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Abstract

Corroles are exceptionally promising platforms for the development of agents for simultaneous 

cancer-targeting imaging and therapy. Depending on the element chelated by the corrole, these 

theranostic agents may be tuned primarily for diagnostic or therapeutic function. Versatile 

synthetic methodologies allow for the preparation of amphipolar derivatives, which form stable 

noncovalent conjugates with targeting biomolecules. These conjugates can be engineered for 

imaging, targeting, as well as therapeutic function within one theranostic assembly. In this review, 

we begin with a brief outline of corrole chemistry that has been uniquely useful in designing 

corrole-based anticancer agents. Then we turn attention to the early literature regarding corrole 

anticancer activity, which commenced one year after the first scalable synthesis was reported 

(1999–2000). In 2001, a major advance was made with the introduction of negatively charged 

corroles, as these molecules, being amphipolar, form stable conjugates with many proteins. More 

recently, both cellular uptake and intracellular trafficking of metallocorroles have been 

documented in experimental investigations employing advanced optical spectroscopic as well as 

magnetic resonance imaging techniques. Key results from work on both cellular and animal 

models are reviewed, with emphasis on those that have shed new light on the mechanisms 

associated with anticancer activity. In closing, we predict a very bright future for corrole 

anticancer research, as it is experiencing exponential growth, taking full advantage of recently 

developed imaging and therapeutic modalities.
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1. Introduction

Cancer has been an intractable disease since the beginning of recorded time. It was first 

documented in an Egyptian textbook dated about 3000 B.C., in which the writer declared 

that: “There is no treatment.”1 Today, in spite of dramatic advances in biology and medicine, 

cancer incidence continues to increase and has reached epidemic proportions; it is projected 

to increase from 14 million annual cases documented in 2012 to 22 million within the next 

two decades.2 Lung and breast cancers are most common in men and women.3 Before the 

advent of modern medicine, tumors were treated crudely by excisions with knives, burning 

with red-hot irons, fumigations, topical applications of pastes, spells and advice to leave the 

swelling untreated.4 Today, successful treatments of cancer have emerged – surgery, 

radiation therapy, chemotherapy, immunotherapy, targeted therapy, hormone therapy, and 

stem cell transplants.5 In recent times, chemotherapy using cytotoxic agents that affect both 

normal and cancerous cells has been a standard approach.6 More targeted therapy employing 

cytotoxic and/or cytostatic drugs that inhibit tumor cells specifically is becoming the 

preferred treatment of choice.7 From a chemist’s perspective, it would be highly beneficial 

to improve both the specificity and efficacy of targeted chemotherapy through development 

of new classes of cytotoxic and cytostatic small molecules. In this regard many promising 

avenues remain less than fully explored, including the myriad opportunities provided by 

metal ion containing drugs. Inorganic drugs are not new: Egyptians used selenium-

containing garlic as early as 1550 B.C. to treat a wide variety of ailments.8 In the 20th 

century, a platinum compound, cis-dichlorodiammineplatinum(II), or cisplatin, was 

introduced. Called the penicillin of anticancer drugs, it has saved the lives of countless 

cancer patients. The 1979 approval of cisplatin as an anticancer drug by the Food and Drug 

Administration (FDA)9 greatly energized investigators of metal-containing drugs 

(metallodrugs).10 An ongoing search for improved platinum-based drugs – driven in part 

because of cisplatin resistance –has resulted in FDA approval of two other complexes for 
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cancer treatment: carboplatin11 and oxaliplatin.12 Contemporary research in this field13,14 is 

focused on both platinum(II) and platinum(IV) complexes, as well as on molecular agents 

containing gold,15 ruthenium,16 iridium,17 and a few other transition metals.18 It is 

encouraging that many metal complexes are now under development for treatment of cancer 

and other diseases.19–21

Another “small-molecule approach” for cancer treatment is photodynamic therapy (PDT), 

which relies on photosensitizers that accumulate selectively in tumors and induce 

cytotoxicity via the generation of singlet oxygen or reactive oxygen species (ROS) upon 

irradiation by (preferably) tissue-penetrating wavelengths of visible light.22 The basic 

concept has been known for many decades and the most promising drug candidates are 

based on oligopyrrolic macrocycles such as porphyrins and phthalocyanines.23,24 The 

earliest FDA approved drug from that family of compounds was Photofrin®,25 which is 

quite surprising considering that it is actually a mixture of many porphyrins. Also approved 

was 5-aminolaevulinic acid (ALA, traded as Levulan®),26 the biosynthetic precursor of all 

natural oligopyrrolic macrocycles (heme, chlorophyll, Vitamin B12, and more).27 On the 

other hand, only very few synthetic or semisynthetic porphyrinoid derivatives are in current 

clinical use.28 One prominent example is the aluminum complex of bis-sulfonated 

phthalocyanine.29 Although investigative work aimed at drug approval revealed that this 

compound is a very effective PDT agent acting via necrosis, one issue could not be resolved: 

the “compound” is actually a mixture of at least 16 isomers that could not be separated.30 

Many other examples of cytotoxic and phototoxic metalloporphyrin derivatives have been 

reported, ranging from ruthenium-based “extended-arms” porphyrins31 to 

tetraarylporphyrin-platinum conjugates.32 It is quite surprising, however, that very little is 

known about the systemic toxicities of the parent metal complexes (metalloporphyrins).33–34 

One likely explanation is that many of them undergo demetallation under biological 

conditions.35–36

There has been a great deal of work on expanded porphyrins,37–39 and some derivatives have 

reached advanced clinical stages of clinical testing.40 Much less information is available for 

contracted porphyrins, macromolecular entities that include corroles as major players. 

Corroles were first introduced in the 1960s (owing in part to the interest in vitamin B12),41 

but research on these molecules and their metal derivatives did not flourish primarily 

because scalable methods for their preparation were not available.42 This obstacle was 

removed near the end of the last century with the disclosure of the first facile synthesis of a 

corrole that was stable in its free-base form, H3(tpfc), via condensation of pyrrole and the 

appropriate aldehyde.43 It was this breakthrough that propelled research on corroles (Figure 

1), resulting in developments that ranged from fundamental coordination chemistry of the 

corresponding metal complexes (metallocorroles) to practical applications in chemistry and 

biology. One highlight was the introduction of metallocorroles for prevention (and 

treatment) of oxidative stress-induced diseases (cardiovascular, neurodegenerative, and 

diabetes), as well as cancer theranostics. We will review work in the latter area with 

emphasis on the promise of metallocorroles for the diagnosis and treatment of cancer.
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2. Corrole Properties of Relevance to Cancer Treatment

2.1 Metallation, Demetallation, and Formal Oxidation States

While the “periodic table of corroles” is still less extensive than that of porphyrins, the 

knowledge that has accumulated during the last two decades has revealed a variety of 

unambiguous trends, of which several are very important regarding the utility as 

metallodrugs. The insertion of transition and post-transition elements into the N4 

coordination core of corroles affords complexes in which the formal oxidation state of the 

metal is +3 or higher, irrespective of the oxidation state of the metal precursor. This property 

may be attributed to the macrocyclic corrole framework acting as a trianionic ligand, rather 

than dianionic as in porphyrins or monanionic as in corrin, the cobalt-chelator in vitamin 

B12. Less obvious is that the metal-nitrogen bonds in metallocorroles are much more 

covalent than those in analogous metalloporphyrins.44–45 One important consequence of 

enhanced covalency is that metallocorroles are stable toward hydrolysis,46 and not prone to 

metal ion loss under physiologically relevant conditions.47 The combination of σ metal-

ligand covalency and π-electron noninnocence means that metal oxidation states are hard to 

assign in many cases. It follows that the oxidation states adopted in this review must be 

viewed as “formal” ones in which the chelating corrole is assumed to be a trianionic closed-

shell ligand. Such oxidation state designations are useful, as transition metal corroles are less 

oxidizing than analogous porphyrins for any given formal oxidation state, a property of 

relevance in discussions of anticancer activities.

2.2 Photophysical Properties

The most striking photophysical property of a metallocorrole is intense fluorescence 

compared to that of closely related macromolecules. While the quantum yield of 

tetraphenylporphyrin (H2TPP) is reduced from 0.11 to 0.033 upon zinc(II) insertion and 

only slightly increased (0.165) in its magnesium(II) derivative,48 it is enhanced from 0.17 in 

5,10,15-tris(pentafluorophenyl)corrole (H3(tpfc)) to 0.37 and 0.76 in the corresponding 

gallium(III) and aluminum(III) complexes, Ga(tpfc)(py)49 and Al(tpfc)(py)2, respectively 

(Chart 1).50–51 The early work was followed by many articles that looked deeper into the 

photophysical properties of a variety of corroles and their metal complexes.52–54 Notably, 

phosphorous corroles have enjoyed recent attention55–56 because of their use in the 

photodynamic inactivation of biofilms and bacteria.57

2.3 Amphipolar Corroles

Insertion of heavy metal ions along with facile and selective functionalization of the 

macrocyclic framework have been employed successfully for tuning the spectroscopic, 

chemical, biological and physical properties of corroles for imaging and therapeutic 

applications.58–59 Insertion of Ir(III)60 and Au(III)61 affords complexes that display 

phosphorescence at room temperature; interestingly, the same may be achieved by 

introducing other heavy atoms (mainly iodine) on the corrole skeleton. The heavy atom 

effect also may be exploited for singlet oxygen generation by photosensitization with 

metallocorroles, an effect most pronounced for Sb(III) substituted analogues.62 While 

simple triarylcorroles are lipophilic and insoluble in water, derivatives with polar and/or 

ionic residues have facilitated biological applications. The introduction of polar functionality 
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can be accomplished in a manner analogous to that previously demonstrated for porphyrins; 

however, the extreme electron density afforded by the two directly connected pyrrole rings 

in corroles allows for different approaches for functionalization. The most commonly 

employed method is the highly selective double chlorosulfonation of H3(tpfc), which after 

hydrolysis affords 1-H3 (Chart 2). This corrole and its metal complexes 1-M are amphipolar, 

resembling natural heme by virtue of two negative charges located on one pole of the 

otherwise lipophilic molecule. This amphipolarity accounts for the observation that 1-Ga 

and heme bind to the same subdomain of albumin,63–64 as well as for the high affinity of the 

various 1-M complexes for many other proteins, including the cholesterol carrying low-

density lipoprotein (LDL) and high-density lipoprotein (HDL).65

3. Positively Charged Corroles as Anticancer Agents

The publication of the first facile synthesis of a stable free-base corrole also described the 

synthesis of the first water soluble corrole, P1021 (Chart 3). The earliest report of corroles as 

anticancer agents was published soon after, including P1021 in a study that focused 

primarily on the synthesis of porphyrins with positively charged substituents (Chart 3).66

The most promising porphyrin based on in vitro studies was P1016, which carries positive 

charges on three out of the four meso-C atoms of the macrocycle. The synthesis of such 

porphyrin derivatives is very challenging, while it is much more feasible for corroles, simply 

because they have only three meso-C atoms. Comparison of the compounds depicted in 

Chart 1 in a mouse model of human lung cancer revealed that P1021 corrole was the most 

potent inhibitor of lung metastasis, as illustrated by the data in Figure 2. P1021 was found to 

be about 10-fold more active than TMPP in vitro and 5-fold more potent in an in vivo tumor 

model, inhibiting lung metastasis in mice at a concentration of only 5 mg/kg body weight.66

Work on corrole P1021 was not continued, because its synthesis required the use of n-

butyllithium and very precise control of low temperature reaction conditions, which likely 

would render impractical any large-scale synthetic effort for pharmacological testing. 

However, simpler corroles that also are water soluble owing to positively charged 

substituents have been studied in greater detail (Chart 4).67–74

The first indication that corrole metal complexes might have anticancer activity came from 

work on 2-Mn (Chart 4), which was found to intercalate DNA more strongly than the 

analogous porphyrin 3-Mn.67 It was suggested that porphyrin binding is restricted to the 

major and minor grooves of DNA, owing to the requirement of at least one strongly bound 

anionic axial ligand that would tend to preclude intercalation. However, manganese(III) 

corroles are neutral and form only 5-coordinate complexes with rather weakly bound neutral 

axial ligands.75 It has also been shown that metal-free corroles 4-H3 and 5-H3 stabilize G-

quadruplex DNA, a distinguishing feature of chromosome telomeres, suggesting a potential 

application as telomerase inhibitors.68 The authors attributed the affinity for quadruplex 

DNA to the planar arrangement of corrole rings that facilitated pi-stacking with base pairs 

along with the appropriate disposition of positively charged functional groups that 

contributed electrostatic stabilization via interaction with the negatively charged phosphate 

backbone.68 Inhibition of telomerase activity was tested, revealing IC50 values of 8.6 and 4.4 
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µM for 4-H3 and 5-H3, respectively. Subsequent investigation showed that out of the eight 

cationic corroles comprising the manganese (4-Mn) and copper derivatives (6-Cu −11-Cu), 

4-Mn stabilized telomeric G-quadruplex sequences 21G and Pu27 at very low 

concentrations.69 It has been suggested that this feature of 4-Mn may be attributed to the 

electron-withdrawing pyridinium moiety, which by decreasing electron density in the corrole 

ring leads to stronger interactions with the more electron-rich G-quaduplex DNA.76,77 A 

more recent paper reported that 4-e(OH) can distinguish single-stranded (ss) polyadenylic 

and polycytidylic acids, while 4-H3 can discriminate between ss and double-stranded (ds) 

conformations of nucleic acid homopolymers, preferentially binding to ss DNA.77

In light of their selective modes of DNA binding, some of these derivatives were examined 

as potential new anticancer agents.78,79 13-Mn was found to be cytostatic and cytotoxic 

against breast, ovarian, and melonoma cell lines, while 12-Mn was neither cytostatic nor 

cytotoxic against the same panel at the concentrations studied (up to 30 µM).71 The lack of 

anticancer activity of 12-Mn was attributed to the presence of ortho-alkyl groups, which 

prevented DNA intercalation.

Interestingly, the cytotoxicity of 4-Ga against Hep G2 cells increased by 3 orders of 

magnitude, from an IC50 value of > 80 µM in the dark to 0.06 µM when deployed as a 

photodynamic agent.74 Flow cytometry studies showed that the apoptotic population (sub-

G0 phase) of Hep G2 cells increased to 46% when treated with 0.06 µM 4-Ga under red light 

irradiation. The photocytotoxicity of 4-Ga was attributed to irradiation-induced apoptosis, 

while ultraviolet−visible (UV-vis) titrations, circular dichroism, polymerase chain reaction 

stop assays, and molecular docking studies suggested that c-Myc G-quadruplex DNA was 

stabilized by 4-Ga, suggesting potential inhibition of telomerase activity.

Although these results are encouraging, it is not yet known how effective cationic 

metallocorroles will be as anticancer therapeutics, as experimental work with appropriate 

animal models has not yet been reported. More data are currently available on the utility of 

positively charged manganese(III) porphyrins for the prevention of oxidative damage by 

catalytic decomposition of ROS and reactive nitrogen species (RNS), which can also 

contribute to their anticancer activity.80 A study72 that focused on protection against both 

H2O2-and linsidomine-induced cytotoxicity in mouse motor neuron-neuroblastoma fusion 

NSC-34 cell lines demonstrated that 2-Mn and 12-Mn were very effective against damage 

attributable to intracellular peroxynitrite (Chart 4).81–83 In the same study, the administration 

of positively charged 2-Mn at 20 µM almost completely abolished linsidomine-induced 

tyrosine nitration, while treatment with 1-Mn led only to partial reduction.72 Here it is 

important to point out that increased levels of ROS have been implicated in carcinogenesis;
84–86 and that manipulating ROS levels by redox modulation is a way to kill cancer cells 

selectively without causing significant toxicity to normal cells.87 As ROS signalling 

contributes to proliferation and survival in many cancers, the ability of corroles to rescue and 

disrupt mitochondria redox communication could potentially be exploited in cancer 

therapeutic interventions.88–91
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4. Negatively Charged Amphipolar Corroles

4.1 Corrole/Protein Interactions and Cellular Uptake

The most thoroughly investigated corrole for therapeutic applications contains two sulfonic 

acid head groups on two adjacent and directly bound pyrroles of the macrocyclic skeleton 

(2,17-bis-sulfonato-5,10,15-trispentafluorophenylcorrole, 1-H3, Chart 2).92 This corrole and 

its metal derivatives 1-M (also shown in Chart 2) are amphipolar: they possess hydrophilic 

sulfonic acid moieties on only one pole of the otherwise hydrophobic molecule. As the 

sulfonic acid head groups are fully ionized at physiological pH, cellular uptake and 

internalization might be disfavored, since cell membranes also are negatively charged. That 

cellular uptake is not diminished has been documented in many studies, including one that 

compared the uptake of 1-Fe and Fe(TPPS), a water soluble iron(III) porphyrin that is not 

amphipolar, as it has four symmetrically distributed sulfonic acid head groups. The 

intracellular concentration of 1-Fe in macrophages was found to be much greater, which was 

attributed to its interaction with amphipolar proteins that facilitated cellular uptake.93 This 

finding was reminiscent of earlier work which showed that 1-a undergoes endocytosis by 

breast cancer cells with the participation of various proteins, including serum albumin. The 

most direct evidence for assisted uptake came from work demonstrating that lipofectin (a 

transfection reagent) and an adenovirus serotype 5 (Ad5) capsid penton base function as 

carrier molecules for 1-H3.59 In protein-free media, the corrole appeared to aggregate at the 

cell surface (Figures 3a–c), while enhanced intracellular corrole fluorescence was observed 

in the presence of penton base (Figures 3d–f) or lipofectin (Figures 3g–i), confirming 

assisted cellular uptake of these corroles.

The above work was followed by investigations that focused on the spontaneous bio-

conjugation of corroles with albumin63 and transferrin.94 Albumin was chosen because of 

accumulating evidence that drug/albumin conjugates are promising formulations for 

targeting cancer.95 Fluorescence quenching experiments exploiting the unique tryptophan 

present in human serum albumin (HSA) in conjunction with molecular modeling led to the 

identification of plausible binding sites for 1-Ga (Figure 4). In related work, transferrin was 

identified as a potential targeting vehicle for corroles due to its affinity for endothelial cells 

associated with the blood-brain barrier.96 Although corrole binding to both HSA and 

transferrin was very strong (Kd ≤ 1 nM and 10 nM, respectively), it was shown that 

transferrin-based targeting may not be practical, since the protein is much less abundant in 
vivo than HSA and 1-H3 pre-bound to transferrin is rapidly redistributed to HSA even under 

equimolar conditions.94. This result indicated that pre-complexation of corroles with carrier 

proteins may lead to redistribution even under conditions where there should be no free 

corrole in solution according to the Kd values obtained from work on isolated proteins. Later 

studies hence focused on the distribution of 1-H3 and its metal complexes in whole serum, 

which revealed remarkable binding preferences for LDL (15%) and HDL (85%) relative to 

all other available proteins.65,97 These results suggest that lipoproteins may act as primary 

carriers during circulation of corroles, including ones conjugated to smaller proteins that 

have targeting properties. Indeed, very selective corrole delivery was achieved employing the 

semisynthetic protein described below.
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In parallel with the aforementioned binding studies of 1-H3 and 1-M with serum proteins, 

work was performed aimed at conjugating corroles with specific receptor-targeting proteins 

capable of penetrating cells. In 2006, the gallium(III) complex of the sulfonated corrole, 1-
Ga (Chart 2) was shown to form a non-covalent conjugate with a heregulin-targeted 

adenovirus penton fusion protein HerPBK10 (Scheme 1).59 Examination by several 

independent methodologies revealed that pre-incubation of 1-a with HerPBK10 led to a very 

tight bioconjugate, termed HerGa, which did not exchange its bound corrole with serum 

proteins.98 The motivation for conjugating the corrole with HerPBK10 was that the latter 

specifically binds to ErbB receptors that are prevalent on the cell surface of ErbB2+ human 

breast cancer cells,99,100 including MDA-MB-435 and MDA-MB-453 cell lines, thereby 

allowing for receptor-mediated cell entry. Furthermore, as a derivative of the Ad5 capsid 

penton base protein,101,102 HerPBK10 can undergo endosomolysis and subsequent 

translocation into the cytosol.103 In vivo imaging experiments exploiting the intense 

fluorescence of 1-Ga strongly suggested that HerGa retains HerPBK10’s breast cancer 

selectivity and intracellular transport properties.

4.2 Corrole-Based Optical Imaging

In addition to their potential utility as anticancer therapeutics, transition metal complexes of 

the amphipolar corrole 1-H3 also are effective scavengers of ROS and RNS, and therefore 

predicted to be effective in combating oxidative stress related-diseases.65 The iron(III) 

corrole 1-Fe and to a lesser extent 1-Mn catalyze the decomposition of ROS and RNS and 

therefore can be used to treat diseases such as diabetes, neurodegeneration, optic neuropathy, 

and atherosclerosis.72,73,97,104 The development of effective therapeutic approaches must be 

guided by detailed cellular uptake and biodistribution data. Optical imaging is a powerful 

tool for these purposes, and many studies have been performed with 1-a, as an analogue of 

the non-fluorescent catalytic antioxidants 1-Fe and 1-Mn. One key advantage of 1-a is that 

its bright emission allows tracking of intracellular transport, even in whole animals without 

the need for additional fluorescent labels.98 For example, the uptake of 1-a has been 

monitored for both cultured β cells (insulinoma) and primary rat fetal cortical cells using 

confocal fluorescence.73 1-Ga was found to be distributed primarily in the cytoplasm after 

cellular uptake.

Confocal microscopy also was used in early studies of cellular uptake of fluorescent corroles 

in breast cancer cells.59 MDA-MB-453 cells treated with HerGa at 4 °C displayed intense 

red fluorescence around the plasma membrane (but not internally), suggesting that HerGa 

was bound only on cell surfaces at this temperature. At higher temperature (37 °C), 

fluorescence was observed in the cytosol, thereby demonstrating that HerGa had been 

internalized. It was proposed that receptor binding occurred at 4 °C and that receptor-

mediated endocytosis dominated at 37 °C. While 1-Ga and its conjugate HerGa have 

received the most attention, it is important to keep in mind that the free base 1-H3 is almost 

as fluorescent as 1-Ga, and that 1-Al is much more so. Even TiO2-corrole conjugates are 

fluorescent, a feature that allowed for examination of the cellular uptake of 1-Al-TiO2 into 

luciferase-transfected glioblastoma U87-Luc cells by confocal microscopy.105
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Fluorescence lifetime imaging microscopy (FLIM) was used to evaluate the uptake of HerGa 

under different pH conditions as to provide clues that might shed light on the mechanism of 

endosomal uptake and release. The fluorescence lifetime of HerGa in vitro was measured by 

FLIM over a range of pH values,106 revealing shorter fluorescence lifetimes under acidic 

conditions at both room temperature and 37 °C (Figure 5a). This observation provided 

insight into the mechanism of endosomal release of HerGa in vivo. During cellular uptake of 

HerGa by MDA-MB-435 cells, the fluorescence lifetime declined from 1200 ps to 700 ps 

over 30 minutes (Figure 5b), after which it slightly increased. The interpretation of these 

results was that HerGa initially accumulates into acidic plasma membrane associated 

vesicles, followed by endosomal vesicle escape and subsequent transport to the internal 

cellular environment.

Distinguishing between fluorophore-specific emission and background cellular 

autofluorescence is of prime importance (and a non-trivial task) for the proper analysis of 

optical imaging. This issue was addressed by determining whether HerGa fluorescence 

lifetime measurements could discriminate between tumor and normal tissue margins.107 

Tumor and normal regions were observed to display differential HerGa-attributed 

fluorescence, with longer lifetimes found in tumor relative to normal tissue both in vivo and 

ex vivo (Figure 6). As hypoxic tumors secrete lactate due to elevated glycolysis, there is a 

net acidification of the surrounding microenvironment, resulting in shorter HerGa 

fluorescent lifetimes. These results show that fluorescence lifetime imaging of HerGa has 

great potential for the delineation of tumor margins.

The biodistribution of 1-Ga was evaluated in two separate in vivo mouse studies, with and 

without tumor xenografts, and in the former case for both free and conjugated corrole. 

Intraperitoneal injection of free 1-Ga into non-tumor-bearing mice revealed accumulation in 

the pancreas, lung, heart, kidney and liver, as well as in brain vasculature.109 The whole 

animal imaging efforts were less conclusive, due to very high autofluoresence. Single tail 

vein injections of HerGa into female nude mice bearing human epidermal growth factor 

receptor 2 (HER2)-positive tumors on each flank (followed by observation with a custom-

made fluorescence bioimager) were more revealing.98 While 1-Ga alone was nonspecifically 

distributed without any significant tumor targeting, HerGa displayed preferential 

accumulation in tumors and much lower distribution to extratumoral regions. Real time 

images acquired after tail vein injection revealed that the HerGa conjugate accumulated at 

tumor sites within minutes after administration, in contrast to typical observations with 

porphyrins.98

The accumulation of HerGa into various organs, extracted from mice receiving intravenous 

injection of corroles, was further investigated using multimode optical imaging ex vivo.108 

Fluorescence imaging revealed that HerGa predominantly accumulated in tumor and liver 

(Figure 7a). These studies also addressed the issue of tumor autofluorescence, an inherent 

limitation for optical imaging studies in cancer. Autofluorescence from tumors excited at 

424 nm is typically characterized by broad spectra that overlap with HerGa and 1-Ga 

emission spectra, thereby reducing the contrast for detection of HerGa or 1-Ga by 

fluorescence intensity imaging. Spectral imaging was therefore applied to achieve better 

contrast for HerGa detection. Using two-photon excited fluorescence imaging of tumors, 
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HerGa accumulation could be observed in detail at microscale (Figure 7b). Relative to 

FLIM, spectral imaging analysis of HerGa offered better quantitative discrimination between 

tissue autofluorescence and fluorescence attributed to HerGa-targeting. Fluorescence from 

liver and tumors was clearly shown to originate from HerGa, while emission from other 

tissues was attributed to autofluorescence. That multimode optical imaging offered 

complementary and highly resolved information on tumor retention/accumulation of HerGa 

(intensity and two-photon) (Figure 7a and d), as well as on tissue concentration (spectral) 

(Figure 7c), confirmed the utility of HerGa-based imaging for the robust delineation and 

detection of tumors both in vivo and ex vivo.

4.3 Whole Animal (Non-invasive) Imaging

Intense metallocorrole fluorescence provides a unique opportunity to monitor tumor 

targeting in vivo. In particular, HerGa was used for whole animal imaging and targeted 

chemotherapy.98 A custom fluorescence bioimager (a multimode optical imaging system) 

was utilized to demonstrate that 1-Ga fluorescence in treated mice exhibits nonspecific 

systemic distribution that appeared to be excluded from tumors.98 The intense 1-Ga 

fluorescence clearly indicated general biodistribution of the nonconjugated corrole (Figure 

8a, left image). In contrast, HerGa accumulated in the tumor (Figure 8a, right image) with 

high selectivity (Figure 8b). Interestingly and importantly, accumulation in the tumor sites 

occurred within a few minutes after administration (Figure 8b).

Because of the promise of HerGa as an imaging agent, its capacity for rapid tumor detection 

and demarcation in vivo was investigated using a ratiometric spectral imaging method 

(Figure 9, upper).107 This method uses ratio imaging at different wavelengths corresponding 

to pure autofluorescence reference signatures and HerGa fluorescence for quantitative 

measurements. It enhances relatively low contrast (mainly caused by autofluorescence) and 

aids in identifying preferential HerGa accumulation for tumor detection and delineation. 

Compared to other in vivo methods, quantitative measurement of the preferential tumor 

accumulation of HerGa by ratiometric spectral imaging allowed enhanced discrimination 

between HER2-positive breast tumor regions and normal tissue within 30 minutes after 

intravenous HerGa injection (Figure 9). The relevance to the clinical setting is clear, as it is 

of utmost importance to determine the location of tumors quickly and accurately. Therefore, 

it is envisioned that the ratiometric spectral imaging of HerGa can speed up tumor detection 

and demarcation prior to surgical intervention.

Another imaging modality for tumor detection and delineation in vivo is magnetic resonance 

imaging (MRI), which is the most widely utilized clinical approach. Paramagnetic/

superparamagnetic metal chelates are typically used to influence the proton T1 relaxation 

rates in the tumor environment and enhance image contrast. Although gadolinium chelates 

are most commonly used for this purpose, concerns about their toxicity have prompted the 

search for second-generation contrast enhancing agents. To this end, 1-Mn, 1-Ga, and 1-Fe 

were examined using a 3T magnetic resonance imaging system as to test the suitability of 

metallocorroles as MRI contrast agents. 1-Mn exhibited the highest relaxation rates and 

showed decreased T1 relaxation times as the 1-Mn concentration increased (Figure 10a, b). 

1-Mn at an accumulation of 1mM in tumors could be clearly identified in the T1-weighted 
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MR image of a mouse in vivo (Figure 10c).110 Moreover, HerMn obtained via encapsulation 

of 1-Mn into the above described tumor-targeting/cell-penetrating protein HerPBK10, 

accumulated in breast tumors preferentially. HerMn resulted in an increased T1 relaxation 

rate and decreased relaxation time in tumor regions, thereby enhancing the tumor contrast in 

the T1-weighted MR image (Figure 10d). It was found that contrast enhancement of tumor 

regions in the MR mouse image was 20% higher for the HerMn conjugate compared to 1-

Mn (Figure 10e). These results indicate that HerMn can facilitate tumor-selective imaging 

and further demonstrate that HerMn possesses great potential as an MRI contrast agent for 

tumor detection and delineation.

4.4 Cytotoxicities of 1-M and its Conjugates

The first report of the cancer cell-killing properties of non-conjugated negatively charged 

corroles was in 2006, when Agadjanian et al. showed that high (30 µM) concentrations of 1-

Ga reduced 293, HeLa, and MDA-MB-435 cell numbers by 95–100%, whereas low 

concentrations (0.3–3 µM) exhibited little or no cytotoxicity after several days in cell media.
59 Similar concentrations of 1-H3 were not toxic to MDA-MB-435 cells, whereas 1-Mn had 

no effect on 293 and HeLa cells. Investigations by the Termini group followed: 1-Al was 

found to be more cytotoxic than 1-Ga against breast (MDA-MB-231) and ovarian 

(OVCAR-3) carcinoma lines (30 µM dose).71 Enhanced cytotoxocity was attributed to the 

more efficient kinetic uptake of 1-Al relative to 1-Ga, measured using the ImageXpress Ultra 

confocal high content analysis system

Water-soluble gold(III) corrole 1-Au, the latest member of the 1-M complexes, was 

introduced in 2014.64 Its potential as an anticancer drug was evaluated in four cancer cell 

lines and compared to 1-Ga and cisplatin. 1-Au was found to be 5–10 and ~ 2 times more 

cytotoxic than 1-Ga and cisplatin, respectively (Tables 1 and 2).64 1-Au also was cytostatic, 

while 1-Ga was not. A possible explanation for the differential cytotoxicities of 1-Au and 1-

Ga was proposed after examining binding to HSA, the most abundant serum protein that 

often acts as a drug-sequestering agent. Using electrospray ionization-time of flight mass 

(ESI-TOF) spectrometry and UV-vis spectroscopy, it was shown that 1-Au binding to HSA 

was diminished relative to 1-Ga. The greater availability of 1-Au in free (unbound) form 

might hence be responsible for its enhanced cytotoxicity, reminiscent of other cases where 

serum albumin binding of drugs decreases their efficacy. One such example is 

[(sec-butylphen)AuCl3], which displays less toxicity in vitro (higher IC50) than cisplatin, as 

well as stronger binding to bovine serum albumin.111 A revealing comparison can be made 

between 1-Au and gold(III) porphyrins. Although 1-Au is not as cytotoxic as the lipophilic 

[Au(TPP)]Cl,112 it is still substantially more cytotoxic than water-soluble gold(III) 

porphyrins.113

The possibility that more lipophilic corroles might exhibit increased cytotoxicity was 

explored recently.114 Two negatively-charged derivatives of 1-Ga -Ga(ACtpfc) and Ga(3-

ctpfc)-were prepared (Figure 11). Not only are Ga(ACtpfc) (cLogP = 13.5) and Ga(3-ctpfc) 

(cLogP = 13.1) more lipophilic than 1-Ga, they have smaller polar surface areas and lower 

molecular weights. Consistent with the hypothesis, Ga(ACtpfc) and Ga(3-ctpfc) exhibited 
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enhanced intracellular uptake (Figure 11) and correspondingly increased cytotoxicity (Table 

3) towards the four National Cancer Institute 60 cell lines tested.

Another recent study explored the cytotoxicity of corroles covalently bound to TiO2 

nanoparticles.105 TiO2 is an especially useful material because it is known to exhibit 

cytotoxicity under UV irradiation.113–115 That study focused on dark toxicity, revealing 

decreased viability of human glioblastoma U87-Luc cells treated with >20 µg/mL of 1-Al–

TiO2.

The hypothesis that the HerPBK10 carrier protein can enhance therapeutic targeting of 1-a 

to breast cancer cells was first validated by in vitro experiments using MDA-MB-435 cells. 

Treatment with 0.5 µM HerGa proved cytotoxic to nearly 60% of the cells after 3 days, 

whereas 1-a required a ten-fold higher concentration and seven days to achieve the same 

level of cytotoxicity.59 Moreover, HerGa selectively killed HER2-positive MDA-MB-231 

human breast cancer cells in the presence of HER2-negative cells.59 Such specificity is 

highly desirable for a targeted therapeutic approach with potential applications in 

personalized medicine. Control experiments disclosed that the HerPBK10 ligand exhibited 

negligible effects on tumor growth while 1-Ga alone displayed only modest cytotoxicity. 

Only the conjugate of HerPBK10 and 1-Ga, HerGa, prevented tumor growth completely and 

more markedly decreased tumor volume, at the very low dose of 0.008 mg/kg (Figure 12). 

Even when compared to systemically administered doxorubicin, HerGa treatment showed 

greater therapeutic efficacy at a five times lower dose.98 This extremely effective tumor 

inhibition/regression in mice was obtained with no detectable off-target effects in various 

tissues and no carrier protein immunogenicity.

The cytotoxicity of metallocorroles in combination with other standard chemotherapy drugs 

also was explored.118–121 1-a was found to enhance cytotoxicity of the DNA-intercalating 

anthracycline drug doxorubicin against DU-145 prostate carcinoma cells. Dual 

administration of doxorubicin and 1-a resulted in an approximately three-fold decrease in 

IC50 relative to treatment with doxorubicin alone.71 Since metallocorroles can form 

complexes with a diverse assortment of carriers, the association of metallocorroles with 

doxorubicin seems plausible, analogous to the known association of porphyrin-modified 

micelles with this drug.122

Although not designed for application as a PDT agent, the light-induced cytotoxicity of 

negatively charged metallocorroles was nevertheless investigated. On top of the very 

significant dark cytotoxicity of HerGa, an even more effective tumor cell killing was 

observed following irradiation at 424 nm. The already impressive dark IC50 of ~0.1–1 nM 

was further reduced upon irradiation to ~0.001–0.01 nM (Figure 13a).123 Morphological 

examination of 424-nm irradiated HerGa-treated cells revealed pronounced rounding and 

membrane blebbing. Since cells receiving phosphate buffered saline treatment alone showed 

no such morphological changes, this finding indicates that light may be used to eliminate 

cells that survive initial HerGa treatment.
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5. Mechanisms of Cancer Cell Killing by Corroles

The mechanisms of cancer cell killing by negatively charged non-conjugated and conjugated 

corroles are of two primary types; one dependent on superoxide production and the other 

mediated by light-induced singlet oxygen production.106 In contrast, the main mechanism of 

positively charged corrole cytotoxicity has been attributed to stabilization of G-quadruplex 

DNA, which in turn inhibits telomerase activity (see section 3). Nuclease-like activity of 

corroles (positively and negatively charged) also has been proposed.

5.1. Superoxide-Mediated and Light-Induced Singlet-Oxygen-Mediated Cell-Death 
Pathways

HerGa was found to exhibit cell killing of HER2-positive breast cancer cells via two 

mechanisms; one mediated by superoxide59 and a light-dependent pathway involving singlet 

oxygen production.106 The HerPBK10-mediated cell entry is the same in both pathways 

(Figure 14a). HerGa, which specifically binds to HER in MDA-MB-435 human breast 

cancer cells, undergoes endocytosis after receptor binding. Escape of HerGa from 

endosomes was followed by monitoring changes in the HerGa fluorescence lifetime during 

cellular uptake (Figure 14b). In agreement with the superoxide-mediated mechanism (Figure 

14c), the mitochondrial membrane potential and cytoskeleton were disrupted (Figure 14e 

and f). In contrast and consistent with the light-induced mediated cell death pathway, 

irradiation at 424 nm produced singlet oxygen (Figure 14d) and intensified mitochondrial 

and cytoskeletal damage (Figure 14e and f), resulting in cytochrome c release and 

subsequent programmed cell death (Figure 14g).

5.2. Mitotic Arrest

The mechanism of cytotoxicity also was investigated for negatively charged non-conjugated 

corroles. These studies revealed that many cancer cells treated with metallocorroles undergo 

mitotic arrest.124–127 High percentages of melanoma (SK-MEL-28) cells treated with 1-a, 1-

Mn, and 1-Al displayed late M phase cell cycle arrest. 71 Similar results also were observed 

in breast and ovarian cancer cells incubated with these metallocorroles. The degree of 

mitotic arrest was in the order 1-Al > 1-Mn > 1-a. A strong correlation between cytotoxicity 

and cytostaticity was demonstrated in later experiments that focused on the even more 

cytotoxic 1-Au,64 consistent with mitotic arrest as an important cell death mechanism.

Several gallium corroles, including 1-a, were proposed as potential inhibitors of heat shock 

protein (Hsp) 90, and this hypothetical interaction was modeled by computational methods.
128 Because of its important role in proliferation and survival,129–131 the inhibition of Hsp90 

by 1-a and related analogues could conceivably mitigate cell cycle arrest. This mechanism is 

plausible, considering that structurally related gold porphyrins were found to target 

Hsp60.132

5.3 Stabilization of G-quadruplex DNA

Several studies examining the utility of cationic corroles for stabilizing G-quadruplexes 

appeared in the literature,69,74,79 following the initial report on the interaction of corroles 

with DNA.67 Factors that were proposed to contribute to the stabilization of G-quadruplex 
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structures by metallocorroles include: 1) the cationic and electron-withdrawing moieties 

attached to the corrole ring interacting with electron-rich G-quadruplex DNA; 2) 

enhancement of the corrole/DNA interaction by the M(III) center; and 3) matching of the G-

quartet topology by corrole saddling.68 4-Mn was found to possess these properties as it has 

electron-withdrawing pyridinium moieties, a tripositive manganese center, and a relatively 

planar structure for G-quadruplex binding. Consistent with that structural analysis, 4-Mn 

displayed the highest selectivity toward human telomeric sequence 21G and mutated 

sequence 21Gmu out of all eight corroles studied, including 4-Cu.69 Of the several 

sequences that were examined, the highest selectivity was for the oncogene c-Myc, 

characterized by an IC50 = 2.37µM with regard to the inhibition of its telomerase activity. 

The binding constant of 4-Mn to quadruplex DNA was found to be 64 times greater than that 

observed for binding to double-stranded DNA (ds-DNA).

Motivated by these results, four other cationic isomers (14-H3, 15-H3, 16-H3, 17-H3) of 4-

H3 (the free-base analogue of 4-Mn) (Chart 5) were found to be good G-quadruplex 

stabilizers.79 Notably, the complex of 15-H3 with the G-quadruplex formed by G4TTA had 

the highest ∆Tm and the greatest selectivity (502-fold) for c-Myc over ds-DNA. It was 

suggested that the restricted free rotation of the pyridyl rings imposed by the N-methyl 

groups (ortho- > meta > para) affords favorable interactions and enhanced selectivity for the 

quadruplex form,79 which is optimized for that particular isomer. This is reminiscent of the 

previously described steric constraints for DNA binding imposed by ortho-N-methyl-

pyridylium-substituted porphyrins relative to para-N-methyl-pyridylium analogues.133

Of interest in this regard is the molecular docking simulation of 4-Ga and c-Myc, the first 

molecular docking study of corroles with G-quadruplex DNA (Figure 15).74 One conclusion 

was that π–π stacking and hydrogen bonding with 5’ quartet guanine bases (Figure 15a) 

likely contribute to the stabilization of G-quadruplex by 4-Ga. Furthermore, 4-Ga binds to c-

Myc G-quadruplex DNA via a groove binding mode (Figure 15b).

5.4 DNA Cleavage

In light of the observed DNA-binding properties of corroles, their ability to cleave DNA was 

investigated as well. It was found that 4-Mn cleaved plasmid DNA in the presence of 

H2O2.134 This finding was further confirmed by Zhang and coworkers,135 who demonstrated 

that a high-valent (oxo)iron corrole is involved in the oxidative cleavage of plasmid DNA by 

1-Fe. Although an obvious limitation to these experiments is the use of plasmid DNA 

instead of genomic DNA, studies136–137 have shown that there is a correlation between 

plasmid DNA cleavage and the cancerostatic activity of inorganic compounds. Nonetheless, 

it remains to be seen whether corroles can induce intra-tumoral DNA cleavage in a manner 

analogous to other anticancer drugs.138–140

Although several different reaction pathways have been presented in this section, there is no 

exclusive route that leads to cancer cell death. Depending on the experimental conditions 

(such as the presence or absence of light), it is apparent that a combination of factors 

(superoxide-mediated, singlet-oxygen-mediated, Hsp-inhibition-induced, as well as others) 

contribute to the end result of mitotic catastrophe - formally defined by Castedo et al as: “a 
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type of cell death occurring during mitosis, as a result of DNA damage or deranged spindle 

formation coupled to the debilitation of different checkpoint mechanisms that would 

normally arrest progression into mitosis and hence suppress catastrophic events until repair 

has been achieved”. 141 As research in this area is growing rapidly, we are confident that the 

cell-death pathways of corrole-treated cancer cells will soon be much better understood.

6 Concluding Remarks

Corroles function as both therapeutic and imaging agents, with exceptional stability and 

more readily tunable photophysical properties than porphyrins. Since the 1999 discovery of 

the first scalable synthesis of H3(tpfc), many corroles have been shown to have promising 

cytotoxic and cytostatic activity. They form covalent conjugates with TiO2 nanoparticles and 

non-covalent conjugates with proteins such as HerPBK10 for targeted corrole delivery. In 

addition, they can be employed for PDT if and when the other requirements for therapeutic 

applications (such as strong absorption in the application relevant wavelengths of 700–800 

nm) are satisfied. Work with other carriers, as well as with non-conjugated corroles, is 

ongoing. We confidently predict that corroles will soon join other key members of the cancer 

chemotherapeutic arsenal.
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Ad5 adenovirus serotype 5

DNA deoxyribonucleic acid

ds double-stranded

FDA Food and Drug Administration

FILM fluorescence lifetime imaging microscopy

HER human epidermal growth factor receptor

HDL high-density lipoprotein

HSA human serum albumin

Hsp heat shock protein

LDL low-density lipoprotein

MRI magnetic resonance imaging

PDT photodynamic therapy

RNS reactive nitrogen species
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ROS reactive oxygen species

ss single-stranded

UV ultraviolet

UV−vis ultraviolet−visible
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Figure 1. 
Published articles per year with keyword “corrole”, based on a Web of Science search 

conducted on May 4, 2016.
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Figure 2. 
Inhibition of metastasis in a Lewis lung carcinoma tumor model by the compounds depicted 

in Scheme 1 (P1021 is the corrole and P1012 is the ortho-pyridyl analogue of TMPP). 

Reproduced from ref. 66. Copyright 2000 American Association for Cancer Research.
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Figure 3. 
Uptake of corroles with negatively charged head groups requires a carrier. (a-i) MDA-

MB-453, 293 and Hela cells were treated by 1-a in buffer only (Neg) or with recombinant 

penton base (PB) or Lipofectin (Lipo). Images were obtained of live cells at 10x 

magnification using an Olympus IMT-2 inverted microscope fitted with a Texas Red filter. 

Fluorescence settings were kept constant, and images were captured at constant exposure 

and gain settings. c and f are slightly enlarged views. Bar, ~20 µm. Reproduced with 

permission from ref. 59. Copyright 2006 Springer.
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Figure 4. 
Structural model depicting four potential binding sites for 1-Ga (green) in human serum 

albumin (HSA). The unique tryptophan (Trp214, in red) was used to predict binding sites, 

based on analysis of fluorescence-quenching data. Reproduced from ref. 63. Copyright 2004 

American Chemical Society.
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Figure 5. Effect of pH on HerGa fluorescence lifetimes.
(a) Measurement of HerGa fluorescence lifetimes in titrating pH buffers at room temperature 

and 37 °C (b) Fluorescence lifetime changes of HerGa during uptake into MDA-MB-435 

cells. Reproduced from ref. 106. Copyright 2011 American Chemical Society.
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Figure 6. 
Tumor detection by fluorescence lifetime imaging of HerGa (a) in vivo and (b) ex vivo. 

Reproduced with permission from ref. 108. Copyright 2012 Springer.
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Figure 7. 
Tumor detection by multimodal imaging of HerGa. (a) Fluorescence intensity image of 

organs and tumors at 620 nm. (b) Two-photon excited fluorescence image of tumors. (c) 

Spectral classified image (left) and spectral signatures (right). Adapted with permission from 

ref. 108. Copyright 2012 Springer.
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Figure 8. 
Targeted tumor detection by fluorescence imaging of HerGa: (a) fluorescence images of 

nude mice bearing bilateral HER2-positive tumors receiving a single IV injection of either 1-

a or HerGa (b) HerGa distribution over a mouse at the indicated time points after single 

injection. Adapted from ref. 98. Copyright 2009 National Academy of Sciences.
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Figure 9. 
Tumor detection by ratiometric spectral imaging of HerGa in vivo: ratiometric spectral 

classification (upper), conventional spectral classification (middle), and fluorescence 

intensity image (lower) of a mouse treated with HerGa at the indicated time points. The 

arrows indicate tumor regions. Reproduced with permission from ref. 107. Copyright 2011 

Society of Photo Optical Instrumentation Engineers.
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Figure 10. 
Tumor detection by MRI of HerMn and the non-conjugated metallocorroles (S2Mn, S2Fe, 

and S2Ga are identical to 1-Mn, 1-Fe, and 1-Ga, respectively): (a) T1 relaxation ratios of 1-

Mn, 1-Fe, and 1-Ga (b) T1 relaxation times of 1-Mn at different concentrations (c) MR 

images of a mouse with intratumoral injection of 1-Mn at different concentrations (d) MR 

images of tumor-bearing mice before and after IV injection of saline, HerMn, 1-Mn, and 

gadolinium(Gd) (e) MRI contrast comparisons between treatment groups (Saline, 1-Mn, 

HerMn, and Gd) in vivo. Reproduced with permission from ref. 110. Copyright 2015 

Elsevier.
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Figure 11. 
Kinetics of intracellular uptake and accumulation of 1-Ga and its derivatives by DU-145 

(black), SK-MEL-28 (red), OVCAR-3 (blue), and MDA-MB-231 (green) cancer cells, 

determined using the ImageExpress Ultra system. Cells were treated with 30 µM (A) 1-Ga, 

(B) Ga(ACtpfc), or (C) Ga(3-ctpfc) for the times indicated on the x axis. The y-axis 

represents a percentage of corrole-positive cells with observable intracellular red 

fluorescence. The extent of corrole uptake and intracellular accumulation was directly 

proportional to the median fluorescence intensity (RFU) on the z axis. Cell images were 

obtained at 20× magnification, using filters for blue (DAPI) and red fluorescence. Adapted 

from ref. 114. Copyright 2016 National Academy of Sciences.

Teo et al. Page 35

Chem Rev. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 12. 
Targeted tumor elimination: tumor volume changes before, during, and after treatment. 

Mock treated mice received only saline treatment. Reproduced from ref. 98. Copyright 2009 

National Academy of Sciences.
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Figure 13. 
Cytotoxicity of HerGa in MDA-MB-231 cells with and without irradiation at 424 nm: (a) 

cell survival at HerGa with and without 424-nm irradiation with the indicated concentrations 

(b) morphological changes of cancer cells by HerGa treatment with and without light. 

Reproduced with permission from ref. 123. Copyright 2012 Elsevier.
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Figure 14. 
Cellular mechanisms for cancer cell destruction by HerGa: (a) Schematic of two distinct 

molecular pathways of HerGa induced cytotoxicity (b) Real time fluorescent images of 

HerGa internalization in MDA-MB-435 cells. (c) Superoxide generation by cytosolic HerGa 

(d) singlet oxygen generation following irradiation of HerGa at 424 nm (e) TRMR 

fluorescence images of MDA-MB-435 cells treated with 1-a, HerGa, and HerPBK10 for 24 

h in the dark (upper) and for 4 h with and without 424-nm irradiation (below) (f) Irradiation 

of HerGa-induced disruption of major cytoskeletal components tubulin and actin: MDA-

MB-435 cells were treated with 1 µM HerGa and irradiated for 4 h at 424 nm. Antibody 

staining for tubulin (green) and actin (red) revealed major cytoskeletal perturbations after 

photochemical activation of HerGa, indicated by arrows in the bottom panel. DNA staining 

with DAPI (blue) showed disruption of the nuclear membrane. Incubation with HerGa in the 

dark (middle panel) revealed superoxide-mediated microtubule dissociation. (g) cytochrome 
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c release from 0.5 µM HerGa treated cells after 424-nm irradiation.106, 123 Reproduced with 

permission from ref. 106 and 123. Copyright 2011 and 2012 American Chemical Society 

and Elsevier, respectively.
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Figure 15. 
Results of molecular docking simulations. (a) Hydrogen binding between 4-Ga and c-Myc 

G-quadruplex DNA. (b) Binding mode of 4-Ga with c-Myc G-quadruplex DNA. 

Reproduced with permission from ref. 74. Copyright 2015 Elsevier.
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Scheme 1. 
Conjugation of metallocorroles for targeting tumors: (a) sulfonated derivatives; (b) tumor 

targeting cell penetration protein (HerPBK10).

Teo et al. Page 41

Chem Rev. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chart 1. 
Structures of 5,10,15,20-tetraphenylporphyrin, 5,10,15-trispentafluorophenyl-corrole, and 

the corresponding gallium(III) and aluminum(III) corroles. TPP stands for dianionic 

porphyrin and tpfc for trianionic corrole.
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Chart 2. 
Structures of heme b (the iron(II) complex of protoporphyrin IX), amphipolar corrole 1-H3 

and its metal complexes (1-M, where M is a tripositive transition metal or post-transition 

element ion), which are the most thoroughly investigated metallocorroles for therapy.
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Chart 3. 
Synthesis of the first corrole that was included in a cancer-relevant investigation (P1021); the 

activity of P1021 was compared with those of four porphyrins (the structures of three are 

shown).66
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Chart 4. 
Structures of corroles with positively charged substituents along with corresponding metal 

complexes, including corrole 2-Mn for comparison with the analogous porphyrin, 3-Mn.
67–74
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Chart 5. 
Structures of free-base isomers 14-H3, 15-H3, 16-H3, and 17-H3.
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Table 1.

Comparison of IC50 cytotoxicity values of 1-Au, 1-Ga and cisplatin in human cancer cell lines. Reproduced 

from ref. 64. Copyright 2014 The Royal Society of Chemistry.

Cell line DU145 SK-MEL-28 MDA-MB-231 OVCAR-3

Tumor type prostate Melanoma breast ovarian

IC50 (µM)

1-Au 47.9 26.8 19.7 27.5

1-Ga 158.9 131.4 129.2 274.2

cisplatin 81.0 36.8 44.8 22.8
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Table 2.

IC50 cytostaticity values for 1-Au and 1-Ga. Reproduced from ref. 64. Copyright 2014 The Royal Society of 

Chemistry.

Cell line DU145 SK-MEL-28 MDA-MB-231 OVCAR-3

IC50 (µM) 1-Au 68.5 35.6 75.1 25.4

1-Ga >350.0 201.9 322.5 >350.0
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Table 3.

Comparison of IC50 cytotoxicity values of 1-Ga, Ga(ACtpfc) and Ga(3-ctpfc) in human cancer cell lines. 

Reproduced from ref. 114. Copyright 2016 National Academy of Sciences.

Cell line DU145 SK-MEL-28 MDA-MB-231 OVCAR-3

Tumor type prostate Melanoma breast ovarian

IC50 (µM)

1-Ga 158.9 131.4 129.2 274.2

Ga(ACtpfc) 17.6 14.4 13.7 12.7

Ga(3-ctpfc) 12.9 4.8 15.3 11.1
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