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Abstract
Lassa virus (LASV) is a highly prevalent mammarenavirus in West Africa and is
maintained in nature in a persistently infected rodent host, Mastomys

, which is widely spread in sub-Saharan Africa. LASV infection ofnatalensis
humans can cause Lassa fever (LF), a disease associated with high morbidity
and significant mortality. Recent evidence indicates an LASV expansion
outside its traditional endemic areas. In 2017, the World Health Organization
(WHO) included LASV in top-priority pathogens and released a Target Product
Profile (TPP) for vaccine development. Likewise, in 2018, the US Food and
Drug Administration added LF to a priority review voucher program to
encourage the development of preventive and therapeutics measures. In this
article, we review recent progress in LASV vaccine research and development
with a focus on the impact of LASV genetic and biological diversity on the
design and development of vaccine candidates meeting the WHO’s TPP for an
LASV vaccine.
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Introduction
Lassa virus (LASV) was originally isolated from a nurse (Lily 
Pinneo; strain LP) in 1969 during a nosocomial outbreak in a 
mission hospital in the city of Jos in north-central Nigeria1,2. 
Electron microscopy of LASV-infected Vero cells revealed mor-
phological similarities with the prototypic arenavirus lymphocytic 
choriomeningitis virus (LCMV)3,4. Currently, LASV belongs 
to the Old World group (OW or LCMV-LASV serocomplex) of 
the genus Mammarenavirus in the Arenaviridae family3.

Persistently infected Mastomys natalensis is the main source of 
natural LASV infection of humans5,6. Rodent-to-human trans-
mission occurs by the inhalation of dust contaminated by the 
excreta of infected rodents, direct contact of abraded skin with 
contaminated material, or the ingestion of contaminated food7. 
Clusters of infected M. natalensis are responsible for spatial dis-
tribution of Lassa fever (LF) cases in endemic areas8–11. LASV 
infection is confined predominantly to M. natalensis monophy-
logenic group A-I in West Africa12, whereas other phylogroups 
from Central and Southern African regions have been associ-
ated with the non-pathogenic OW arenaviruses Mopeia (MOPV), 
Morogoro (MORV), Gairo (GAIV), and Luna (LUNV)13–16. 
The detection of LASV in eastern Nigeria in M. natalensis from 
phylogroup A-II, which occupies a territory extending up to 
eastern Congo, underlines the potential of LASV to infect other 
genetically related host species and expand its geographic distri-
bution12,17,18. In addition, the isolation of LASV from Mastomys 
erythroleucus and Hylomyscus pamfi in Guinea and Nigeria, 
respectively, suggests that host-switching events potentially  
contribute to LASV geographic expansion17,19–21. LASV-endemic 
areas cover about 80% of Sierra Leone (SL) and Liberia, 50% of 
Guinea, 40% of Nigeria, 30% of each of Ivory Coast, Togo, and 
Benin, and 10% of Ghana with an at-risk population as high as 
200 million people20,22,23. Moreover, West Africa is undergoing 
rapid demographic and environmental changes that are likely to 
increase LASV spillover events in coming decades10. The estimated 
global burden of LF is the highest among viral hemorrhagic 
fevers with the exception of dengue fever24.

Most LASV human infections are asymptomatic or cause mild 
flu-like illness, but about 20% can result in manifested illness, 
which can progress to severe multi-organ failure, hypovolemic 
sepsis-like shock, and death. The overall estimated mortality rate 
for “rural” LASV infections is 1% to 2%25–28. Among hospital-
ized patients and some vulnerable groups (women in late preg-
nancies, children under 5 years, and individuals with immune 
deficiencies), LF fatality can be 50% or higher.

LASV infection has been largely ignored as a public health 
threat11,29. However, during 2015–2016, historically high (59.6%) 
mortality among laboratory-confirmed LF cases was reported 
in Nigeria30,31, triggering the re-evaluation of LF risk for global 
health security11,32. In 2017, the World Health Organization (WHO) 
identified LASV as a top-priority pathogen for fast-track research 
and vaccine development33. From January through the middle 
of April 2018, 1,849 suspected LF cases were reported across 
21 states of Nigeria with 25.4% fatality among confirmed cases34, 
prompting the WHO to declare a public health emergency35.

Lassa virus genetic diversity
LASV has a bi-segmented single-strand negative-sense RNA 
genome36. The large (L) RNA encodes for the L protein, an 
RNA-dependent RNA polymerase, and for the matrix Z protein. 
The small (S) RNA encodes for the nucleoprotein (NP) and 
enveloped glycoprotein precursor (GPC), which is processed in 
infected cells into stable signal peptide (SSP) and the mature GP1 
(attachment) and GP2 (fusion) glycoproteins.

Molecular dating indicates that LASV originated in Nigeria 
about 1,000 years ago and gradually moved westwards6,37–39. Ini-
tial phylogenetic analysis revealed that LASV sequences clustered 
geographically independently of a rodent or human source and 
formed four major phylogenetic lineages40. Lineages I–III comprise 
LASV strains isolated in different geographic areas of Nigeria.
The largest lineage, lineage IV, with the prototypic JOSIAH/
SL/76/H (JOS) includes strains from Guinea, Liberia, and SL. 
Genetic analysis of clinical LF samples collected in 2008–2013 
confirmed the existence of four major LASV lineages and  
provided additional evidence for high LASV genetic diversity, up 
to 25% and 32% for the S and L RNA segments, respectively38,41. 
A lineage V, which has a sister relationship with lineage IV, has 
been proposed for LASV isolates from Mali and Ivory Coast39,42. 
In addition, a Togo isolate with a mosaic genome structure (the 
L segment related to clade II and the S segment related to line-
ages I and IV) has been proposed to represent a separate lineage 
VI43. No evidence for LASV recombination has been presented 
so far, and naturally occurring LASV reassortment seems to be 
a rare event, since only three reassortants were identified among 
194 LASV RNA clinical samples38. LASV geography-based 
clustering suggests multiple infections of individuals travelling 
across different LASV-endemic areas as the most likely explana-
tion for the observed LASV reassortants6.

Lassa virus genetic diversity and differences in 
clinical manifestations of Lassa fever disease
Most LASV animal studies have been carried out with JOS or 
JOS-related strains from the same lineage (IV). Accordingly, 
there is very limited knowledge about the pathogenicity of Nige-
rian strains in guinea pigs and non-human primates (NHPs), 
which poses an obstacle for LASV vaccine development44. The 
LASV/JOS (lineage IV) and LASV/803213/74/H (lineage II) are 
highly pathogenic for strain 13 guinea pigs45–49. However, the pro-
totypic LASV/LP (lineage I) does not cause fatal disease in these 
animals48. LASV/GA391/NIG/77/H (lineage III) is lethal for out-
bred guinea pigs50, whereas wild-type LASV/JOS kills only 30% to 
40% of outbred guinea pigs49. Notably, there is a poor correlation 
between the clinical outcome of LF in humans and the virulence of 
LASV in guinea pigs51.

LASV/JOS is highly pathogenic in NHPs and reproduces major 
biological markers of fatal human LF cases52–54. However, a 
recent LASV/JOS-related isolate from a case of LF in Mali was 
less pathogenic in cynomolgus macaques than LASV strains from 
SL and Liberia55. LASV/803213 (lineage II) is the only Nigerian 
strain tested in NHPs and caused fatal disease with predominant 
liver involvement in line with a recent clinical report56 and experi-
mental arenavirus-induced liver pathology characterized by aborted 
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hepatocyte proliferation and upregulation of Axl-157, an additional 
LASV receptor (Figure 1).

Clinical studies in SL and Liberia during the 1970s and 
1980s1,58–60 established fever, pharyngitis, retrosternal pain, and 
proteinuria as the best predictors of LF, whereas the best predic-
tor of outcome was fever, sore throat, and vomiting. Elevated 
levels of aspartate aminotransferase (AST) in plasma and high 
viremia were strongly associated with death25. A high aspartate 
AST/alanine aminotransferase (AST/ALT) ratio suggested sub-
stantial involvement of non-hepatic tissues in LF pathogenesis.
Low or undetectable levels of pro-inflammatory chemokines inter-
leukin-8 (IL-8) and interferon (IFN)-inducible protein 10 (IP-10) 
and elevated levels of tumor necrosis factor-alpha (TNF-α) 
receptors and IL-6 were associated with fatal LF61. High 
IL-6 in plasma is considered a biological marker of fatal LF linked 
with liver pathological regeneration52,62,63. Likewise, low levels 
of IL-6, IL-10, CD40L, AST, ALT, alkaline phosphatase, and 

blood urea nitrogen in LF patients from SL correlated with 
survival. At the terminal stage, LF is characterized by severe 
pulmonary edema and acute respiratory distress, and signs of 
encephalopathy are observed with coma and seizures28.

A retrospective study on a small cohort of patients with LF treated 
during 2012–2013 in Jos hospital, north-central Nigeria, con-
firmed fever, hemorrhagic manifestations, cough, proteinuria, and 
retrosternal pain as clinical predictors of LF64. During the 2016 
transmission season, patients with LF were predominantly from 
urban areas and fever was not a leading clinical sign, whereas 
bleeding diathesis, abdominal pain, and headache were present in 
more than 50% of confirmed cases65. Recent studies on a larger 
cohort of patients with LF treated in Irrua Specialist Teaching 
Hospital (Edo State, Nigeria)56 revealed similarities and differ-
ences between LF in SL and Nigeria. Both groups of patients had 
liver pathology manifestations, but Nigerian patients often had a 
lower AST/ALT ratio consistent with hepatocyte involvement. 

Figure 1. Nigerian strain of LASV induces LF-like human hepatitis with biomarkers of pathological hepatocyte proliferation. Infection 
of common marmosets with LASV/803213 (lineage II) induced fatal hepatitis clinically and histologically similar to hepatitis caused by LASV/
JOS (lineage IV)66. (A) LASV S RNA of strain 803213 was detected by using RNAscope in situ hybridization and amplification (Advanced Cell 
Diagnostics, Inc.). Positively stained brown spots in liver tissues of LASV-infected marmosets (but not in tissues of mock-infected animals, 
not shown) are indicated by arrows. (B,C) Staining for AXL (additional LASV cell receptor) and Ki67 (hepatocyte proliferation marker) was 
performed as previously described57. Positively stained cells are indicated by arrows. Tissues of mock-infected marmosets were negatively 
stained on these markers (not shown). (D) Detection of cell cycling p21 gene expression in fatally infected marmosets versus non-fatal 
(vaccinated) survivors was measured by quantitative reverse transcription polymerase chain reaction.
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In both groups, higher viral load strongly correlated with poor 
outcome25,65. However, in contrast to SL LF, sepsis-associated 
hypothermia rather than fever was a predictor of poor outcome 
in Nigerian patients67. LF patients younger than 5 or older than 
55 were the most likely to die30,56. Kidney pathology, manifested 
as high creatinine and urea blood levels, was one of the most 
notable clinical features of Nigerian LF56. Analysis of 2017–
2018 Nigerian LASV strains did not reveal differences in LASV 
genetic lineages or the epidemiology of the disease compared 
with previous years68,69. The reason for the recent LF increase in 
Nigeria is not clear but is potentially related to changes in rodent 
reservoir or improvements in diagnostics and public awareness 
or both.

Sensorineural hearing loss (SNHL) seems to be a common 
feature of LASV infection in West Africa, and up to 80% of  
individuals who experienced deafness had LASV-specific anti-
bodies versus 19% of matched controls22,70,71. In a murine model 
of SNHL, LASV isolates from fatal or non-lethal human cases 
affected cochlear hair cells and induced degeneration of the  
spiral ganglion cells of the auditory nerve71,72. This model will 
provide valuable insights into the mechanisms of SNHL in 
humans. In NHP survivors, a recent study documented the 
presence of severe vascular lesions in inner ear tissues73.

Immunity to Lassa virus and correlates of protection 
against Lassa fever
Studies involving LF survivors and validated animal models 
of LASV infection indicate that early and robust virus-specific 
CD4+ and CD8+ T-cell responses are the best correlates of  
protection but that neutralizing antibodies appear too late after 
infection and at low titers52,54,74–78. Moreover, individuals who 
experienced subclinical or mild forms of LF are susceptible to 
re-infection with LASV but have long-term protection against LF 
disease7,75,79,80. Notably, LF survivors from Guinea had strong 
memory CD4+ T-cell responses against conserved epitopes in 
NP and GP2 from LASV/JOS and Nigerian LASV strains81,82. 
Nevertheless, potent LASV neutralizing monoclonal antibodies 
can be isolated from LF survivors, and these antibodies were  
protective in animal models of LF83,84. Consequently, a rep-
lication-competent and deeply attenuated vaccine capable of 
inducing the right combination of both cellular and humoral  
responses would be the preferred candidate.

Feasibility of a pan-Lassa virus vaccine
LASV genetic diversity is a great challenge for the design of a 
“universal” preventive LF vaccine. Only one of three predicted 
cross-reactive HLA-A2-restricted LASV-GPC CD8+ T-cell 
epitopes is shared between LASV/JOS (lineage IV) and LASV/
GA391 (lineage III), and CD8+ T cells from JOS-immunized trans-
genic mice did not recognize GA391-derived GPC epitopes85. 
However, studies with the vaccine candidate reassortant ML29, 
carrying the L RNA from MOPV and the S RNA from LASV/
JOS encoding the major protective antigens NP and GPC86, pro-
vided the first evidence supporting the feasibility of a pan-LASV 
vaccine. The expression of NP is an important feature of ML29 
contributing to cross-protection46,87,88, which is consistent with 
the observation that NP-specific CD8+ T cells play a major role 

in virus control in mice infected with LCMV89, and LF survivors 
had strong CD4+ T-cell responses recognizing conserved and 
variable epitopes of the LASV NP81. These findings suggest that 
anti-NP response at an early stage effectively controls infection 
and contributes to cross-protective immunity.

A single immunization with ML29 fully protected guinea pigs 
and marmosets against fatal disease caused by LASV/JOS  
(lineage IV) and Nigerian strain 803213 (lineage II)46,88. In Rhe-
sus macaques, on day 28 after ML29 immunization, up to 13% 
of spleen cells secreted IFN-γ after stimulation with distantly 
related LCMV87. LASV shares about 50% sequence homology 
with LCMV, including conserved NP and GPC T-cell epitopes90. 
However, naïve macaques challenged with the WE strain of LCMV 
died from an LF-like disease, whereas all ML29-vaccinated pri-
mates, including simian immunodeficiency virus (SIV)-infected 
monkeys, were protected against fatal LF-like disease88,91–93. 
These results indicate that ML29 is safe and immunogenic 
and induces broad T-cell-mediated cross-protective immunity. 
Among available LASV vaccine candidates, safety and immu-
nogenicity in SIV-infected Rhesus macaques (a model of 
human HIV-1 infection) are unique features of ML2992. In West 
Africa, LF-endemic areas (for example, Nigeria) also have high 
HIV seroprevalence, and it is important to determine whether 
vaccination could be safe in the context of HIV-1 infection.

Do current vaccine candidates meet World Health 
Organization guidelines?
In 2017, the WHO released the Target Product Profile (TPP) for 
an LASV vaccine94 and emphasized the preventive use of the  
vaccine as the highest priority. Optimal candidate vaccines should 
fulfill the following criteria: (i) WHO-acceptable safety/reac-
togenicity, (ii) an injectable single-dose regimen, (iii) high (≥70%) 
efficacy in preventing infection or disease caused by LASV line-
ages I to IV, and (iv) confers long-lasting (≥5 years’) protection. 
Several virus-vectored vaccine candidates based on vaccinia 
virus50,74,95, recombinant vesicular stomatitis virus (rVSV)96,97, 
MOPV98,99, ML2986,87, yellow fever 17D100,101, and alphavirus 
replicons102,103 have been tested in proof-of-concept studies in 
NHPs (Table 1). Among them, ML29 and rVSV/LASV-GPC have 
been recommended for accelerated vaccine development by inter-
national vaccine experts104. ML29 exhibits unique features to meet 
WHO TPP criteria: (i) safety in all available animal models of 
LF, including immunocompromised NHPs92; (ii) induction, after 
a single shot, of protective sterilizing T-cell responses against 
SL and Nigerian strains of LASV46,105 responsible for the ongoing 
outbreak in Nigeria68; (iii) genetic stability in vivo and in vitro106; 
(iv) efficacy in post-exposure applications107; and (v) favorable 
thermostability. The low dose of ML29 (1 × 103 plaque-forming 
units) required for the induction of protective immunity makes this 
vaccine attractive for manufacturers. This dose is in the range of 
the natural infection dose during rodent-to-human transmission7 
and presents LASV NP- and CPC-derived epitopes to the major 
histocompatibility complex (MHC) molecules in the most effective 
way to induce robust cross-protective T-cell responses46,87,88,105. 
Depletion of CD8+ T cells in ML29-immunized animals  
completely abolished protection, whereas CD4+ T cells had partial 
effect108. A recombinant ML29 (rML29) has recently been rescued 
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from cDNA clones (Figure 2). Arenavirus tri-segmented (r3) 
technology111,112 would allow for the generation of r3ML29 express-
ing additional LASV antigens to expand the cross-protection 
range of ML29-based LASV vaccines (for example, expressing 
GPC and NP antigens from distantly related lineage I, LASV/LP).

Reverse genetics has also been used to generate more attenuated 
MOPV by disrupting the 3’–5’ exonuclease (Exo) domain of NP 
required for its anti-IFN activity99. LASV/JOS GPC gene was 
cloned and expressed in MOPVAC

ExoN6b
, and a single immuniza-

tion of MOPEVAC
LASV

 fully protected NHPs from a homologous 
lethal challenge. However, disrupting NP Exo resulted in about 
100-fold yield reduction of MOPEVAC

LASV
 production in cul-

tured cells99, which combined with a required high dose (6 × 106 
focus-forming units) will pose obstacles for manufacturing and 
developing this vaccine candidate.

A single injection of the rVSV/LASV-GPC experimental vac-
cine where LASV-GPC was substituted for VSV-G fully protected 
guinea pigs and NHPs against LASV strains from the same  
lineage48,97. The rVSVΔG/LASV-GPC immunization did not 
induce detectable levels of T-cell responses before challenge, and 
low humoral responses in IgG enzyme-linked immunosorbent 
assay were found in three out of four vaccinated animals. After 
LASV challenge, neutralizing antibodies were detected in all four 
macaques97.

The Coalition for Epidemic Preparedness Innovations (CEPI) 
(http://cepi.net) was recently created as a non-profit organization 
to accelerate vaccine development against emerging epidemic 
infections when the commercial market is insufficient to justify pri-
vate investment113. CEPI supports the development of vaccine can-
didates from the late pre-clinical stage to phase II and stockpiling 

Table 1. Advanced LASV vaccine candidates tested in “proof-of-concept” efficacy trials in NHPs.

Vaccine candidate LASV 
vaccine 
antigen 
formulation

Vaccine 
regimen

Efficacy 
against 
LASV/JOSa

Efficacy 
against 
LASV/NIGb

Viremia after 
challengec

Correlates 
of protection

Ref

Recombinant 
vaccinia virus

GPC (JOS) 
NP 
GPC&NP

Single 
vaccination, at 
four sites, total 
1x109 PFU, ID

88% 
20% 
100%

ND Low–moderate 
High 
~LD

CMI 50,74,95,109

Reassortant MOPV/
LASV, ML29

GPC&NP 
(JOS)

One dose, 
1x103 PFU, SC

100% 100% <LD Sterilizing 
CMI

46,87,92,105–107

rVSVΔG/LVGPC GPC (JOS) One dose, 
1–6x107 PFU, IM

100% ND Low, transient nAbs? CMI? 48,97

YF17D/LASV GPC (JOS) Two doses, 
1x107 FFU, SC

20% ND Moderate–
high

ND 100,101, 
Lukashevich, 
unpublished

VEEV-TC83 RNA 
replicon particles

GPC 
(JOS&LP)d

Two doses, 
1x107, SC

80% 20% Moderate ND 102,103, 
Lukashevich, 
unpublished

MOPEVACLASV GPC (JOS) One dose, 
6x106 PFU/
dose, SC

100% ND ND nAbs, CMI 99

DNA GPC (JOS) Two 
immunizations, 
20 mg DNA at 
four sites, ID 
electroporation

100% ND ND nAbs? 110

a Challenge dose: 1x103–1x104 PFU of LASV/JOS (lineage IV), route of inoculation: SC or IM. LASV-Z32 (Liberia, lineage IV) was also used in vaccination/
challenge experiments with rVSVΔG/LVGPC47.

b Nigerian strain of 803213 (lineage II) was used in vaccination/challenge experiments with ML29 vaccine in marmosets. This strain causes fatal disease 
mimicking LF human hepatitis and features of arenaviral hepatitis in a murine model (Figure 1).

c Low–moderate, 103–104 PFU/mL; high, >104 PFU/mL.

d The genetic backbone of VEEV TC-83 vaccine was used to design bicistronic RNA replicons encoding wild-type LASV-GPC (JOS or LP) and C-terminally 
deleted, non-cleavable modified glycoproteins fused with fibritin. Bicistronic replicons were encapsidated into virus-like-particles using VEEV capsid and 
glycoproteins provided in trans94.

Abbreviations: CMI, cell-mediated immunity; FFU, fluorescent forming units; GPC, glycoprotein; GPC&NP, simultaneous expression of NP and GPC in the 
same vector; ID, intradermal; IM, intramuscular; LASV, Lassa virus; LD, limit of detection; nAbs, neutralizing antibody responses; ND, not done; NHP,  
non-human primate; NP, nucleoprotein; PFU, plaque-forming unit; SC, subcutaneous.
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for emergency use. The CEPI initiative has been widely wel-
comed and supported by multiple governments, philanthropic 
organizations, and industrial partners. The development of LASV 
vaccines was included in an aggressive CEPI Business Plan 
(2017–2021) with the goal of testing safety and efficacy in human 
phase IIa/b trials and stockpiling. One of the first LASV vaccine 
candidates supported by CEPI is being developed by Themis Bio-
science and is based on recombinant measles vaccine technology 
from Institute Pasteur (www.themisbio.com). The measles virus  
vector-based vaccine platform looks promising for human infec-
tions with antibody-based protection114. However, there are no 
peer-reviewed pre-clinical data to support the application of this 
platform for the development of an LF vaccine with a predomi-
nant T-cell-mediated mechanism of protection. Pre-existing anti- 
vector immunity, as it might affect the outcome of clinical studies, 
has to be addressed for this approach. CEPI is also supporting a 
DNA-based vaccine against LASV115, which raises feasibility ques-
tions. There is no DNA preventive vaccine licensed for human 
use. Scientific interest on DNA vaccine endeavors has decreased 
because of difficulties in improving DNA immunogenicity116. 
Further advancement of plasmid formulations and delivery will 
be required to see the first licensed DNA vaccine for people “in 
the next 20 years”117. LASV infection is not an easy target for 
DNA vaccination since both antigens—NP and GPC—have to 
be included in the vaccine formulation118. Electroporation of 
LASV-GPC DNA induced modest levels of neutralizing antibod-
ies, providing additional evidence that T-cell responses played a  
major role in the protection of NHPs110.

Two additional CEPI awards were announced to support rVSV-
based LASV vaccines. The rVSVΔG/LASV-GPC is based 

on the same platform applied to design the rVSVΔG/ZEBOV-
GP vaccine, which was tested in a ring vaccination trial in 
Guinea119,120 and which appeared to provide some protection, but 
its efficacy remains to be determined121. Clinical studies docu-
mented side effects associated with the rVSVΔG-based vaccine, 
including post-vaccination arthritis, detection of vector RNA 
in blood, and infectious vaccine virus in the skin of vaccinated 
individuals122,123. Animal studies were not always in line with Ebola 
virus (EBOV) vaccine clinical trials, suggesting that immune 
correlates of protection are not universal and depend on vaccine 
platform, vaccine regimen, host genetics, pre-existing immunity, 
immunization schedule, and challenge protocol124. This lesson 
from EBOV vaccine development is applicable to LASV, since 
dependence on vaccine platform and vaccine recipients has 
been documented48,50,74,102,109 (Table 1). The second rVSV-based 
LASV vaccine candidate supported by CEPI is based on the 
VesiculoVax platform licensed by Profectus BioSciences. This 
platform was developed to further improve the safety of the rVSV 
vector by N gene translocation and truncation of VSV-G cytoplas-
mic tail (CT1). The attenuated rVSV-N4CT1 vector was immu-
nogenic in NHPs and induced only a mild inflammatory response 
after intra-thalamic inoculation125. This vector was used to gener-
ate experimental vaccines expressing single or multiple GPs that 
protected NHPs against EBOV and MARV challenges126–128, but 
there are no peer-reviewed pre-clinical data in support of the LASV 
vaccine based on the VesiculoVax platform. Likewise, CEPI sup-
ported pre-clinical development of the LASV-GPC-based vaccine 
vectored by non-replicating simian adenovirus ChAdOx1129, but 
there is no evidence supporting the suitability of this platform 
to control LF on the basis of natural history of the disease and 
mechanisms of protective immunity54,74,77,130.

Figure 2. Generation of r3ML29. BHK-21 cells were transfected with pol-II expression plasmids for ML29 L and NP, required to support viral 
replication and transcription, together with plasmids that direct pol-I-mediated intracellular synthesis of L, and recombinant S1 and S2 RNA 
genome species. Six days later, tissue culture supernatants were collected and used to infect Vero cells to amplify the rescued r3ML29 that 
were plaque-purified and scaled up to generate viral stocks. (A) Genome organization of r3ML29/eGFP. (B) r3ML29/EGFP grows to high titers 
in Vero cells. Cells were infected (multiplicity of infection = 0.1) and virus titers in tissue culture were determined at the indicated times. The 
rML29 reverse genetics is an advanced vaccine platform to further improve the safety and immunogenicity of Lassa virus vaccine candidates. 
FFU, focus-forming units; GFP, green fluorescent protein; GPC, glycoprotein precursor; h.p.i., hours post-infection; LoD, limit of detection; NP, 
nucleoprotein; TCS, tissue culture supernatant.
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Conclusions
Protection against Nigerian strains of LASV is a critical require-
ment for LASV vaccines94. WHO pre-qualification requirements 
raise a high bar for vaccine developers and emphasize the 
WHO-preferred vaccine candidate as a preventive and cost- 
effective measure for the general population in endemic areas. 
Among currently available LASV vaccine candidates, only ML29 
has been shown to protect against LASV strains from lineage II, 
which is responsible for the current LF outbreak in Nigeria46,68,88.

The “stockpiling” for emergency use is a workable concept for 
infections with unknown epidemiology and unpredictable out-
breaks (for example, EBOV, Nipah, and severe acute respiratory 
syndrome) but poorly justifiable in the case of LASV, for which 
endemic areas are well defined and natural reservoir and key 
routes of human transmission are known. Population-based  
vaccination is the most effective option to control LF in endemic 
areas. The successful story of Candid #1, a live-attenuated vaccine 
against Argentine hemorrhagic fever131, provides a guideline for 
LASV vaccine clinical development. Because of the high LASV 
genetic diversity, multicenter trials in several endemic areas 
(countries) would probably be required to evaluate the cross- 
protective efficacy of vaccine candidates. Pre-existing LASV 
immunity potentially affects vaccine dose-dependent responses, 
and appropriate efforts must be applied during human trial design 
to correctly assess vaccine immunogenicity. Rooted research 
collaborations and capacity building will be crucial for antici-
pating multicenter immunogenicity and efficacy trials in West 
Africa132,133.

The WHO-preferred LASV vaccine should cover both adult and 
pediatric populations. It seems reasonable to plan pediatric stud-
ies after the successful completion of phase II trials in adults. 
Pediatric studies are subject to special provisions of the clinical 
trial regulations. However, it should be noted that replication-
competent US Food and Drug Administration (FDA)-approved 
pediatric vaccines include reassortant influenza (FluMist, 

MedImmune) and human-bovine rotavirus (RotaTeq, Merck)  
vaccines. The safety and efficacy of these vaccines in children and 
infants indicate that reassortant vaccine platforms are well suited 
for the pediatric population. The ML29 LASV vaccine can be 
safe in children as well, since safety and immunogenicity in  
SIV-infected Rhesus macaques have already been documented92.

The FDA does not recommend replication-competent vaccines for 
pregnant women, an LF risk group with a high fatality rate, espe-
cially in the third trimester of pregnancy. Replication-deficient 
Modified Vaccinia Ankara vector generating LASV-like particles 
(MVA-VLP, GeoVax Labs) or inactivated recombinant vaccine 
candidate expressing LASV-GPC in rabies vaccine vector (LAS-
SARAB)134 can be potentially considered as vaccine candidates 
for this group of risk. Currently, these vaccines are in very early 
pre-clinical steps of development.

The CEPI LASV vaccine portfolio is based on different features 
of vaccine platforms rather than the natural history of the disease 
and rational vaccine design. The head-to-head comparison of 
LASV vaccine candidates in validated NHP models under super-
vision of unbiased internationally recognized experts to assess 
cross-protective breadth seems a very reasonable step before going 
into expensive clinical phase II trials93. This comparison, combined 
with phase I safety data, will provide very valuable information 
for further clinical development to target different groups at risk 
in endemic areas of West Africa.
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