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Abstract

Current paradigms of CD8+ T cell-mediated protection in HIV infection center almost exclusively 

on studies of peripheral blood, which is thought to provide a window into immune activity at the 

predominant sites of viral replication in lymphoid tissues (LTs). Through extensive comparison of 

blood, thoracic duct lymph (TDL) and LTs in different species, we show that many LT memory 

CD8+ T cells bear phenotypic, transcriptional and epigenetic signatures of resident memory T 

cells (TRMs). Unlike their circulating counterparts in blood or TDL, the majority of total and 

follicular HIV-specific CD8+ T cells in LTs also resemble TRMs. Moreover, high frequencies of 

HIV-specific CD8+ TRMs with skewed clonotypic profiles relative to matched blood samples are 

present in LTs of individuals who spontaneously control HIV replication in the absence of 

antiretroviral therapy (elite controllers). Single-cell RNA-seq analysis confirmed that HIV-specific 

TRMs are enriched for effector-related immune genes and signatures compared to HIV-specific 

non-TRMs in elite controllers. Together, these data indicate that previous studies in blood have 

largely failed to capture the major component of HIV-specific CD8+ T cell responses resident 

within LTs.
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INTRODUCTION

It is well established that CD8+ T cells are required for effective immune control of HIV. 

The contemporary literature is also replete with studies that describe the qualitative 

characteristics of successful HIV-specific CD8+ T cell responses. For example, allotype 

restriction, antigen sensitivity and specificity, clonotype distribution, cytolytic activity, 

polyfunctionality, proliferative reserve, and response magnitude have all been associated 

with differential rates of disease progression (1). However, most of these correlates are based 

on data acquired from peripheral blood samples, despite the fact that HIV replicates 

primarily in lymphoid tissues (LTs).

HIV seeds, replicates, and persists in LTs (2). It is therefore important to develop an 

anatomically consistent view of immunosurveillance, especially in light of the fact that 

follicular helper T cells (TFHs) facilitate viral replication and harbor much of the viral 

reservoir (3–5). The efficacy of live-attenuated SIV vaccines can be predicted from the 

magnitude of virus-specific T cell responses in LTs (6). In addition, CD8+ T cell depletion is 

associated with a rapid redistribution of productive SIV infection to non-TFHs in elite 

controller monkeys, suggesting active viral suppression by CD8+ T cells, and/or NK cells, in 

LTs (7). However, very little is known about the antiviral properties of HIV/SIV-specific 

CD8+ T cells that reside in LTs.

Through the early work of Gowans and colleagues (8), we know that lymphocytes 

recirculate between tissues and blood through lymph via the thoracic and lymphatic ducts. 

More recent studies of human blood have categorized memory CD8+ T cells broadly into 

two circulating subsets based on their tissue homing properties. Central memory T cells 

(TCMs) express lymphoid homing receptors (CCR7 and CD62L) and recirculate between 

blood, LTs, and lymph, while effector memory T cells (TEMs) lack CCR7 and CD62L and 

recirculate between blood, non-lymphoid tissues (NLTs), and lymph to survey visceral 

organs and body surfaces (9). Recently, a new subset known as resident memory T cells 

(TRMs), that reside within NLTs, has been identified (10–13). Most TRMs constitutively 

express CD69 (14), which downregulates the sphingosine-1-phosphate receptor 1 (S1PR1) 

(15), thereby preventing tissue egress. NLTs are seeded with TRMs soon after immune 

priming (11), establishing a front-line tissue defense that can eliminate pathogens largely 

without the involvement of circulating T cells (16). Importantly, TRMs have distinct 

functional, phenotypic, and transcriptomic profiles attuned to their compartmentalized state 

(17).

TRMs have been identified in murine LTs through parabiosis experiments (18), where they 

are relatively sparse compared with circulating T cells (19). CD8+ TRMs have also been 

observed in human LTs (20–22). The notion that TRMs may exist in LTs could transform our 

understanding of CD8+ T cell-mediated control of HIV infection. In line with this 

possibility, the frequency of HIV-specific CD8+ T cells is generally higher in lymph nodes 

(LNs) compared with matched peripheral blood samples (23, 24), despite the fact that most 

circulating HIV-specific CD8+ T cells lack classical lymphoid homing characteristics (25, 

26). Moreover, CD8+ T cells accumulate in HIV-infected LTs (27) and respond poorly to 

S1PR1-mediated signals (28). However, it remains unclear if HIV-specific CD8+ T cells 
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with a TRM phenotype exist in HIV-infected LTs. To resolve this issue, we conducted a 

detailed assessment of CD8+ T cells in the peripheral blood and LTs of healthy and HIV+ 

subjects. Our data show that TRMs most often dominate the HIV-specific CD8+ T cell 

response in LTs, and identify a link between increased magnitudes of HIV-specific CD8+ 

TRMs and effective immune control of HIV.

RESULTS

CD69+CCR7− CD8+ T cells are expanded in HIV-infected lymph nodes

CD69 has often been considered as a marker of early T cell activation (29). We examined 

CD69 expression on LN CD8+ T cells from HIV+ and HIV− subjects (Table S1). Irrespective 

of adherence to antiretroviral therapy (ART), higher frequencies of LN CD69+ CD8+ T cells 

and CCR7− (TEM) cells were present in HIV+ compared with HIV− subjects (Fig. 1A and 

S1A). In HIV+ subjects, higher frequencies of CD8+ T cells expressed CD69 in LNs 

compared with blood (Fig. 1B). A strong association was also detected between the 

frequency of memory CD8+ T cells and the frequency of CD69+ CD8+ T cells in LNs (Fig. 

1C and S1B). Moreover, LN CD69+ CD8+ T cells from HIV+ subjects were biased towards 

a TEM phenotype (Fig. 1D and S1B).

To determine if LN CD8+ T cells express CD69 as a consequence of activation, we obtained 

samples from HIV+ subjects in the acute/early stages of infection (Fiebig IV-VI), a time 

when early cycling (Ki-67+) CD8+ T cells are prevalent in blood (30). Substantially higher 

frequencies of LN CD8+ T cells expressed Ki-67 in acutely infected HIV+ compared with 

HIV− subjects (Fig. 1E). These LN Ki-67+ CD8+ T cells also showed evidence of HIV 

specificity (Fig. S1C), as demonstrated previously in blood (30). However, only a minority 

of LN CD69+ CD8+ T cells expressed Ki-67 (Fig. 1F and S1D). In addition, we conducted 

mass cytometry to assess the expression of multiple activation markers on LN CD8+ T cells 

in HIV+ subjects with chronic disease (Fig. 1G). Similar to our conventional flow cytometry 

data, mass cytometry also demonstrated higher CD69 levels in LNs compared to blood (Fig. 

S1E). We next identified fourteen CD8+ T cell clusters algorithmically in t-distributed 

stochastic neighbor embedding (tSNE) space, where one cluster (#4) displayed high co-

expression of several activation markers (CD38, Ki-67, ICOS), but not CD69 (Fig. 1H). In 

contrast, CD69 expression intensity was high on unique clusters (#7, #8) with elevated levels 

of CD38, but also dissociated with CD38 expression in other dominant CD69 clusters (#2, 

#3) (Fig. 1H). Furthermore, some naïve-like clusters (#10, #14) demonstrated low CD69 

intensity (Fig. S1F), but these clusters also expressed low to high intensity of BCL-6, CD95 

and CXCR5 (#10) as well as CXCR3 and CCR6 (#14), suggestive of memory stem T cell 

(TSCM)-like features (31). Quantitative assessments demonstrated that several activation 

markers could be expressed on CD69+ CD8+ T cells (Fig. S1G); however, hierarchical 

clustering confirmed that CD69 expression was more closely related to PD-1, CD95, and 

CXCR3 expression than CD38, Ki-67, and ICOS expression (Fig. 1I). Collectively, these 

data indicate that high levels of CD69 expression on memory CD8+ T cells in HIV-infected 

LTs cannot be explained by an increased early/cycling (Ki-67+) immune activation profile.
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CD69+ CD8+ T cells display enriched traits of residency in lymphoid tissues

Although CD69 is classically associated with activation, it also marks non-circulating TRMs 

in NLTs (32). Recent studies in humans have also identified high levels of CD69+ CD8+ T 

cells in multiple LTs (20–22). However, it remains unclear if these findings reflect early T 

cell activation or proliferation in inflamed tissues and organs isolated from brain-dead 

subjects, as previously described in murine models (33). We therefore collected spleen, iliac 

LNs, mesenteric LNs and tonsils from HIV− subjects without known major inflammatory 

disease. Using conventional (fluorescence) flow cytometry (Fig. S2A), we found that the 

majority of LT memory CD8+ T cells expressed CD69, irrespective of tissue origin (Fig. 

2A). Most LT TEM cells also expressed CD69 (Fig. 2B), suggestive of a TRM phenotype 

(32). Similar to our previous analysis on HIV-infected subjects, we also here found some 

expression of CD69 on naïve-like (CCR7+CD45RA+) cells (Fig. S2B). However, CD69 

expression levels on naïve-like cells were not significantly different between blood and LTs 

and these cells possessed lower CD69 MFI than on paired memory cells (Fig. S2B). 

Moreover, CD69+CCR7+CD45RA+ were biased towards higher CD95 MFI levels, again 

indicative of a TSCM phenotype (Fig. S2C). Of note, CD69+ CD8+ T cells expressed lower 

levels of multiple activation markers compared to in vitro stimulated T cells (Fig. S2D). 

CD69+ CD8+ T cells did not entirely overlap with the set of activation markers using tSNE 

analysis (Fig. S2E) and Boolean gating analysis confirmed that the minority of CD69+ CD8+ 

T cells (median = 33.7 %) expressed any of the assessed activation markers, suggesting that 

CD69 expression on these cells is not driven exclusively by activation.

In more detailed analyses (Fig. S3A), we found that LT memory CD8+ T cells expressed 

higher levels of integrins (CD103 and CD49a) and chemokine receptors (CXCR5, CXCR3, 

CCR5) compared with blood memory CD8+ T cells (Fig. 2C and S3B). In contrast, blood 

memory CD8+ T cells expressed higher levels of circulation markers (CD52) (34), effector 

(T-bet, Eomes, perforin, Granzyme B) proteins as well as the fractalkine receptor CX3CR1 

(Fig. 2C and S3B). tSNE analysis further showed that LT memory CD8+ T cells formed 

distinct clusters compared with blood memory CD8+ T cells (Fig. 2D). Importantly, different 

clusters were observed in spleen and tonsils compared with LNs. We also examined LT 

CD103+, CXCR5+, CD49a+, CCR5+, and CXCR6+ CD8+ T cells, and found that these 

populations were more likely to express CD69 (Fig. 2E and S4). Likewise, LT CD69+ CD8+ 

T cells expressed higher levels of CD103, CXCR5, CD49a, CCR5, CXCR6, PD-1, and 

Granzyme B compared with CD69− CD8+ T cells, which expressed higher levels of CD52 

(Fig. 2F).

LT CD69+ CD8+ T cells have transcriptional, epigenetic, and functional TRM signatures

To determine if human LT CD69+ CD8+ T cells have a transcriptional signature resembling 

TRMs, we sorted mesenteric LN (MesLN) memory CD69− and CD69+ CD8+ T cells (Fig. 

S5A) and performed RNA sequencing (RNA-seq) analysis. We identified a core signature of 

genes that were either upregulated or downregulated in LN memory CD69− and CD69+ 

CD8+ T cells (fold change > 2; P < 0.05), where particular genes that are downregulated in 

NLT TRMs, such as S1pr1, Klf3, and Sell (35), were also poorly expressed in LN memory 

CD69+ CD8+ T cells (Fig. 3A and Table S2). Of note, Znf683 (Hobit), previously associated 

with murine TRM formation (36), was downregulated in LN memory CD69+ CD8+ T cells. 
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Gene-set enrichment analysis (GSEA) revealed that genes linked with human lung CD69+ 

CD103+ CD8+ T cells (37) were also enriched in LN CD69+ CD8+ T cells (Fig. S5B). 

Ingenuity pathway analysis further demonstrated that the major differences between CD69− 

and CD69+ CD8+ T cells included cell-mediated immune responses and cell trafficking (Fig. 

3B). In addition, many genes typically associated with TRMs and TCMs/TEMs (17, 38) were 

upregulated (Itgae, Rgs1, Rgs2, Xcl1, Tbx21, Ifng) or downregulated (Fam65b, Klf2, 
Rasgrp2, S1pr1, Sell, Ccr7, Lef1, Tcf7, Cxcr3, Cxcr4) in CD69+ CD8+ T cells (Fig. 3C). 

Many of these genes followed the patterns observed in splenic CD69+ CD8+ T cells and 

TCMs (CD69− CD62L+) isolated from P14 T cell receptor (TCR)-transgenic mice (Fig. 3C).

We further conducted Assay for Transposase Accessible Chromatin with high-throughput 

sequencing (ATAC-seq) to map potential differences in open chromatin regions (OCRs) 

between LN memory CD69− and CD69+ CD8+ T cells. OCRs adjacent to genes known to be 

involved in the establishment of residency and immune responses displayed marked 

differences between these two subsets of LN memory CD8+ T cells (Fig. 3D and Table S3). 

For example, several OCRs were present next to Ifng, Xcl1, and Xcl2 primarily in CD69+ 

CD8+ T cells (Fig. 3E), suggesting a readiness to upregulate these effector functions (17, 

37). Prdm1 (encoding Blimp-1), recently associated with TRM formation (36), were also 

enriched for OCRs in CD69+ CD8+ T cells (Fig. S5C). In contrast, CD69− CD8+ T cells 

were more likely to have multiple OCRs adjacent to genes associated with trafficking, 

including Klf2 and S1pr1 (Fig. 3F), and the Znf683 locus (Fig. S5C). We further inferred 

transcription factor occupancy in regulatory elements by motif analysis and found that 

RUNX, AP-1 and ETS families belonged to the most enriched motifs in CD69+ CD8+ T 

cells, while CD69− CD8+ T cells showed enriched motifs belonging to the PAX, TCF and 

KLF families, demonstrating that unique transcription factor families are likely 

cooperatively responsible for regulating resident and recirculating T cell states (Fig. 3G).

Next, we sorted human LT memory CD69− and CD69+ CD8+ T cells, and found that CD69 

was stably expressed on the surface of TRMs for up to 9 days (Fig. 3G). Classical TRMs 

express low levels of CCR7 and CD62L (32). We found no evidence that supplementation 

with CCR7 ligands (CCL19 or CCL21) influenced CD69 downregulation on LT memory 

CD69+ CD8+ T cells (Fig. S5D). However, CD69 was downregulated significantly on 

CCR7+ CD69+ CD8+ T cells after 9 days in culture (Fig. S5E), and markers associated with 

residency and effector functions were predominantly expressed by CCR7− CD69+ CD8+ T 

cells ex vivo (Fig. S5F). Altogether, these data show that LT CD69+ CD8+ T cells show 

enriched phenotypic, transcriptional, epigenetic and functional traits of tissue residency.

Lack of CD69+ CD8+ T cells in thoracic duct lymph

We next applied multiplexed confocal imaging and histo-cytometry to quantify and position 

where cells with a TRM phenotype were localized in human LNs (Fig. S6A) (39). CD20 was 

used to distinguish B cell follicles, and did not overlap to a great extent with the anatomical 

location of CD8+ cells as expected (Fig. 4A and S6B). Imaging and quantitative analysis 

demonstrated that most CD8+ CD69+CD103− and CD69+CD103+ cells were present in 

extra-follicular areas (Fig. 4B and S6B). Further analysis revealed that CD69+CD103+/− 

cells expressed PD-1 to a higher degree than CD69− cells. The CD69+CD103+PD-1+ CD8+ 
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population were localized to an equal degree in B cell follicles and extra-follicular areas 

(Fig. S6C).

To determine if CD8+ T cells maintain CD69 expression after egress from LNs, we collected 

efferent lymph from HIV− individuals via cannulation of the human thoracic duct (Fig. 4C). 

Thoracic duct lymph (TDL) contained very low frequencies of CD69+ CD8+ T cells 

compared with those detected in LTs (Fig. 4D). Interestingly, both TDL and LT contained a 

significant proportion of single CD69−CD103+CCR7+ CD8+ T cells, indicating that CD103 

expression alone is insufficient to maintain residency in LTs (Fig. 4D, S6D). The overall 

frequency of CD103+ CD8+ T cells was higher in LTs compared to TDL though, due to the 

large population of CD69+CD103+CCR7− CD8+ T cells present in LTs. In addition, we 

collected TDL, blood, and LTs from healthy rhesus macaques. Again, very few blood and 

TDL CD8+ T cells expressed CD69 compared with donor-matched LT CD8+ T cells (Fig. 

4C). Collectively, these data suggest that CD69+ CD8+ T cells likely do not leave LTs.

HIV-specific CD8+ T cells display a TRM phenotype in lymph nodes

The observation that memory CCR7−CD69+ CD8+ T cells are expanded in HIV-infected 

LNs (Fig. 1) led us to postulate that HIV-specific cells are TRMs. In contrast to matched 

blood and LN bulk memory CD8+ T cells, most LN HIV-specific CD8+ T cells expressed 

CD69 (Fig. 5A and S7A). To confirm that HIV-specific CD69+ CD8+ T cells do not leave 

LTs, we collected TDL from HIV+ subjects. Akin to our previous findings, we detected only 

very low levels of CD69 on bulk and HIV-specific CD8+ T cells in TDL (Fig. 5A). Of note, 

CD69 expression on HIV-specific CD8+ T cells was unaffected by ART status (Fig. 5A), 

indicating that antigen load is not necessarily a determinant of CD69 expression, in contrast 

to classical immune activation markers in blood (40, 41).

In line with our previous findings, most HIV-specific CD69+ CD8+ T cells (median = 

84.1%) did not express CCR7 (Fig. 5B), similar to bulk memory CD8+ T cells (Fig. S7A). 

Moreover, HIV-specific CD8+ T cells in LNs demonstrated a predominant CD69+ CD103+ 

or CD69+ CD103− profile, in contrast to HIV-specific CD8+ T cells in blood and TDL (Fig. 

5C). We further examined cytomegalovirus (CMV)-specific CD8+ T cells for markers of 

residency, because CMV does not replicate primarily in LTs (42, 43). In subjects with 

detectable CMV-specific and HIV-specific CD8+ T cell responses, we consistently found 

that HIV-specific CD8+ T cells were present in blood and LNs, while CMV-specific CD8+ T 

cells were always more prevalent in blood compared with LNs (Fig. 5D) (44). HIV-specific 

CD8+ T cells also expressed higher levels of CD69 and CD103 than CMV-specific CD8+ T 

cells in LNs (Fig. 5E). In addition, HIV-specific CD69+ CD8+ T cells were more likely to 

express cytolytic proteins (perforin and/or Granzyme B) than HIV-specific CD69− CD8+ T 

cells (Fig. 5F). The distribution of cytolytic proteins was similar on CD69+ bulk memory 

and HIV-specific CD8+ T cells (Fig. S7A), indicating that many characteristics of CD69+ 

bulk and HIV-specific CD8+ T cells are indistinguishable.

Virus-specific CXCR5+ CD8+ T cells have recently been shown to play a key role in 

immune protection against chronic viral infections (45–48). However, it is unclear if human 

CXCR5+ CD8+ T cells exhibit TRM properties akin to TFHs (49). In HIV+ subjects, we 

observed higher frequencies of CXCR5+ CD8+ T cells in LNs compared with blood and 
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TDL (Fig. 5G). The majority of CXCR5+ CD8+ T cells in LNs co-expressed CD69 and 

lacked CCR7 (Fig. 5H and5I). Similarly, we found very low levels of HIV-specific CXCR5+ 

CD8+ T cells in peripheral blood and TDL compared with LTs (Fig. 5J), likely because the 

majority of LT HIV-specific CXCR5+ CD8+ T cells displayed a residency phenotype, 

including high levels of CD69 (Fig. 5K) and low levels of CCR7 (Fig. 5L). In addition, we 

found that LT HIV-specific CD8+ T cells more commonly expressed a CD69+ CXCR5+ 

phenotype compared with LT CMV-specific CD8+ T cells (Fig. 5M). These data suggest that 

HIV-specific CXCR5+ are TRMs and induced due to preferential localization of HIV in B 

cell follicles.

CD69 expression increase on SIV-specific CD8+ T cells over time

To assess the kinetics of TRM formation, we infected Mamu A*01+ rhesus macaques with 

SIVmac251, and collected blood and LTs over time. Peripheral blood SIV-specific CD8+ T 

cells displayed a pronounced transient burst of Ki67 and CD69 expression at d10–14 post-

infection (Fig. 6 and S7B). In contrast, LT SIV-specific CD8+ T cells showed an inverse 

association between Ki67 and CD69 over the same time period, indicating that the majority 

of early cycling cells were not retained in LTs. After resolution of the acute phase, cycling 

decreased and CD69 expression steadily increased on LT SIV-specific CD8+ T cells (Fig. 6), 

suggesting that residency is established late and that CD69 expression is most likely only 

downregulated after extensive cycling in response to antigen (50).

Elite controllers demonstrate high magnitudes of LN HIV-specific TRMs

Recent work has shown that LT CD8+ T cells suppress viral replication in SIV elite 

controller rhesus macaques (7). In human elite controllers, we found that the majority of LN 

HIV-specific CD8+ T cells displayed a TRM phenotype (Fig. 7A). Human elite controllers 

also displayed higher LN/blood ratios of HIV-specific CD8+ T cells (Fig. 7B), and higher 

frequencies of HIV-tetramer+ CD69+ CD8+ T cells (Fig. 7C), compared with other HIV+ 

subjects (Fig. S7C). In HLA-B*5701+ elite controllers, we found that TRMs selectively 

targeted immunodominant HLA-B*5701-restricted epitopes, rather than immunodominant 

non-HLA-B*5701-restricted epitopes (Fig. 7D).

HIV-specific TRMs demonstrate enriched effector-related immune genes and signatures 
compared to HIV-specific non-TRMs in LNs

We next index sorted HLA-B*2705-restricted and/or HLA-B*5701-restricted Gag-specific 

CD8+ T cells from LNs and blood of two elite controllers and conducted single-cell RNA-

seq (Fig. S8A). HIV-specific CD8+ T cells from LN and blood clustered differentially in the 

single-cell space (Fig. S8B and Table S4). Immune-related pathways, including IFN-

signatures, were higher in blood, whereas pathways related to maintenance of cell location 

were higher in LNs, suggesting that both immunological and trafficking properties 

distinguish the LN response from blood (Fig. S8C). We next compared blood versus LN 

CD69− HIV-specific CD8+ T cells and found that specific cytolytic genes and pathways 

involved in lymphocyte degranulation were higher in blood (Fig. S8D). Cytolytic differences 

at the transcript level were not seen between blood and LN CD69+ HIV-specific CD8+ T 

cells (Fig. S8F). Finally, to assess if residency was associated with any specific functional 

gene signatures, we compared CD69− versus CD69+ HIV-specific CD8+ T cells in LNs (Fig. 
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8A). LN CD69+ HIV-specific CD8+ T cells were enriched for cytolytic and effector-

differentiated genes (Fig. 8A) and gene set signatures (Fig. S9A), while LN CD69− HIV-

specific CD8+ T cells demonstrated a less-differentiated phenotype instead (Fig. 8A and 

S9A). Together these findings support the concept that HIV-specific TRMs represent the 

frontline effector defense in LTs.

CD69 expression on HIV-specific clonotypes is associated with higher clonotype 
distribution in LN

Based upon the enriched effector signature of CD69+ HIV-specific TRMs in LT, we finally 

examined whether these cells exhibited differential clonotypic segregation between blood 

and LT. Subject EC1526 expressed lower levels of CD69 on LN HIV-specific CD8+ T cells 

(Fig. S9B), and displayed a mixed clonotype distribution between blood and LNs (Fig. 8B). 

In contrast, subject EC1788 expressed higher levels of CD69 on LN HIV-specific CD8+ T 

cells (Fig. S9B), and displayed marked repertoire skewing between blood and LNs. 

Clonotypes present at high frequencies in LNs relative to blood expressed high levels of 

CD69 in LNs (Fig. 8C). Moreover, the frequency of CD69 expression on clonotypes in LNs 

was associated with the relative frequency of clonotypes in LNs (Fig. 8D). Together these 

data show that HIV-specific CD69− CD8+ T cell clonotypes present in blood can also be 

found in LNs, while HIV-specific CD69+ CD8+ TRM clonotypes with effector-like 

functional signatures preferentially localize to LNs.

DISCUSSION

TRMs provide constant immunosurveillance and early protection against secondary challenge 

in NLTs. Here, we show that CD8+ T cells with a TRM phenotype also accumulate in LTs 

and dominate the LT CD8+ T cell response against HIV. Our key findings were: (i) CD69+ 

CD8+ T cells are highly expanded in HIV-infected LNs; (ii) LT CD69+ CD8+ T cells are 

largely not recently activated, based on Ki-67 expression, and instead bear transcriptional 

and epigenetic signatures of TRM cells distinct from non-resident T cells in LTs; (iii) LT 

CD69+ TRMs do not recirculate to the blood via the thoracic duct; and (iv) LT CD69+ TRMs 

most often dominate the HIV-specific CD8+ T cell response in LNs. Moreover, we found 

high magnitudes of LT HIV-specific TRMs in elite controllers and demonstrate that CD69 

expression is closely linked to the distribution of HIV-specific clonotypes between LN and 

blood. Collectively, these data inform our current understanding of immunosurveillance in 

LTs and define that ongoing CD8+ T cell-mediated immunity against HIV in LTs is in part 

mediated by TRMs.

Previous studies have identified bona fide LT CD8+ TRMs in mice (18), but generally at low 

levels (19), especially compared with the frequencies of human LT CD69+ CD8+ T cells 

recently described by Farber and colleagues (20, 21). These human studies have generated 

some controversy, because CD69 expression may occur as a consequence of brain death-

induced immune activation (33). Our data show that high frequencies of non-cycling CD69+ 

CD8+ T cells are indeed generally present in multiple human LTs, and further show that LN 

CD69+ CD8+ T cells share many of the core transcriptomic signatures of NLT TRMs (17, 35, 

37). A recent study confirmed that human LT and NLT CD69+ T cells share several 
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prototypical genes of our LN TRM signature, such as lower levels of S1pr1, Klf3, and Sell, 
and pathways that are involved in immune defense and lymphocyte migration (51). 

However, the core signature from Kumar et al, was extracted from both CD4+ and CD8+ T 

cells and a blood-contaminated lymphoid organ (spleen), whereas we solely focused on LN 

CD8+ T cells from live subjects. As such, specific genes that were higher on CD69− (e.g. 

Cx3cr1) or CD69+ (e.g. Pdcd1, Il10, Il2) T cells were not seen in our data set (51). Notably, 

similar to this (51) and other studies in the human TRM field, we do not find an association 

between residency in human LTs and the murine TRM-associated transcription factor Hobit 

(37, 52). We also report the epigenetic structure of human LT CD8+ TRMs; clear epigenetic 

differences were apparent between the proximal regulatory regions of many genes in CD8+ 

TRMs versus non-TRMs, including genes associated with cellular motility, migration, 

adhesion, and function. These data provide evidence that TRMs have a unique epigenetic 

imprinting for genes that are involved in residency and also aids to explain that certain genes 

are higher expressed in TRMs. These results strongly support the notion that LT CD69+ cells 

are enriched for TRMs.

Our data indicate that CD69 can be expressed on CCR7+ cells, including naïve-like cells, 

whereas CD69+CCR7− cells usually represent bona fide TRMs in both NLTs and LTs in 

mice. We cannot formally exclude the possibility that CCR7+CD69+ could modulate CD69 

to exit LTs. Likewise, it remains unclear whether also CD103+CD69−CCR7+ CD8+ T cells 

originate from CD8+ TRMs in LTs that modulate expression of CD69 and CCR7, or if these 

cells represent a recirculating CD8+ T cell memory population transiently observed both in 

LT and efferent lymph. Indeed, previous studies in KAEDE mice have identified 

CD103+CD69−CCR7+ migrating CD4+ T cells in both draining lymph nodes and blood 

originating from the skin after photo-activation that share the same phenotype we observed 

in both LT and TDL CD8+ T cells (53). One possible mechanism by which T cells can 

downregulate CD69 is through extensive cycling, leading to increased KLF2 and S1PR1 

expression (50). This concept aligns with our acute SIV infection data, which show that 

CD69+ CD8+ T cell frequencies decline dramatically in LTs when antigen-specific T cells 

reach a cycling plateau, however then accumulate progressively as LT SIV-specific CD8+ T 

cells no longer cycle. It remains unclear whether these kinetic changes reflect homeostatic 

expansion of the original population or the conversion of recirculating cells into TRMs. 

However, if all LT CD8+ TRMs were free to transiently modulate CD69 and equally 

recirculate, it would be difficult to explain the observed clonotypic disequilibrium between 

LNs and blood in subjects with prominent HIV-specific CD8+ CD69+ responses. 

Importantly, clonotypic disequilibrium has also been observed in LTs with high levels of 

CD4+ TRMs, such as in Peyer’s patches (54). Coupled with the lack of CD69+ cells in the 

thoracic duct and extensive expansion of CD69+CCR7− cells in HIV infection, these data 

suggest that HIV-specific CD8+ T cells, which mostly bear the CD69+CCR7− phenotype, 

become resident as a consequence of local antigen exposure in LTs.

In light of the fact that CD8+ TRMs are abundant in all human LTs, it seems plausible that 

these cells serve as regional sentinels that scan all antigen-presenting cells originating from 

areas that drain to their respective LNs. CD8+ TRMs may therefore acquire unique 

population-level specificities as a function of pathogen exposure history within different 

LNs. There are estimated to be at least 600 distinct LNs/LTs in the human body (55), 
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without necessarily including ectopic/tertiary lymphoid structures at mucosal sites (56) that 

can number in the thousands in the large intestine alone (57). HIV replicates actively in all 

of these tissues. Accordingly, HIV-specific CD8+ T cell responses must be deployed to all 

LT sites at all times to maintain overall control of viremia in HIV+ subjects. It should be 

noted in this context that we only compared the clonal distribution of HIV-specific CD8+ T 

cells between peripheral blood and a single LT site. In previous studies of peripheral blood, 

we showed that individual CD8+ T cell clonotypes specific for the same viral antigen can 

have distinct functional and phenotypic properties (58). The observation that residency status 

directly influences the anatomical distribution of HIV-specific CD8+ T cell clonotypes 

therefore has far-reaching implications for our understanding of protective immune 

responses against HIV. First, our data indicate that HIV-specific CD8+ T cells in blood do 

not necessarily parallel HIV-specific CD8+ T cells in LTs. Second, there may be distinct 

HIV-specific CD8+ TRM populations and clonotypes between different LTs, which could 

impart differential immune pressure on viral replication at each site. Third, it becomes clear 

that in future studies we need to further explore the functional abilities and potential 

deficiencies of LT HIV-specific TRMs, because these cells exist in continuous proximity to 

HIV-infected CD4+ T cells and likely spearhead the cellular immune response against HIV. 

This view is supported by the observation that elite controllers maintain high levels of HIV-

specific TRMs with enhanced effector capabilities, despite low levels of viral replication in 

LTs.

In summary, our data indicate that CD8+ TRMs likely play a central role in 

immunosurveillance against HIV. Further studies are now warranted to examine the precise 

mechanisms through which LT CD8+ TRMs control HIV replication, potentially informing 

new approaches to the development of vaccines or immunotherapeutic strategies designed to 

eliminate the viral reservoir in established HIV infection.

MATERIAL AND METHODS

Study design

The present study was an exploratory study aimed at understanding if TRMs are present in 

HIV-infected LNs and part of HIV-specific immunosurveillance mechanisms. Recruitment 

of human samples occurred at four sites: INER-CIENI, Case Western Reserve University, 

University of Pennsylvania and University of California, San Francisco. C57BL/6J (B6) 

mice were housed in specific pathogen-free conditions at the University of Minnesota. 

Rhesus macaque samples were obtained from primates housed at the University of 

Pennsylvania and Yerkes National Primate Research Center. Human samples were collected 

in accordance to the Declaration of Helsinki and study protocols were approved by the 

regional review boards. Animals were housed in accordance to regional ethical guidelines 

and protocols were approved by the regional review boards. Sample sizes were based on the 

availability of biological samples rather than a pre-specified effect size. Investigators were 

not blinded to group identity during the course of experimentation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. CD69 is not coupled to an early immune activation signature in HIV-infected LNs.
(A) Frequency of CD69 expression on total LN CD8+ T cells from HIV+ and HIV− subjects. 

Red indicates ART− and orange indicates ART+ in the HIV+ scatter plot group. (B) 
Frequency of CD69 expression on total blood (top) and LN (bottom) CD8+ T cells. Matched 

samples from one subject are shown in the representative flow cytometry plots. Lines 

connect matched samples across all subjects in the graph. (C) Correlation between the 

frequency of memory (non-CCR7hi non-CD45RO−) CD8+ T cells and CD69 expression on 

total blood (top) and LN (bottom) CD8+ T cells. Blue: HIV− subjects: red: HIV+ ART− 

subjects; orange HIV+ ART+ subjects. (D) Frequency of CCR7− CD69+ memory CD8+ T 

cells in HIV− (blue) and HIV+ (red: ART−; orange: ART+) subjects. (E) Co-expression 

pattern of Ki-67 and CD69 in/on total LN CD8+ T cells from an HIV− subject (left) and an 

HIV+ ART− subject (right) with acute infection (Fiebig V). (F) Frequency of Ki-67–/+ 
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CD69+ CD8+ T cells in LNs from HIV+ subjects with acute infection (n = 7). (G) 
Expression intensity of CD69, ICOS, Ki-67, and CD38 in multidimensional viSNE space. 

viSNE plots were derived using 27576 cells (n = 17 subjects) and the markers shown in Fig. 

1I. (H) The same viSNE display with sub-populations colored using the PhenoGraph 

implementation of Cytofkit (top). Distribution of CD69 expression over all 14 sub-

populations derived using PhenoGraph (bottom). (I) Hierarchical clustering of expression 

intensity (z-score) for all assessed markers within the different sub-populations derived 

using PhenoGraph. Median and IQR are shown for all scatter/bar plots. **P < 0.01; ***P < 

0.001. Conventional (fluorescence) flow cytometry was used for all stains in (A-F) and mass 

cytometry (CYTOF) was used in (G-I).
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Fig. 2. CD69+ CD8+ T cells display TRM characteristics in LTs.
(A) Frequency of CD69 expression on memory CD8+ T cells (blue) in blood, spleen, iliac 

(Ili) LNs, mesenteric (Mes) LNs, and tonsils from HIV− subjects. Asterisks denote statistical 

comparisons versus blood. (B) Frequency of CD69–/+ cells among CCR7+ (TCM) and 

CCR7− (TEM) CD8+ T cells. Bar plots are based on all subjects in (A). (C) Heat-map 

displaying expression frequency (blue = 0%; red = 100%) for the indicated markers among 

blood, spleen, IliLN, MesLN, and tonsil memory CD8+ T cells. (D) tSNE clustering on 

blood (red), spleen (orange), IliLN (blue), MesLN (green), and tonsil (black) memory CD8+ 

T cells. Values for the tSNE analysis are derived from all markers in (C). (E) CD69 

expression on CD103+, CXCR5+, CD49a+, CCR5+, CXCR6+, and CD52+ memory CD8+ T 

cells from MesLNs. (F) Average expression frequency (blue = 0%; red = 100%) for the 

indicated markers among blood, spleen, IliLN, MesLN, and tonsil CD69− and CD69+ 

Buggert et al. Page 18

Sci Immunol. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



memory CD8+ T cells. Colors denote average frequencies, derived from all subjects in (C). 

Median and IQR are shown for all scatter/bar plots. *P < 0.05; **P < 0.01; ***P < 0.001. 

Conventional flow cytometry was used for all stains in this figure.
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Fig. 3. CD69+ CD8+ T cells display functional and transcriptional TRM signatures in LTs.
(A) RNA-seq heat-map showing differentially expressed genes (fold change > 2; P < 0.05) 

between human MesLN memory CD69− and CD69+ CD8+ T cells. (B) Ingenuity pathway 

analysis based on all differentially expressed genes (P < 0.05) between CD69− and CD69+ 

CD8+ T cells in the RNA-seq dataset. The top pathways involved in the “physiological 

system development and function” arm are shown in the table. (C) Differential expression 

patterns of TRM-related and TCM/EM-related genes between human LN memory CD69− and 

CD69+ CD8+ T cells (top) and between splenic CD69− and CD69+ CD8+ T cells from P14 

TCR-transgenic mice (bottom). (D) ATAC-seq volcano plot showing open chromatin regions 

adjacent to specific genes. Green marks ATAC-seq peaks that are differentially enriched 

(fold change > 2; P < 0.05) in human hepatic LN memory CD69− and CD69+ CD8+ T cells. 

(E) ATAC-seq tracks from human LN memory CD69− (red) and CD69+ (blue) CD8+ T cells. 

(F) Enriched ATAC-seq de novo motifs for CD69+ (left) and CD69− (right) CD8+ T cells 
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(G) Human memory CD69− and CD69+ CD8+ T cells from spleen, tonsil, and hepatic LNs 

(n = 2 each) were assessed over time for CD69 expression in the presence or absence of 

rhIL-7. Lines represent mean ± SD. Conventional flow cytometry was used for all stains in 

this figure.
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Fig. 4. Anatomical distribution of CD69+ CD8+ T cells in LNs and thoracic duct lymph.
(A) Whole imaged confocal microscopy of mesLN from human (left) and zoomed in area 

(middle). Histocytometry gating strategy to identify localization of CD8+ T and B cells in 

the LNs (right). (B) Identification of B cell follicles (red) and extra-follicular areas (green) 

in the whole imaged area using histocytometry (left). Middle graphs, shows absolute 

numbers of CD69+CD103− and CD69+CD103+ within all imaged extra-follicular (EF) and 

B cell follicular (F) areas for three imaged LNs. Example of histocytometry imaging 

showing the distribution of CD8+CD69+ cells within the zoomed in LN area. (C) 
Localization in the human body of the thoracic duct. (D) Flow plots of CD69 expression on 

human thoracic duct lymph (TDL) and mesenteric LN (MesLN) memory CD8+ T cells from 

two unmatched subjects. Frequency of CD69+ CD8+ T cells in TDL (n = 7 subjects) and LTs 

from all subjects (n = 25) in Fig. 2A. (E) Frequency of CD69 expression on blood, inguinal 

(Ing) LN, MesLN, tonsil, spleen, and TDL memory (non-CD28+ non-CD95−) CD8+ T cells 

from sample-matched rhesus macaques. Each color indicates fluid/tissue from one specific 
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rhesus macaque. Asterisks denote statistical comparisons versus TDL. *P < 0.05; **P < 

0.01; ***P < 0.001. Conventional flow cytometry was used for all stains in this figure.
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Fig. 5. Majority of HIV-specific CD8+ T cells display a TRM phenotype in LNs.
(A) Flow cytometry plots of on memory CD8+ T cells showing CD69 expression on 

matched HIV-tetramer+ cells in blood and LNs (left), and matched HIV-tetramer+ cells in 

blood and TDL (middle). Frequency of CD69 expression on HIV-tetramer+ cells in blood (n 

= 13 subjects), ART− LNs (n = 4 subjects), ART+ LNs (n = 4 subjects), and TDL (n = 7 

subjects) (right). (B) Distribution of LN HIV-tetramer+ (spec) CD69+ CD8+ T cells among 

the naïve (CD45RO− CCR7+), TCM (CD45RO+ CCR7+), TEM (CD45RO+ CCR7−), and 

effector (TEFF; CD45RO− CCR7−) compartments. (C) CD69 and CD103 expression profiles 

for blood (blue), LN (red: ART−; orange: ART+), and TDL (yellow) HIV-specific CD8+ T 

cells. (D) Representative flow cytometry plots showing memory CMV-tetramer+ (left) and 

HIV-tetramer+ (right) CD8+ T cell frequencies in blood (top) and LNs (bottom) from the 

same subject. (E) Frequency of CD69 and CD103 expression on LN CMV-NV9-specific and 

HIV-FK10-specific CD8+ T cells in the same subjects with detectable tetramer+ responses to 

both viruses. Each color represents a matched subject and a matched tetramer+ response. (F) 
Representative flow cytometry plots showing CD69 expression on Perforin+ Granzyme B 

(GzmB)+ HIV-specific CD8+ T cells in LNs (left). Frequency of CD69–/+ cells among 

Perforin+ (n = 20 responses) and GzmB+ (n = 16 responses) HIV-specific CD8+ T cells in 
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ART+ and ART− LNs (right). (G) Flow plots showing CXCR5 and CD69 co-expression on 

blood, LN, and TDL memory CD8+ T cells in HIV+ subjects (matched for blood and LNs, 

but not for TDL). Frequency of CXCR5 expression on memory CD8+ T cells in blood, LNs 

(red: ART−; orange: ART+), and TDL. (H) Frequency of CD69 expression on blood, LN, 

and TDL CXCR5+ memory CD8+ T cells in HIV+ subjects. (I) Frequency of CCR7 

expression on LN CD69+ CXCR5+ memory CD8+ T cells in HIV+ subjects. Bar plots are 

based on all subjects in Fig. 5A. (J) Representative flow cytometry plots showing CXCR5 

and CD69 co-expression on blood, LN, and TDL HIV-tetramer+ CD8+ T cells (matched for 

blood and LNs, but not for TDL). (K) Frequency of CD69 expression on blood (n = 18 

responses), LN (n = 21 responses), and TDL (n = 10 responses) HIV-specific CXCR5+ 

CD8+ T cells. (L) Frequency of CCR7 expression on LN (n = 21 responses) HIV-specific 

CD69+ CXCR5+ CD8+ T cells. (M) Frequency of CD69+ CXCR5+ cells among LN CMV-

specific and HIV-specific CD8+ T cells in subjects with detectable tetramer+ responses to 

both viruses. Each dot represents a single tetramer+ response in all scatter plots. Each color 

represents a matched subject and a matched tetramer+ response. *P < 0.05, **P < 0.01; ***P 
< 0.001. Conventional flow cytometry was used for all stains in this figure.
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Fig. 6. SIV-specific CD8+ T cells develop TRM characteristics over time.
Representative flow cytometry plots showing CD69 expression on blood (top) and 

superficial LN (sLN; bottom) SIV-specific (Mamu A*01-Gag-CM9) CD8+ T cells at 13 and 

90 days post-infection (dpi; left). Longitudinal dynamics of CD69 (blue) and Ki-67 (red) 

expression on/in blood, sLN, MesLN, and spleen SIV-CM9 or TL9-specific CD8+ T cells 

(13 dpi: n = 12; 90 dpi: n = 3). The longitudinal SIV-CM9 or TL9-specific CD8+ T cell 

response is plotted at each time point as mean ± SD. *P < 0.05, **P < 0.01; ***P < 0.001. 

Conventional flow cytometry was used for all stains in this figure.
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Fig. 7. Elite controllers exhibit high magnitudes of CD69+ HIV-specific CD8+ T cells in LNs.
(A) Representative flow cytometry plots of memory CD8+ T cells showing CD69 expression 

on HIV-tetramer+ cells in matched blood and LN samples from an HIV elite controller (EC). 

(B) Relative distribution of HIV-specific CD8+ T cells in blood and LNs from elite 

controllers (black) and other HIV+ subjects (red: ART−; orange: ART+). (C) Magnitude of 

LN HIV-tetramer+ CD69+ CD8+ T cell responses in elite controllers and other HIV+ 

subjects (red: ART−; orange: ART+). (D) Magnitude of LN HIV-tetramer+ CD69+ CD8+ T 

cell responses specific for immunodominant HLA-B*5701-restricted and non-HLA-

B*5701-restricted epitopes in elite controllers (n = 2). Data points were only included where 

both HLA-B*5701+ and HLA-B*5701− tetramers were tested to avoid analysis biases. Each 

dot represents a single tetramer+ response in all scatter plots. *P < 0.05; **P < 0.01. 

Conventional flow cytometry was used for all stains in this figure.
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Fig. 8. Distribution of HIV-specific clonotypes between LN and blood.
(A) Single-cell (sc) RNA-seq was conducted on CD69+ and CD69− index sorted HLA-

B*2705-restricted and/or HLA-B*5701-restricted Gag-specific CD8+ T cells from LNs of 

two elite controllers. The heat-map (left) illustrates the single-cell gene expression 

variability of differentially expressed genes (P < 0.01) and violin plots (right) immune-

related genes differentially expressed between CD69+ and CD69− single HIV-specific CD8+ 

T cells. (B) CDR3 amino acid sequence, and percent frequency are shown for each HLA-

B*2705-restricted and HLA-B*5701-restricted clonotype. The frequency of CD69 

expression for each clonotype was obtained from single-cell index data (right). (C) CD69 

expression on LN clonotypes where higher frequencies of specific clonotypes are present in 

LNs versus blood (LN > blood; n = 7) or vice versa (LN < blood; n = 7). Bars show mean ± 

SD. (D) Correlation between CD69 expression on LN clonotypes and the distribution of 

clonotypes between LNs and blood (frequency of a given clonotype in LNs minus the 

corresponding frequency in blood). Data points were only included where at least one 

clonotype was present in both compartments. *P < 0.05; **P < 0.01. Conventional flow 

cytometry was used for all stains in this figure.
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