotation data and gene set data. All data consist
of P-value data (.pv), annotation data (.anno), gene set data
(.gmt), genotypic data, phenotypic data (.pheno), covariate data
(.cov) and LD data (.ld). The input data formats are illustrated in
the ‘Data input’ section in the online user guide.

Result output

When an analysis is complete, numerical (.txt) and graphical
(.pdf) results will be automatically generated and save in the
specified output directory. Numerical results contain three files:
Description file (_NOTE.txt), Annotation file (_ANNO.txt) and
Result file (_RESULT.txt). The contents of each file can refer to
the ‘Result output’ section in the online user guide. The graph-
ical results are Manhattan plots and quantile–quantile (Q-Q)
plots of empirical P-values from different types of set-based as-
sociation analyses, P-value sequences, truncation thresholds,

Figure 2. Initial OPATs’ interface (the P-value Combination tab).
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test statistics and resampling procedures. The details are illus-
trated in the ‘Result output’ section in the online user guide.
Meanwhile, graphical results are visually represented in the
Output Viewer of OPATs (Figure 5).

The Output Viewer can also be used to display graphical out-
puts of previous analyses from OPATs. Users can either directly
type the paths of the result and annotation files into the edit
boxes, or press the Browse button to select files. Users can select
to show a Manhattan plot or Q-Q plot in the left-hand side panel.
In a Manhattan plot, users can select different color schemes to in-
dicate significant and insignificant markers and the markers to be
highlighted. Users can input a significance level to draw a horizon-
tal reference line for the P-value. The biopathways, genes and
SNPs analyzed in the data set are listed. If users click a specific
gene in the ‘Gene’ panel, all SNPs located on this gene and their
corresponding annotations will be shown in the ‘SNP’ and final
panels, respectively. Users can also use the ‘Search’ function to
search for biopathways, genes and SNPs of interest in the data set.
Finally, if users are interested in any point in the Manhattan plot,
they can move the mouse cursor to the point and click to show
the detailed annotation information of the point.

Examples

OPATs provides two real examples. The data are provided in ‘D:/
OPATs/Examples’. The first example analyzes P-value sequence
data from a case-control study. The second example analyzes

genotypic data from a population genetics study. These ex-
amples can be easily executed through the Example 1 and
Example 2 hyperlinks on the first function tab (P-value
Combination).

P-value data from a Wellcome Trust Case Control
Consortium study

The Wellcome Trust Case Control Consortium (WTCCC) re-
cruited 1999 rheumatoid arthritis (RA) cases and 3002 normal
controls in the British population [49]. All samples were geno-
typed using Affymetrix Human Mapping 500K Array Set. The
sample contained 490 032 autosomal SNPs. The asymptotic P-
values of Armitage trend tests with genomic control [48] for
31 439 SNPs on chromosome 6 were calculated (P-value file:
WTCCC.pv). SNP annotations comprising chromosome, physical
position and gene information were prepared according to the
National Center for Biotechnology Information (NCBI) 37.3 (an-
notation file: WTCCC.anno). Quality control information compris-
ing the CR, MAF and HWE were provided in the annotation file.

In this analysis, the cutoffs for excluding poor-quality SNPs
were assigned as follows: a genotype CR of <0.9, an MAF of
<0.01 and a P-value for the HWE test of <0.05. WTCCC.pv and
WTCCC.anno are provided in ‘D:/OPATs/Examples/RA_WTCCC’.
Users can click Example1 on the P-value Combination tab and
press the Run button to run the GBAT, or click the BBAT frame
and press the Run button to run the BBAT.

Figure 3. Second OPATs’ interface (the Data Quality tab).
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Figure 4. Third OPATs’ interface (the Model and Test tab).

Figure 5. Output Viewer of OPATs.
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For the GBAT, a pure gene-based GBAT analysis was per-
formed; a TPPM with a truncation threshold of 0.05 was con-
sidered; the number of MC simulations was 10 000; and FDRs
were performed for a multiple-testing correction with a signifi-
cance level of 0.05. After data quality control, 25 244 SNPs re-
mained, and 10 435 were intragenic SNPs on 1009 genes and
included in the subsequent pure gene-based GBAT analysis.
Figure 6 shows the Manhattan plot for the analysis. Red and
gray points indicate significant and insignificant genes, respect-
ively. A horizontal reference line indicates a P-value of 0.05. All
the 1009 genes are displayed. This analysis identified some pre-
viously reported RA-associated genes, such as BTNL2, TNFAIP3
and a number of genes in the major histocompatibility complex
region.

Figure 7 shows the Q-Q plot. The vertical axis (Y axis) indi-
cates the observed P-values (in a �log10 scale), and horizontal
axis (X axis) indicates the expected P-values (in a �log10 scale).
A line of X¼Y and the corresponding 95% confidence bands are
provided.

A BBAT was conducted by using the BBAT. We used a gmt
file (WTCCC.gmt) from Kyoto Encyclopedia of Genes and
Genomes (KEGG) [50], which contains 303 biopathways. A pure
gene-level biopathway analysis was performed; a TPPM with a
truncation threshold of 0.05 was considered; the number of MC
simulations was 10 000; and FDRs were performed for a
multiple-testing correction with a significance level of 0.05. In
total, 245 of the 303 biopathways provided data for analysis, and
91 biopathways were significant according to the FDR-adjusted
P-values of <0.05. Some crucial biopathways associated with
RA, such as mitogen-activated protein kinase signaling pathway
and tumor necrosis factor signaling pathway, were identified in
this example.

Sequencing data from the 1000 Genomes Project

The 1000 Genomes Project [47] provided a comprehensive catalog
of different human genetic variations by performing next-
generation sequencing experiments. In this example, we investi-
gated ancestry informative markers for European and African

ancestry populations according to 85 CEU (CEPH in Utah with
European ancestry) and 88 YRI (Yoruba from Ibadan, Nigeria with
African ancestry). Variant call format (VCF) files from the Web site
of the 1KG Project (http://www.1000genomes.org/) were converted
to transposed pedigree format files (genotype files: chr01_CEU.
tped, chr01_CEU.tfam, chr01_YRI.tped, and chr01_YRI.tfam) by
using VCFtools. To help users download data, we reduced the
marker data through variant thinning that drew only one in every
100 variants on chromosome 1; this procedure retained 28 970
variants for the study. The Annotation file (chr01.anno) was pre-
pared on the basis of NCBI 37.3. CEU and YRI were considered the
case and control groups, respectively (phenotype file:
chr01.pheno). All data files were saved in OPATs in ‘D:/OPATs/
Examples/1KGP’. Users can click Example2 on the P-value
Combination tab and press the Run button to run the WBAT.

In data quality control, the cutoffs for the genotype CR, MAF
and P-value for the HWE test were <0.9, <0 and <0.05, respect-
ively. In total, 1047 variants were analyzed by the genotype-
based v2 test individually. Then a WBAT analysis was
performed; a window size of 5 [i.e. an anchor marker in the
middle and two additional variants on each side (m¼ 2)]; a
TPPM with a truncation threshold of 0.05; the number of PTs
was 10 000; and an FDR was performed with a significance level
of 0.05. The results showed that 957 of the 1047 variants were
statistically significant (i.e. ancestry informative markers) after
FDR correction. On the basis of the identified ancestry inform-
ative variants, CEU and YRI samples were clearly separated in
an allele frequency biplot (Figure 8).

Simulation study

We evaluated the performance of the main set-based associ-
ation tests and two resampling procedures in OPATs, and com-
pared with PLINK [43].

Simulation conditions

To mimic the real genomic structure, genotype data were gener-
ated from the WTCCC-RA data set in Example 1. The

Figure 6. Manhattan plot in the GBAT analysis of Example 1.
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simulations considered the following factors and conditions:
(1) phenotypes—a dichotomous disease status (D) and a quanti-
tative trait (Q); (2) gene sizes (s)—5, 10, 25, 50, 75 and 100 SNPs in
the study gene region randomly chosen from the human

genome; (3) resampling procedures—MC and PT; (4) test statis-
tics—five core set-based association tests in OPATs [i.e. the
PPM, TPPM, RTPPM, ATPPM and ARTPPM] and the default set-
based test in PLINK [43]. Under each simulation condition,

Figure 7. Q-Q plot in the GBAT analysis of Example 1.

Figure 8. Biplot of 85 CEU and 88 YRI samples. CEU and YRI samples of Example 2 are shown with green and blue arrows, respectively. Red points indicate the identified

ancestry informative markers.
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1000 simulation replications were generated. Type 1 error and
power of the set-based association tests were calculated.

Simulation procedures

The type 1 error analysis
In a dichotomous phenotype study, among 3002 normal con-
trols in the WTCCC-RA data set, 500 individuals were randomly
drawn and assigned to the case group (D ¼ 1), and another 500
individuals were sampled and assigned to the control group
(D ¼ 0). In a quantitative trait study, phenotypes of 1000 individ-
uals from the control group in the WTCCC-RA data set were
generated from a standard normal distribution [i.e. Q � Nð0;1)].
We included the SNPs that had passed quality control in the be-
ginning of the simulation. Genotypes of the sampled individuals
were adopted directly.

The power analysis
In a dichotomous phenotype study, 1000 individuals from the
control group in the WTCCC-RA data set were sampled ran-
domly and partitioned equally into the case group (D ¼ 1) and
control group (D ¼ 0). Genotypes of the control and case individ-
uals were generated as follows: we considered a gene contain-
ing s SNPs. Among the s intragenic SNPs, d SNPs were assigned
as disease-associated SNPs. Let G ¼ ðGA; G�A Þ denote the joint
genotypes of s SNPs, where GA ¼ fgk; k ¼ 1; . . . ; dg and G�A ¼ fhk;

k ¼ 1; . . . ; s� dg denote genotypic values of d disease-associated
SNPs and s� d non-disease-associated SNPs, respectively.
Genotypic value gk was coded as 0, 1 and 2 according to the
counts of disease alleles. Let X denote a collection of all possible
genotype combinations of GA. Joint genotypes of the 500 case in-
dividuals were generated based on the following conditional
distribution [16]:

P GA ¼ G�A; G�A ¼ G��A
� �

jD ¼ 1
� �

¼
P D ¼ 1jG�A
� �

PfðG�A;G��A ÞgP
G�A2X

P D ¼ 1jG�A
� �

PfG�Ag
;

where genotype distributions PfGAg and PfðGA;G�A Þg can be esti-
mated from the WTCCC-RA data set. Penetrance function was a
logistic regression model as follows:

P D ¼ 1jGf g ¼ P D ¼ 1jGAf g ¼
expfaþ

P
k¼1;...;dbk � gkg

1þ expfaþ
P

k¼1;...;dbk � gkg
;

where fbk; k ¼ 1; . . . ; dg indicates genetic effects of the disease-
associated SNPs in the study gene, and a indicates a log-scale
disease odd unexplained by the study genes. Joint genotypes of
the 500 control individuals were sampled according to the fol-
lowing conditional probability:

P GA ¼ G�A; G�A ¼ G��A
� �

jD ¼ 0
� �

¼
P D ¼ 0jG�A
� �

PfðG�A;G��A ÞgP
G�A2X

P D ¼ 0jG�A
� �

PfG�Ag
;

where P D ¼ 0jGAf g ¼ 1� P D ¼ 0jG�Af g. In this simulation study,
we set d¼ 3; a ¼ �2:5 and b1 ¼ b2 ¼ b3 ¼ b, where b ¼ 0:1; 0:2;0:3.

In a quantitative trait study, 1000 individuals were randomly
drawn from the control group in the WTCCC-RA data set.
We considered d quantitative trait loci in the study gene con-
taining s SNPs that they satisfied HWE and had no missing
genotypes. We generated quantitative trait values of the
1000 individuals based on the conditional distribution:
Nðl ¼ aþ

P
k¼1;...;d bk � gk; r2 ¼ 1Þ. In this simulation study, we set

d ¼ 3; a ¼ 1; and b1 ¼ b2 ¼ b3 ¼ b, where b ¼ 0:1; 0:2; 0:3.

Simulation results

The type 1 error analysis
Figures 9 and 10 summarize the results of the type 1 error ana-
lysis for a dichotomous and quantitative phenotype, respect-
ively. We examine the impacts of phenotypes, gene sizes,
resampling procedures and association tests on the type 1 error.
Only resampling procedures show a non-negligible effect on the
type 1 error. The PT-based methods (OPATs-PT and PLINK) con-
trol the type 1 error well; their type 1 errors are close to the pre-
specified significance level 0.05. Compared with the PT-based
methods, the MC method (OPATs-MC) has reasonable type 1
errors with a slightly larger fluctuation range; the type 1 error
ranges from 0.03 to 0.07.

The power analysis
Figures 11 and 12 summarize the results of the power analysis
for a dichotomous and quantitative phenotype, respectively.
We examine the impacts of phenotypes, gene sizes, resampling
procedures and association tests on the power. First, a quantita-
tive trait analysis shows a higher power than a dichotomous
phenotype analysis. Second, no obvious relationship between
gene size and power is observed. Third, no significant difference
in power is found between the two resampling procedures.
Finally, we investigate the impact of association tests on the
power. RTPPM and ARTPPM in OPATs have a higher power than
TPPM and ATPPM in OPATs and the set-based test in PLINK.
RTPPM and ARTPPM in OPATs have similar statistical power.
TPPM and ATPPM in OPATs and the set-based association test
in PLINK have similar statistical power.

Computational time

We evaluated computational time of association tests in
OPATs and PLINK based on the aforementioned simulation
studies of the type 1 error. In this simulation, gene size was set
as 5, and the average computational time of 100 simulations
was calculated. Figure 13 summarizes the results of computa-
tional time. First, we examine the impact of the numbers of
resampling replications on computational time. All of the
three methods (OPATs-MC, OPATs-PT and PLINK) have
increased computational time when the number of resampling
replications increases. Second, we investigate the impact of
sample sizes on computational time. Only the PT-based meth-
ods (OPATs-PT and PLINK) have increased computational time
when sample size increases; the MC method (OPATs-MC) is
immune to a change of sample size. Finally, we evaluate the
relative computational efficiency of the MC method (OPATs-
MC) compared with the PT methods (OPATs-PT and PLINK).
The relative efficiency of the MC method (OPATs-MC)
increases as sample size increases. In a scenario of 1000
resampling replications, the MC method has 6.03, 9.39, 13.63
and 40.88-fold relative efficiency when sample size is 100, 500,
1000 and 5000, respectively. When the number of resampling
replications increases to 104 (105 and 106), the MC method is
1.49 (3.50 and 2.72), 2.98 (6.42 and 6.95), 5.18 (9.31 and 9.22) and
13.69 (28.37 and 32.03)-fold more efficient than the PT
methods.

Conclusion and discussion

We review P-value combination in genome-wide association
studies and develop user-friendly software OPATs under GPL_v2
license for a streamlined genetic and genomic association
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analysis. The analysis functions comprise data quality control
(MAF, CR and HWE), SNP-based association tests (v2 and gen-
omic control tests as well as logistic and linear regression)
and set-based association tests (WBAT, GBAT and BBAT).

The set-based association tests can be applied for analyzing
different phenotypic variables (continuous and categorical
phenotype variables), modes of inheritance (dominant, reces-
sive, codominant and additive models) and covariate

Figure 10. Type 1 errors of set-based association tests in a quantitative trait

analysis.

Figure 12. Statistical power of set-based association tests in a quantitative trait

analysis.

Figure 11. Statistical power of set-based association tests in a dichotomous

phenotype analysis.

Figure 9. Type 1 errors of set-based association tests in a dichotomous pheno-

type analysis.
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information (demographic data and environment factors).
Analyses by using OPATs are useful for identifying genetic
markers and marker sets associated with complex diseases
and traits of interest. OPATs can be downloaded from http://
www.stat.sinica.edu.tw/hsinchou/genetics/association/OPATs.
htm.

The P-value combination methods in OPATs share merits
with set-based association tests mentioned in the ‘Introduction’
section and do not require genotypic and phenotypic data in an
analysis. This feature accommodates OPATs to a number of
genomic applications in P-value combination, including ana-
lysis of P-values from different types of molecular markers in
an omics study, family- and population-based association
studies, different analyses of phenotypes in a phenome-wide
association study, SNP-based association tests in a pooled DNA
study and different studies or clinical sites in a meta-analysis
study.

In addition to practical methods in statistical genetics and
genomics, OPATs features the following implementations: a
convenient GUI for the parameter and condition settings
and analysis execution, a flexible input and analysis of P-value
and genotypic data, an interactive Output Viewer to visually
represent the results of association tests, a convenient
hyperlink function to connect to the NCBI genome browser and
KEGG database to display gene and biopathway annotations for
the identified genetic markers, an efficient adaptive
resampling procedure to calculate empirical P-values [16] and
multiple operating environments including Windows and
Linux systems.

Future studies will explore several directions. More single-
locus tests for the genetic and genomic association analyses
of different types of phenotypic data, including ordinal, survival,
longitudinal and multivariate data will be added to make OPATs
comprehensive and self-contained. Parallel computing and
graphics processing unit acceleration will be added to enhance
the computational capacity of OPATs. More annotation re-
sources, such as gene ontology and topology, will be incorpo-
rated into OPATs to identify more biologically relevant units
associated with complex diseases and traits.

Key Points

• P-value combination has been proved as a powerful
set-based method for identifying disease-associated
genomic segments, functional genes and biological
pathways.

• OPATs provides a general P-value combination proced-
ure combined with adaptive rank or threshold trunca-
tion for three types of set-based association test (i.e.
WBAT, GBAT and BBAT).

• OPATs features a user-friendly interface, flexible input
and interactive Output Viewer, convenient connection
to the NCBI genome browser and KEGG database, effi-
cient computational procedure and multiple operating
environments.

• OPATs can be applied to omics studies with different
types of experimental designs, molecular markers and
phenotypes.
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