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ABSTRACT

A lipid profile resistant to oxidative damage is an inherent trait associated with animal lifespan. However, there
is a lack of lipidomic studies on human longevity. Here we use mass spectrometry based technologies to detect
and quantify 137 ether lipids to define a phenotype of healthy humans with exceptional lifespan. Ether lipids
were chosen because of their antioxidant properties and ability to modulate oxidative stress. Our results de-
monstrate that a specific ether lipid signature can be obtained to define the centenarian state. This profile
comprises higher level of alkyl forms derived from phosphatidylcholine with shorter number of carbon atoms
and double bonds; and decreased content in alkenyl forms from phosphatidylethanolamine with longer chain
length and higher double bonds. This compositional pattern suggests that ether lipids from centenarians are
more resistant to lipid peroxidation, and that ether lipid signature expresses an optimized feature associated with

exceptional human longevity. These results are in keeping with the free radical theory of aging.

1. Introduction

Maximum lifespan (MLSP) is a species-specific feature that may
differ more than 5000-fold among animal species being about 120 years
in humans [1,2]. Centenarians are considered an exceptional human
model of healthy aging and extreme longevity [3,4]. Available evi-
dences reveal the existence of a link between MLSP and lipids [5]. Thus,
the findings from several studies demonstrate that the membrane fatty
acid profile differs between animal species (including vertebrates, in-
vertebrates, and exceptionally long-lived animal species) and that cell
membrane susceptibility to lipid peroxidation is inversely related to
MLSP [5-7]. Furthermore, a recent phylogenomic approach showed
that genes involved in lipid metabolism have undergone an increased
selective pressure in long-lived species [8], reinforcing the idea that cell
membrane lipid profile has been an optimized evolutionary adaption

[5]. As an extension of these findings, recent lipidomics studies confirm
that the lipidome is also species-specific and an improved feature as-
sociated with animal lifespan [9,10]. In addition, there are observations
of genetic changes in regulatory genes of lipid metabolism to play a role
in human lifespan [11-13]. All these observations point to lipids as a
key target to study the molecular adaptive mechanisms underlying
differences in lifespan among animal species and within a giving spe-
cies, even as humans.

Ether lipids are subclass of glycerophospholipids (GP) that have an
alkyl chain attached by an ether bond at the sn-1 position of the glycerol
backbone [14,15]. The sn-2 position of ether lipids has an ester-linked
acyl chain, as in diacyl phospholipids. Some ether-linked phospholipids,
called alkenyl-acylphospholipids, contain a cis or Z double bond ad-
jacent to the ether linkage and are commonly referred to as plasmalo-
gens. The terms "plasmanyl-" and "plasmenyl-" lipids for alkyl and
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alkenyl ethers, respectively, can also be used. The alkyl ether linkage is
represented by the "O-" prefix, and the (1Z)-alkenyl ether (plasmalogen)
species by the "P-" prefix. Ether lipids are mostly present as phospha-
tidylcholine (PC) and phosphatidylethanolamine (PE) species [14].
Ether lipids constitute around 20% of the total glycerophospholipid
pool in mammalian species and have a heterogeneous distribution de-
pending on the tissue [16]. For instance, plasmalogens levels are par-
ticularly high in cardiac and neural tissues. At a cellular level, the ether
lipid biosynthesis begins in the peroxisome and is completed in the
endoplasmic reticulum [14-16].

The physiological role of ether lipids, and specially plasmalogens, is
essentially linked to their function as membrane components. Thus,
plasmalogens seem to play a key role in specific properties of cell
membrane such as membrane fluidity, formation and stability of lipid
raft microdomains, and as a source of second messengers [14-16].
Other functions where plasmalogens are involved are transmembrane
protein function, cholesterol transport, vesicular function, membrane
fusion events, and G-protein mediated signal transduction [14-16].
Interestingly, an antioxidant effect has also been ascribed to plasma-
logens [14-17]. Effectively, the vinyl-ether linkage of the plasmalogens
is particularly susceptible to oxidation by reactive species such as re-
active oxygen species and hypochlorous acid, and thus, like a sca-
venger, could protect unsaturated membrane lipids (as well as lipo-
proteins) against oxidation. Consequently, plasmalogens could have a
modulatory effect on oxidative stress, lipid-derived inflammation and
cell signalling mechanisms. Lipidomic studies reveal that ether lipids
are inversely associated with genetic peroxisomal disorders, and also
suggest that they are negatively associated with prevalent disease states
such as obesity, prediabetes, type 2 diabetes mellitus, cardiovascular
disease, cancer and Alzheimer disease, among others [14-16,18,19].
Notably, these pathological states share as common trait an increased
oxidative stress, and a potential mechanistic role for plasmalogens.

As a consequence of these multiple observations, it is plausible to
postulate that deciphering why centenarians markedly delay or in
several cases even avoid age-associated diseases can help us in better
understanding the aging process and the pathogenesis of age-related
diseases, and that in these processes ether lipids and particularly plas-
malogens can be involved.

Although the fact that systems biology-based approaches allow a
comprehensive molecular characterization of complex biological sys-
tems, up to date no targeted lipidomic studies investigating differences
in plasma of exceptionally long-lived humans have been reported. To
this end, we have designed a study that represents the most detailed
lipidomic analysis of plasma ether lipids associated with human long-
evity to detect and quantify a panel of ether lipids including 137 mo-
lecular species: 14 PE(O-), 4 LPE(P-), 55 PE(P-), 22 PC(0O-), 10 LPC(O-),
6 LPC(P-), and 26 PC(P-). The plasma ether lipid profile was determined
using a LC-QQQ-MS/MS platform to systematically define specific
phenotypic patterns associated with genotypes of human extreme
longevity. We discovered a particular ether lipid signature related to
the condition of extreme longevity, allowing the identification of po-
tential mechanisms and biomarkers of healthy aging.

2. Results

In the present study 137 ether lipid molecular species in human
plasma were measured. This broad panel of ether lipids includes: 46
alkyl-phospholipids, and 91 alkenyl-phospholipids or plasmalogens.
From alkyl-phospholipids, 14 molecular species were PE(O-), 22 PC(O-
), and 10 LPC(O-); from alkenyl-phospholipids, 55 molecular species
were PE(P-), 4 LPE(P-), 26 PC(P-), and 6 LPC(P-). Hence, all the ether
lipids detected are present as phosphatidylethanolamine (PE(O-) and
PE(P-), n = 73) or phosphatidylcholine (PC(O-) and PC(P-), n = 64).

The baseline characteristics of the study groups including basic lipid
biochemical determinations are shown in Table 1. No significant dif-
ferences were observed for HDL-cholesterol, VLDL-cholesterol, free
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cholesterol and plasma triacylglycerides among groups; in contrast,
total-cholesterol and LDL-cholesterol showed significantly increased
levels in the aged group compared to adults and centenarians.

In a first approach, we would like to test whether global inter-group
(adults, aged and centenarians) differences exist (Fig. 1). The results
show that total ether lipids are statistically lower in centenarians with
respect to adults (by 20%; p < 0.01), while no differences are detected
for aged subjects (Fig. 1). This difference can be ascribed to alkyl lipids,
which are decreased in the aged (by 15%; p < 0.05) and centenarian
(by 21%; p < 0.01) groups with respect to adults; and alkenyl lipids,
only decreased in the centenarian group (by 22%; p < 0.01) respect to
adults. More specifically, for alkyl lipids, we observe a decreased con-
tent for alkyl-PE (by 25%; p < 0.05) and alkyl-PC (by 21%; p < 0.01)
in the aged group compared to adults, while a decreased content in
alkyl-PE is shown in centenarians compared to adults (by 43%;
p < 0.001). Alkyl-LPCs were significantly higher in centenarians with
respect to aged (by 26%; p < 0.05). For alkenyl lipids, a decreased
content of plasmalogens in centenarians with respect to the adults (by
26%; p < 0.001) and aged subjects (by 9%; p < 0.05) was observed.

Multinomial regression models have been performed with the cen-
tenarian group as reference in order to find associations and differential
ether lipid species. Results are represented as the logarithmic value of
odds ratio (log OR) and their confidence intervals, lack of association
between the concentration of the ether lipids species and the fact of
being a centenarian will show a log OR equal to 1. On the other hand,
values under or above the unit will represent an increase or a decrease,
respectively, of the ether lipid in the centenarian group. Thus, 91 of the
137 detected ether lipid species (66.4%) were statistically different in
adults or aged compared to centenarians. Among them, 50 (36.5%)
ether lipid species were different between centenarians and the other
two groups, 16 (11.7%) just between centenarians and aged, and 25
(18.2%) just between centenarians and adults (Figs. 2-4). In particular,
when adults are compared to centenarians, the differential molecular
species belong 47% to PE(P-) and 19% of PC(O-); and when aged group
is compared to centenarians, the affected molecules were 52% PE(P-)
and 26% PC(O-). Therefore both groups (adults and aged) present a
similar proportion among the differential lipid species compared to
centenarians.

To evaluate the potential influence of the variable ‘age’ in the ob-
served differences among groups, we performed a linear regression
analysis with the Benjamini-Hochberg correction. The outcome of this
analysis shows that the human plasma concentration of 72 (52.5% of
total ether lipids measured) molecular species are significantly corre-
lated with age (see Table S2); 64 are negatively correlated with age,
while 8 are positively correlated with age. Among the negatively cor-
related species with age, 34% are alkyl-phospholipids (9 PC(O-) and 13
PE(0-)), and 63% plasmalogens (6 PC(P-) and 36 PE(P-)). In contrast,
all the ether lipids which correlate positively with age are derived ex-
clusively from phosphatidylcholine, being 50% of molecular species
alkyl-PC (2 LPC(O-) and 2 PC(0O-)), and 50% alkenyl-PC or plasmalo-
gens (4 PC(P-)).

To know whether exist a specific ether lipid signature which defines
the centenarian condition in an age-independent way we evaluated
which differential lipids did not correlate with age. Comparing the
multinomial regression models with age-associated results, there were
21 ether lipid species significantly different that did not show age
correlation. Among them, 16 lipid species could be used as biomarkers
of healthy aging being 13 of them increased in both adults and cen-
tenarians but not in aged individuals and the other 3 ether lipids, PE(P-)
species, decreased in adults and centenarians but not in aged. On the
other hand, 4 ether lipid species (LPC(0-24:0), PC(P-16:0/16:0), PE(P-
18:1/22:6) (a) and PE(P-18:1/22:5) (a)) are significantly different in
centenarians compared to both groups, adults and aged. Therefore, they
could be possible biomarkers for the centenarian condition being both
PC species increased and both PE(P-) decreased. Finally, the ether lipid
PC(P-18:0/22:5) is significantly different only between adults and
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Table 1
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Participant characteristics. Number of subjects, age and sex of the participants and basic lipid biochemistry.

Adults (n = 21) Aged (n = 22) Centenarians (n = 25) p value Post hoc
Age (years) 279 = 1.4 76.4 = 0.5 100.8 = 1.1 < 0.0001 Ad vs Ag
AgvsC
AdvsC
n (n of females) 21 (14) 22 (15) 25 (19) 0.7038 ns
Total cholesterol (mg/dl) 177.0 = 8.3 204.3 + 6.9 1742 = 7.6 0.0081 Ad vs Ag’
AgvsC
HDL-cholesterol (mg/dl) 56.7 = 4.0 549 + 2.2 55.1 + 2.3 0.8867 ns
LDL -cholesterol (mg/dl) 929 *+ 6.1 120.4 = 5.7 98.0 = 6.0 0.0024 Ad vs Ag
AgvsC
VLDL-cholesterol (mg/dl) 27.4 = 3.8 29.0 = 2.6 211 = 1.6 0.0796 ns
Free cholesterol (mg/dL) 417 = 1.5 414 = 15 433 = 1.4 0.5458 ns
Triacylglycerides (mg/dL) 70.3 = 2.8 66.7 = 3.7 67.9 = 2.8 0.7113 ns
Values shown are mean * standard error (SEM).
ns, not significant differences.
* p < 0.05.
** p < 0.01.
*% p < 0.001.
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Fig. 1. Graphical representation of the amounts of ether lipids in each individual of each experimental group in total or cluster by the type of glycerophospholipid
and ether bond. The expressed concentrations are the experimental group mean + standard error of the sum of the all the molecular species within that class or
subclass of ether lipids. p-values obtained by one-way ANOVA post hoc Tukey's * p=0.05; * *p =0.01 and * **p ~0.001.

centenarians.

In order to evaluate the weight of these ether lipid species in plasma
variability across samples we have analyzed plasma ether lipid profile
from healthy human grouped as centenarians or non-centenarians
(grouping adults and aged subjects). Principal Component Analysis
(PCA) (Fig. 5A) shows a good clusterization of non-centenarians and
centenarians subjects. Interestingly, some of non-centenarians subjects
(all of them aged subjects) cluster together with centenarians in-
dividuals suggesting a higher probability to become centenarians.
When a PCA of the centenarians and non-centenarians is performed
with the 21 ether lipid species found differential between the experi-
mental groups in an age-independent way the separation between the
centenarians and non-centenarians is better (40% higher in component
1) (Fig. 5B). Likewise, performing a heat map with these 21 ether lipid
species allows us to visualize possible clustering (Fig. 5C) and a pattern
emerges suggesting an ether lipid signature that defines the centenarian
condition. In this centenarian signature, 15 ether lipids derived from PC
are significantly increased, while 6 ether lipids derived from PE are
significantly decreased, except for LPE(P-16:0) increased in aged po-
pulation compared to centenarians.

We have also analyzed the differential ether lipids which define the
centenarian condition to unravel potential structural and/or composi-
tional traits. Thus, the distribution of the differential ether lipids ac-
cording to the number of carbons and the number of double bonds

shows that increased ether lipids are almost all of them PC species with
shorter number of carbon atoms and lower number of double bonds,
presenting significantly differences in the saturation of the sn2 chain.
On the other hand, the decreased ether lipids are longer in carbon
atoms and higher in double bonds, especially in the sn2 chain being
almost all them PUFA. As for other fatty acids chains the number of
carbon and unsaturations is independent of the centenarian condition
being able to be increased, decreased or not to be modified as (40:5).
(Fig. 6A-D).

Finally, a model based on a ROC curve biomarker analysis was
performed (Fig. 7A). A random forest algorithm was chosen for the ROC
analysis and the chosen ether lipid species to generate the model were
the possible biomarkers of the centenarian condition. All of the ether
lipids chosen were significantly different in centenarians compared
with adult and aged individual but did not show correlation with the
variable “age”. AUC, p-value and fold change of these 4 lipid species is
represented in Fig. 7A. Half of them were PE(P-) with polyunsaturated
fatty acids at the sn-2 position, as we have seen they are decreased in
centenarians and the other half, saturated PC species increased in
centenarians, one LPC(O-) and other PC(P-). As a result, the predictive
accuracy test of the ROC curve generated (Fig. 7B, left) indicates an
average accuracy of 0.702 based on 100 cross validations. Likewise, the
permutation test with predictive accuracy as performance measure and
1000 permutations showed a p value < 3.7E-03 (Fig. 7B, right).
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Fig. 2. Multinomial logistic regression model examining the association be-
tween PC ether lipid species and the experimental groups (adults, aged and
centenarians). Odds ratio in logarithmic scale represent the estimate differences
in the concentration of the ether lipid species in adults and aged with respect to
centenarians which is the reference group.

3. Discussion

Although their wide presence and abundance in living organisms
and their relevance to human health, the detection and quantification
of ether lipids represents a technical challenge. The reduced number of
the studied ether lipids species and the indirect determination of the
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Fig. 3. Multinomial logistic regression model examining the association be-
tween PE(P-) ether lipid species and the experimental groups (adults, aged and
centenarians). Odds ratio in logarithmic scale represent the estimate changes in
the concentration of the ether lipid species in adults and aged with respect to
centenarians which is the reference group.

plasmalogen content (for instance, measuring the content of fatty acid
dimethyl acetals) are common restrictions and, consequently, no con-
clusive results have been obtained yet. This fact represents a constraint
for studying their structural and compositional diversity and their cel-
lular functions in animal species, as well as their association with
complex processes such as aging and longevity. The findings obtained
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Fig. 4. Multinomial logistic regression model examining the association be-
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from lipidomic studies in animal models of exceptional longevity such
as the worm C. elegans [20], the mud clam Arctica islandica [21], and
the naked mole-rat (Heterocephalus glaber) [22] suggest an association
between their content and animal longevity. For instance, the naked
mole-rat had no docosahexaenoic acid-containing plasmenyl phospho-
lipids, but they had much higher levels of total plasmenylcholines [22].
For bivalves, no correlation between plasmalogens content and long-
evity comparing five different bivalves species differing in their lifespan
was found [21]. For worms, C. elegans strains carrying loss-of-function
mutations in genes encoding protein required for ether lipid biosynth-
esis demonstrated a shorter lifespan, and a decreased resistance to
oxidative stress [20]. Lipidomic studies on human longevity describe
different plasma concentration of “plasmanyl” and “plasmenyl” lipid
species in centenarian subjects in respect to aged and adult subjects
[13], and in middle-aged offspring of nonagenarians as compared to
their controls [23,24]. Further, for aging studies, the few works per-
formed in relation to human aging suggest decreased plasmalogen
content with age [25,26].

In accordance with previous works, changes in total cholesterol and
LDL-cholesterol were found in the elderly compared with adults and
centenarians [27-29]. Focusing on ether lipid species, our results de-
monstrate that total ether lipids are significant lower in centenarians.
This difference can globally be ascribed to both alkyl and alkenyl lipids,
which are decreased in centenarian group. More specifically, for alkyl
lipids, we observed decreased content in alkyl-PE, while alkyl-LPC was
significantly and surprisingly higher in centenarians. For alkenyl lipids,
a decreased content in plasmalogens in centenarians with respect to the
adults and aged subjects was observed. In this context, it is possible to
postulate that the described ether lipid profile in centenarians could
positively affect cognition performance and accordingly the survival as
previously proposed [30].

Our study also demonstrates that 72 molecular species are sig-
nificantly correlated with age; 64 of them are negatively correlated,
while 8 are positively correlated with age. Globally, the decreased ether
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tenarians in an age independent manner. C) Heat map of the twenty one ether lipid species significantly different in centenarians in an age independent manner.



I Pradas et al.

A © Increased W Decreased . No Differentials

8
28
8 7 o
3 6 EmEn
Ss =e e
8 4 Ennnnud
w 3 " m
2 2 <& " mmd =
a1 oo e oo eon
S 000 o >0
> 1618202224 2628303234363840
C NUMBER OF CARBONS
100 Ether bond
H B
S0
X2: 5.87
p-value: 5.32E-02
0
Increased No differential Decreased
100 sn1 saturation
— msnl SFA
50 snl MUFA
usnl PUFA
B -
0 p-value: 4.24E-01

Increased No differential Decreased

Redox Biology 21 (2019) 101127

C24 Cc32 C34

B

0123456 01234560123456
35 c36 37

!
/

0123456 0123456 0123456

C39

38 C4a0

{ 3\

-

01234567 01234567 01234567

NUMBER OF DOUBLE BONDS
I e e e 4
t ok i e o J
100 —_— . GP type
PC W PE
50 I
X2: 40.97

p-value: 1.27E-09

Increased No differential Decreased
100 f ok ok N .
T Ak sn2 saturation

- B sn2 SFA
sn2 MUFA
30 M sn2 PUFA
- X2: 65.24

0 —

p-value: 3.97E-09

Increased No differential Decreased

Fig. 6. Structural characteristics of the ether lipids. A, B) Distribution of the lipids according to the number of carbons and the number of double bonds. Data was
obtain by a multinomial regression model with centenarians as a reference group. C) Distribution of the lipids according to the type of ether bond, glyceropho-
spholipid type and unsaturation of the fatty acid present at snl and sn2 position. Statistical values were obtained from Pearson chi-squared test. * < p.0.05;

*% < p.0.01; * ** < p.0.001.

lipids with age, mostly PE, lead to a profile where there is a decreased
content of polyunsaturated fatty acids in sn-2, which is the typical fatty
acid present in sn-2 position of these ether lipids. In contrast, the ether
lipids that correlate positively with age are all of them derived ex-
clusively from phosphatidylcholine. Interestingly, all these molecular
species share in their structural composition the exclusive presence of
saturated and monounsaturated lipids.

A specific ether lipid signature can be obtained in plasma of cen-
tenarians. In this centenarian signature, 15 ether lipids derived from PC
are significantly increased, 5 ether lipids derived from PE are sig-
nificantly decreased while LPE(P-16:0) lipid species is only increased in
aged. Notably, this signature responds to specific traits in the ether li-
pids. Thus, the increased ether lipids are preferentially from molecular
species with shorter number of carbon atoms and lower number of
double bonds, predominates the presence of the alkyl form, and are
ascribed to PC molecular species. In contrast, the decreased ether lipids
are longer in carbon atoms and higher in double bonds, the alkenyl
form is predominant, and is preferentially ascribed to PE molecular
species. These differences are not due to the fatty alcohol present at
position sn-1 of the glycerol backbone, but to the fatty acid esterified at
sn-2 position. This new compositional pattern determines that the
density of double bonds and susceptibility to peroxidation, which takes
into account that the sensitivity to peroxidation increases as a function
of the number of double bonds per fatty acid [31], were significantly
lower in centenarians compared to non-centenarians, suggesting that
ether lipids from centenarians are more resistant to lipid peroxidation.
Reinforcing this concept of resistance to oxidation, the increased PC

molecular species in centenarians are predominantly alkyl forms, which
are not susceptible to oxidation in the way that vinyl-ether species are.
So, PC(0O-) species with few double bonds should be very stable. Thus,
the ether lipid profile predominant in centenarians suggest a greater
resistance to oxidation based on the increased alkyl forms and the de-
creased content in PUFAs and increased for monounsaturated fatty acid,
analogously to the resistance to lipid peroxidation of membrane fatty
acid composition described for long-lived animal species, animals
maintained on caloric restriction, and offspring of long-lived in-
dividuals [5]. It is still unknown if this fatty acid profile observed in
ether lipids species is a specific trait of these species in centenarians or
is a conserved pattern among other lipid categories in centenarians. In
this scenario, we propose that low levels of whole ether lipids and
specific increase in alkyl PC forms in centenarians express a physiolo-
gical adaption to an inherently low oxidative stress present in cen-
tenarians. In fact, plasma levels of oxidative markers such as mal-
ondialdehyde and protein carbonylation are lower in centenarians than
aged [32].

The molecular mechanisms underlying this adaption in centenarians
could be related to a different regulation in the biosynthesis pathways
of ether lipids [19] (see Fig. 8). In this scenario, and in order to explain
the specific ether lipid profile observed in centenarians, it is proposed
that: 1) centenarians have a greater FAR1/2 activity to maintain a
higher pool of saturated and monounsaturated fatty alcohols; 2) cen-
tenarians present lower ethanolamine phosphotransferase and deltal-
desaturase activities to maintain decreased levels of PE plasmalogens;
3) centenarians have increased phosphatidylethanolamine
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methyltransferase activity and/or increased hydrolysis of PE plasma-
logens and choline phosphotransferase activity to maintain a normal
level of PC plasmalogens; and 4) it is postulated the presence of a
specific human phospholipase A2 for the synthesis of 1-O-alkyl-LysoPC
whose activity is increased in centenarians (Fig. 8).

A limitation of the present study is that we are far from under-
standing the biological significance of this compositional complexity. In
addition, although we controlled the time of sampling to minimize the
dietary influence in lipidome, we cannot completely reject that some
compounds resulting from nutrients metabolism could affect plasma
lipidome in general, and ether lipid profile in particular. Further, our
whole cohort represents a population from a restricted geographic area
in Spain and as such can be considered relatively homogeneous re-
garding lifestyle, and dietary habits. However, several studies confirm
that the influence of diet on lipid composition is limited, reinforcing the
validity of our findings. Although our findings must be compared and
validated in much bigger cohorts to provide future predictive utility,
they show the power of lipidomics to better understand the phenotype
of extreme longevity in the human population. Finally, a crucial step is
to integrate our results with transcriptomic and genomic studies in
order to define the genetics of longevity based on the centenarian
phenotype. In conclusion, our findings suggest that i) centenarians are
resistant to particular age-related changes in ether lipids; and ii) ether
lipid species and their metabolism are linked to the human longevity
determination, emerging specific ether lipids as potential biomarkers of
longevity.

4. Conclusions

Overall, our findings provide robust information about the existence
of an ether lipid signature in long-lived humans. This signature is
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expressed through higher level of alkyl forms derived from phosphati-
dylcholine; and decreased content in alkenyl forms from phosphatidy-
lethanolamine. In addition, in these lipid species there is a specific
compositional pattern in carbon chain with an increased relative
abundance for chains with shorter number of carbon atoms and double
bonds, and decreased content for longer chain length and higher
number of double bonds. As a result, the ether lipids from centenarians
are more resistant to lipid peroxidation. So, it is proposed that the ether
lipid signature expresses an optimized molecular feature associated
with exceptional human longevity.

5. Methods
5.1. Chemicals

Lipid internal standards (ISTD) included species within the classes
of phosphatidylcholine (PC(13:0/13:0)), and phosphatidylethanola-
mine (PE(17:0/17:0)) and were obtained from Avanti (Alabaster AL,
USA). The solvents 1-butanol, methanol and chloroform were HPLC-
grade and purchased from Merck KGaA (Darmstadt, Germany).
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5.2. Study Population

Potential healthy subjects were selected from the population data
system of the 11th Health Department of the Valencian Community
(Valencia, Spain), which is composed of 29 towns (240,000 in-
habitants). The inclusion criteria were to live in the 11th Health
Department for at least the last 6 years and to sign the informed con-
sent. The exclusion criterion was to be under statin-therapy or any
pharmacological treatment affecting lipid metabolism or to be termin-
ally ill for any reason. We found 25 (6 males/19 females) centenarians;
22 (7 males/15 females) randomly recruited aged subjects, and 21 (7
males/14 females) adult individuals. All experimental procedures were
approved by the Committee for Ethics in Clinical Research of the
Hospital de la Ribera (Alzira, Valencia, Spain). All subjects or their
relatives were fully informed of the aims and scope of the research and
signed an informed consent.

5.3. Blood collection and plasma isolation

Blood samples were obtained by venipunction in the morning (be-
tween 7 and 8 a.m.) after fasting overnight (8-10h) and collected in
one VACUTAINER CPT (Cell Preparation Tube; BD, Franklin Lakes, NJ)
containing sodium heparin as the anticoagulant. Plasma fraction were
collected after blood sample centrifugation, and immediately frozen in
liquid nitrogen, and transferred before 4h to a — 80°C freezer for
storage, to be used later for lipidomic analyses.

5.4. Biochemical determinations

Total cholesterol was measured by means of enzymatic assays, and
HDL-cholesterol concentration was recorded with a Beckman LX-20
autoanalyzer (Beckman Coulter, La Brea, CA, USA) employing a direct
method. LDL-cholesterol and VLDL-cholesterol concentrations were
calculated from the Friedewald method. Free cholesterol and tria-
cylglycerides were determined by targeted lipidomics.

5.5. Targeted lipidomics

5.5.1. Preparation of lipid standards

Lipid standards consisting of non-physiological lipid species were
used for external standardization (i.e., lipid family assignment) and
internal standardization (i.e., for adjustment of potential inter- and
intra-assay variances) (Table S1). Stock solutions were prepared by
dissolving lipid standards in chloroform: methanol (1:1v/v), and
working solutions were at 10 pg/ml in chloroform: methanol.

5.5.2. Sample preparation and lipid extraction

Plasma samples from the subjects were randomized prior to lipid
extraction. Quality control plasma samples were included at a ratio of
1:10. Samples were thawed and 1 ul of the antioxidant butylhydrox-
ytoluene (BHT) (100 mM in ethanol) per 1 ml of plasma was added. To
each plasma sample (10 pl) a mixture of internal standards in chloro-
form: methanol (1:1, 15 pl) was added. Lipids were extracted in a single
phase chloroform: methanol (2:1) procedure as described previously
[33].

5.5.3. Lipid analysis

Lipid analysis was performed by an LC ESI-QQQ MS/MS model
6490 from Agilent Technologies (Melbourne, Australia). 1 ul of lipid
extract was applied onto ZORBAX eclipse plus C18 column,
2.1 x 100 mm 1.8 pm, (Agilent Technologies) heated to 60 °C and the
auto-sampler regulated to 25 °C. Flow rate was 400 ul/min with solvent
A composed of 10 mM ammonium formate in acetonitrile-water-iso-
propanol (50:30:20, v/v) and solvent B composed of 10 mM ammonium
formate in acetonitrile-water-isopropanol (9:1:90, v/v). The gradient
started at 10% of mobile phase B, reached 100% B in 11 min and held
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for 1 min. Finally, the system was switched back to 10% of mobile
phase B and was equilibrated for 3 min. Data was collected in the
multiple reaction monitoring scan type and the capillary voltage was set
at 3500 V. Positive polarity of electrospray ionization was set using N»
at 20 psi as nebulizer gas (17 L/min, 150 °C) and the sheath gas para-
meters were flow at 10 L/min and temperature at 200 °C. For all the
standard lipid species the cell accelerator voltage was 5 V, fragmentor
was 380 V (Table S1). Ether lipid molecular species concentrations
were normalized to levels of total PC to reduce technical variance as-
sociated with protein determination as previously reported [34].

5.5.4. Data analysis

The MassHunter Data Analysis Software (Agilent Technologies,
Melbourne, Australia) was used to collect the results and the software
MassHunter Quantitative Analysis (Agilent Technologies, Melbourne,
Australia) was used to quantify every lipid specie in the samples.
Concentrations were obtained first in pmol/ml and then normalize to
micrograms of total of phosphatidylcholine. Multivariate statistics
(hierarchical clustering and principal component analysis) were done
using Metaboanalyst software and the rest of the statistical analysis was
performed with R statistical software, version 3.3.1.
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