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Abstract

Understanding how active dendrites are exploited for behaviorally relevant computations is a 

fundamental challenge in neuroscience. Grid cells in medial entorhinal cortex represent an 

attractive model system for addressing this question, as the computation they perform is clear: they 

convert synaptic inputs into spatially modulated, periodic firing. Whether active dendrites 

transform synaptic input into the dual temporal and rate codes characteristic of grid cell output is 

unknown. We show that dendrites of medial entorhinal cortex neurons are highly excitable and 

exhibit a supralinear input–output function in vitro, while in vivo recordings reveal membrane 

potential signatures consistent with recruitment of active conductances. By incorporating these 

nonlinear dynamics into grid cell models, we show that they can sharpen the precision of the 

temporal code and enhance the robustness of the rate code, thereby supporting a stable, accurate 

representation of space under varying environmental conditions. Our results suggest that active 

dendrites may therefore constitute a key cellular mechanism for ensuring reliable spatial 

navigation.
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Active, voltage-dependent conductances in neuronal dendrites transform the relationship 

between synaptic input and neuronal output1,2. The resulting enrichment of the integration 

capabilities of single neurons has long been suggested as being exploited for computations 

relevant to behavior3,4. However, the details of how specific active-dendritic mechanisms 

are involved in behavioral computations have proved to be elusive. Recent work has 

provided evidence that the active properties of dendrites are engaged in somatosensory and 

visual cortical neurons during sensory processing5–8. Moreover, dendritic nonlinearities 

also appear to be activated during behavioral tasks involving spatial navigation9–11. While 

these studies have provided important correlative evidence that dendritic mechanisms are 

engaged under various circumstances, they do not provide a quantitative link for explaining 

how specific biophysical mechanisms can contribute to behavioral computations.

Grid cells in medial entorhinal cortex (MEC) represent a particularly attractive model 

system for linking cellular and circuit mechanisms to a behaviorally relevant computation. 

Grid cells exhibit a striking spatial code, with firing fields that span the environment of a 

navigating animal in a periodic hexagonal pattern, and have thus been proposed as 

representing a neural mechanism for path integration12. Moreover, there exist several well-

developed single-cell and network models of grid cell generation13–19, providing a rigorous 

quantitative framework for understanding how particular biophysical mechanisms relate to 

the computation of spatial location. Layer 2 of MEC (MECII) contains the highest 

proportion of grid cells20,21, and stellate cells, which form most of the MECII principal cell 

population22, are likely grid cell candidates17,18,23,24. In stellate cells, the correlation 

between somatically recorded synaptic responses and the dorsoventral gradient in grid 

spacing in MECII25,26 has suggested that intrinsic voltage-gated conductances may be 

important for generating grid cell firing. However, very little is known about whether the 

dendrites of stellate cells are electrically excitable, and thus their contribution to grid cell 

firing is unclear.

Here we have combined in vitro two-photon glutamate uncaging and in vivo patch-clamp 

recording with modeling to assess the role of active dendrites in grid cell firing. We show 

that stellate cells have active dendrites that perform supralinear input–output transformations 

in vitro. We also identify electrophysiological signatures consistent with active dendritic 

integration in vivo, including membrane-potential-dependent boosting of excitatory 

postsynaptic potentials (EPSPs) and plateau potentials. We place our results in the context of 

single-cell and network models of grid cell firing and use modeling to show that active 

dendrites can promote the robustness of the grid cell rate code while sharpening the 

precision of the temporal phase precession code. Thus, dendrites of principal cells in MECII 

are highly excitable, and these active dendritic properties can enhance the accuracy and 

stability of the spatial map represented by grid cell firing.

Results

Supralinear integration in dendrites of MECII principal neurons

To assess how grid cells integrate synaptic inputs in single dendritic branches, we performed 

two-photon glutamate uncaging on dendritic spines of principal neurons in MECII (Fig. 1a). 

Activation of individual spines in MECII stellate cells produced glutamate uncaging-evoked 
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EPSPs comparable to physiological synaptic responses (Fig. 1b and Supplementary Fig. 1). 

Activating increasing numbers of spines along a single dendrite or on two nearby dendrites 

evoked responses that were larger than the arithmetic sum of the corresponding individual 

responses (65 ± 7% supralinearity for intervals of ≤ 1 ms; n = 34 dendritic branches; Fig. 

1b,c and Supplementary Fig. 2). Since recent data suggest that some MECII pyramidal cells 

may also display grid cell firing24,27, we also carried out experiments on MECII pyramidal 

cells and obtained similar results (Fig. 1d and Supplementary Fig. 3). The degree of 

supralinearity in stellate cells did not significantly scale with distance from the soma 

(Supplementary Fig. 4) but was reduced to 9 ± 9% (n = 6) when the intervals between spine 

activations were extended to 8 ms, demonstrating that it depends on millisecond timing of 

the inputs (Fig. 1d).

Dendritic spikes and supralinearity depend on Nav and NMDAR channels

Activation of some dendritic branches produced clear signatures of dendritic spikes detected 

at the soma28,29. Dendritic spikes with fast and slow time-courses and distinct thresholds 

were observed (Fig. 2a), and application of pharmacological blockers revealed that these 

were generated by activation of voltage-gated sodium (Nav) channels and NMDA receptors 

(NMDARs), respectively (Fig. 2b and Supplementary Fig. 5). The NMDA receptor 

antagonist APV ((2R)-amino-5-phosphonovaleric acid) alone could also abolish fast spikes, 

indicating that NMDAR current was required to reach the threshold for Nav channel 

activation and that NMDARs and Nav channels thus acted cooperatively. This is also 

supported by the fact that a substantial fraction of fast spikes (43%) were followed by a slow 

spike, and many slow spikes (38%) were preceded by a fast spike. Both NMDAR channels, 

and to a lesser degree Nav channels, contributed to supralinearity (Fig. 2c).

Testing the contribution of nonlinear dendritic integration under in vivo conditions

To probe the contribution of dendritic nonlinearities in MECII stellate cells during more 

physiological in vivo-like conditions, we took advantage of the fact that the voltage profile 

underlying grid cell firing in vivo is represented by a ramp-like membrane potential 

depolarization17,18. We approximated this ramp-like depolarization in vitro by injecting a 

scaled current waveform that we had obtained from voltage-clamp recordings using the in 
vivo ramp as a voltage command (Online Methods). This allowed us to examine how in 
vivo-like membrane potential dynamics influenced dendritic integration of synaptic inputs. 

Both supralinear summation and dendritic spikes were more pronounced when uncaging was 

performed during the in vivo-like ramps (Supplementary Fig. 6), suggesting that these active 

events were likely to be engaged in vivo when an animal entered a grid firing field. Taken 

together, these results reveal that the dendrites of grid cells were highly excitable, exhibiting 

markedly nonlinear input–output functions in a manner that could transform the integration 

of synaptic inputs during navigational behavior.

Signatures of active dendrites in stellate cell recordings in vivo

To determine whether active dendritic integration occurs in grid cells in vivo, we searched 

for the signatures of supralinear dendritic integration, as identified in our slice recordings, in 

patch-clamp recordings from MECII neurons of mice navigating in virtual reality18 (Fig. 3). 

By examining the differentiated membrane potential traces (dV/dt), we identified large peaks 
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that were below the voltage threshold for action potentials and that were preferentially 

clustered around the peak of theta membrane potential oscillations (Fig. 3a), at a similar 

theta phase as action potentials during grid field crossings17,18. These dV/dt peaks in vivo 
were comparable in amplitude to dV/dt peaks of glutamate uncaging-evoked EPSPs 

exhibiting dendritic spikes in vitro (Fig. 2a and Supplementary Fig. 7). The in vivo dV/dt 
peaks were correlated with large depolarizations in Vm with amplitudes of up to ~6 mV (Fig. 

3b), consistent with them being EPSPs that were boosted by activation of voltage-dependent 

conductances.

To probe the mechanisms underlying these dV/dt signatures in more detail, we used our 

experimental results to constrain a detailed compartmental model of MECII stellate cells 

that captures their measured passive, active and synaptic properties (Supplementary Fig. 8). 

Simulating grid cell firing in a model incorporating dendritic Nav and NMDAR channels 

reproduced the experimentally observed dV/dt signatures, including the correlation of dV/dt 
peak amplitudes with Vm (Fig. 3c). When dendritic Nav and NMDAR channels were 

removed from the model, these signatures were abolished (Fig. 3c). In our in vivo 
experimental data, the fastest-rising events occurred within the 90° phase-bin preceding the 

peak of theta membrane potential oscillations (MPOs; Fig. 3d,f). This phase-bin also 

contained a larger fraction of particularly fast events with maximal rates of rise resembling 

or exceeding the maximal rates of rise of fast dendritic spikes that we observed during our 

somatic in vitro recordings (Fig. 3f). These observations could also be faithfully reproduced 

by the model generating dendritic Na+ spikes in the presence of dendritic Nav channels but 

not in their absence (Fig. 3e,g).

To further quantify the contribution of nonlinear dendritic conductances to grid cell firing, 

we compared NMDAR activation and dendritic input currents in detailed compartmental 

models of stellate cells with active or passive dendrites (Supplementary Fig. 9). These 

simulations showed that during grid cell firing, with Vm trajectories representative of our in 
vivo recordings, NMDARs were substantially recruited (Supplementary Fig. 9a) and 

dendritic input currents were nonlinearly amplified by active, voltage-dependent 

conductances (Supplementary Fig. 9b). Furthermore, the membrane potential distributions in 

putative dendritic recordings in vivo covered the nonlinear range of the NMDAR open-

probability curve, implying that NMDARs were nonlinearly engaged in vivo 
(Supplementary Fig. 10). In summary, we observed clear signatures of active dendritic 

integration in the membrane potential of MECII principal neurons during navigational 

behavior in vivo.

Plateau potentials during putative dendritic in vivo stellate cell recordings

Next, we looked for direct evidence for activation of regenerative events in stellate cell 

dendrites in vivo. Excitable dendrites have been shown to produce long-lasting regenerative 

plateau potentials in several cell types, such as neocortical pyramidal cells30 and 

hippocampal CA1 pyramidal cells in vitro31 and in vivo11,32. We identified similar 

distinctive signatures of excitable dendrites in putative dendritic patch-clamp recordings 

from MEC neurons in vivo (Fig. 4 and Supplementary Fig. 11). Dendritic recordings were 

identified by a range of characteristic features6,33 such as slower action potential rise times 

Schmidt-Hieber et al. Page 4

Nat Neurosci. Author manuscript; available in PMC 2019 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



and higher input resistances (Supplementary Fig. 12). Distinct, long-lasting plateau 

depolarizations could be observed following action potentials in both putative dendritic and 

somatic recordings (Fig. 4a,b). These plateau potentials occurred either spontaneously (Fig. 

4a,b and Supplementary Fig. 13a) or could be evoked by current injection in putative 

dendritic recordings (Fig. 4b). We found that both the frequency (the percentage of action 

potentials followed by plateau potentials) and the duration of evoked plateau potentials were 

highly correlated with parameters that are also indicative of dendritic recordings (Fig. 4c), 

suggesting that they could be preferentially evoked in distal dendrites. While the frequency 

of evoked plateau potentials per action potential was more than an order of magnitude higher 

in putative dendritic than in somatic recordings from stellate cells in vivo (14.7 ± 7.2% of 

action potentials followed by plateau potentials in putative dendrites, n = 6, versus 0.4 

± 0.4% in soma, n = 6; P < 0.05), spontaneous plateaus occurred at comparable frequencies 

(1.9 ± 1.9% in putative dendrites, n = 6, versus 1.0 ± 1.0% in soma, n = 6; P = 0.22; Fig. 4d). 

Distinct plateau potentials could be evoked by current injections in 4 of 6 putative dendritic 

recordings but only in 1 of 6 putative somatic recordings (Fig. 4d). The results of these in 
vivo recordings indicate that plateau potentials could be evoked by strong, localized inputs 

to dendrites of grid cells and were readily detectable at their site of origin in the dendrite. 

However, plateau potentials were rarer and less prominent in somatic recordings and 

appeared to be substantially attenuated as they propagated to the soma from their origin in 

the dendritic tree. We further probed the biophysical mechanisms underlying dendritic 

plateau potentials using our active compartmental model of stellate cells. Strong, localized 

synaptic inputs to a dendrite of the stellate cell model could produce plateau potentials near 

the site of synaptic input that were similar to those observed in our putative dendritic 

recordings (Supplementary Fig. 14a). These dendritic plateau potentials were strongly 

attenuated as they propagated to other dendrites and to the soma, making them readily 

detectable only close to the dendritic location of the active synaptic inputs (Supplementary 

Fig. 14a). To produce a plateau potential detectable at the soma, a large number of 

simultaneously activated strong synaptic inputs had to be distributed across the dendritic tree 

(Supplementary Fig. 14b). The rare occurrence of strong, synchronous activation of many 

synapses, along with the pronounced attenuation of plateau potentials along the dendritic 

tree, can therefore explain why they were only rarely observed as spontaneously occurring 

events. Thus, despite their low rate, the presence of dendritic plateau potentials in vivo 
provides strong evidence that the active dendritic conductances underlying nonlinear 

integration in vitro can be recruited by synaptic input in vivo.

Slow supralinear integration promotes the robustness of the grid cell rate code

To provide a quantitative framework for understanding the contribution of active dendrites to 

generating the grid cell rate code, we used a rate-based continuous attractor network (CAN) 

model. Given that NMDAR activation underpins the various types of dendritic nonlinearities 

we discovered in grid cells, we implemented NMDARs as a slow, cooperative, supralinear 

integration mechanism in an existing CAN model of grid cell firing13, which allowed us to 

efficiently explore a large range of parameters and noise amplitudes (Fig. 5 and 

Supplementary Fig. 9). Adding NMDARs to the CAN model substantially enhanced grid 

cell firing in the presence of noise, measured by a range of metrics (Fig. 5a–h). Across a 

wide range of noise amplitudes, NMDARs reduced network drift and improved the 
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network’s velocity response, resulting in higher gridness scores (Fig. 5i,j). Simulations in 

which we independently incorporated either supralinearity or a slow time-constant indicated 

that both mechanisms must act in concert to improve network performance (Supplementary 

Fig. 15). The robustness of these findings was confirmed by a spiking attractor network 

model consisting of integrate-and-fire neurons34, which also produces the best velocity 

response and the highest gridness scores when both mechanisms are engaged 

(Supplementary Fig. 16). Using actual animal trajectories to drive the rate-based model, we 

found that an NMDAR decay-time constant of ~50 ms produced a minimum in velocity 

error and a maximum in gridness (Fig. 5j). This optimum is remarkably consistent with the 

NMDAR decay-time constant we measured experimentally in stellate cells (46 ± 5 ms, n = 

4; Supplementary Fig. 17). Simulations using an artificially slowed animal trajectory (Fig. 

5j) indicate that the optimum depends on a realistic animal velocity driving the network 

response. Thus, NMDAR kinetics optimized for animal velocity can produce marked 

robustness to noise in a CAN model of grid cell firing.

Supralinear integration sharpens the precision of phase precession

Finally, we investigated how the active dendritic conductances we revealed in stellate cells 

can contribute to the temporal phase precession code of grid cell firing35. To determine the 

precise spike timing produced by oscillatory synaptic inputs, we drove our detailed 

compartmental MECII stellate cell model (Supplementary Fig. 8) by realistic synaptic input 

patterns derived from a hybrid oscillatory-interference–CAN model based on in vivo 
recordings from grid cells18 (Fig. 6). While the model only produced weak phase precession 

in the absence of dendritic Nav channels (Fig. 6a–c), phase precession was strikingly precise 

when Nav channels were present in the dendrites (Fig. 6d–f). While the fast supralinearity 

provided by Nav channels was sufficient to sharpen phase precession even in the absence of 

distinct isolated regenerative events, the effect could further be enhanced if the model cell 

produced full-blown fast dendritic spikes (data not shown). Further analysis showed that 

dendritic Nav channels can sharpen phase precession by shortening the suprathreshold part 

of membrane potential oscillations, enabling precisely timed spikes across the full extent of 

a grid firing field (Supplementary Fig. 18). In agreement with this analysis, adjusting the 

width of grid fields by increasing excitatory drive in the model without dendritic Nav 

channels failed to improve phase precession, as more mistimed spikes were produced in the 

center of the grid field (Supplementary Fig. 19). Thus, our combined modeling results show 

that active dendritic conductances can both stabilize the rate code and sharpen the temporal 

code of grid cell firing.

Discussion

We provide evidence that the dendrites of MECII principal cells are electrically excitable 

and exhibit a range of nonlinear dynamics. Our results reveal that the biophysical origins of 

dendritic nonlinearities in these cells—dendritic Nav and NMDAR channels—may underpin 

the two key aspects of the grid cell code. Dendritic Nav channels restrict the time window 

for action potential generation in an oscillatory-interference model of phase precession, 

thereby improving the precision of the temporal code. NMDARs in turn improve the 

robustness of the grid attractor in a rate-based model of grid cell firing. Together, our results 
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provide strong evidence that active dendrites can make a critical contribution to a key 

behaviorally relevant computation in the mammalian brain. Our simulations also provide a 

general framework for understanding how active dendritic computations can stabilize 

attractor networks.

Active dendrites in MECII principal cells

Although principal cells in MECII, which form a large part of the grid cell population, have 

been shown to exhibit a rich variety of nonlinear excitability in somatic recordings19,25,36, 

there has been no direct information available about the contribution of dendritic excitability 

to the active properties of grid cells. Our in vitro experiments reveal that the dendrites of 

both types of principal neurons in MECII, stellate and pyramidal cells, exhibited nonlinear 

input–output functions and could trigger dendritic spikes mediated by both voltage-gated 

sodium channels and NMDA receptor channels. Moreover, they demonstrate that these 

nonlinearities could be further enhanced by in vivo-like membrane potential trajectories that 

underpin grid cell firing.

Our in vivo experiments strengthen and complement our in vitro results and provide multiple 

signatures of nonlinear dendritic integration in MEC neurons during spatial navigation. First, 

EPSPs were boosted at the peak of the MPOs when the neuron was depolarized, consistent 

with our in vitro experiments, as well as with predictions from a model with active dendrites 

(Fig. 3). Second, comparing a stellate cell model with nonlinear or linear dendritic 

conductances, we found that dendritic nonlinearities were robustly activated during 

simulations of grid cell firing (Supplementary Fig. 9). Third, we observed nonlinear plateau 

potentials in putative dendritic whole-cell recordings from MECII neurons. We found that 

plateau potentials frequently occurred with dendritic but not somatic current injections, 

whereas spontaneous plateaus occurred with similar probability in somatic and dendritic 

recordings, indicating that the plateaus were of dendritic origin. Plateau potentials have been 

observed as a signature of dendritic excitability in other cell types30, particularly in CA1 

pyramidal cells11,32, where dendritic plateau potentials can positively modulate existing or 

induce new place fields11. Together, our modeling and experimental data suggest that the 

dendrites of grid cells are electrically highly excitable and that the resulting nonlinearities 

can be engaged in vivo during grid cell firing in mice performing a spatial navigation task.

How do active dendrites improve grid cell firing?

Our modeling results show that active dendrites can enhance both the rate and temporal code 

of grid cell firing. First, we show that incorporating a nonlinear NMDA conductance, with 

characteristics matching those underpinning the nonlinearities in our in vitro experiments, in 

a CAN model of grid cell firing can reduce network drift and improve the network’s velocity 

response, resulting in improved gridness. Our simulations show that this enhancement of 

gridness arises from a synergistic interaction between two cardinal features of the nonlinear 

NMDAR conductance. First, NMDAR activation depends nonlinearly on the amplitude of 

the synaptic inputs that a neuron receives, increasing the gain of the neural transfer function 

preferentially in active neurons receiving strong spatial inputs37. Second, the slow decay-

time constant of NMDARs allows active neurons to average signals over a longer time (see 

also refs. 38–40), reducing the contribution of noise38 and stabilizing the attractor. Notably, 
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the stabilizing effect of NMDARs depends on the noise amplitude (Fig. 5i). Thus, acute 

blockade of NMDARs in grid cells should most strongly disrupt grid firing in novel 

environments, where spatial inputs are expected to be imprecise41.

Our detailed compartmental model indicates that active dendrites also enhance phase 

precession, the signature of the temporal code of grid cell firing. Our simulations show that 

the mechanism underlying this effect operates by curtailing the suprathreshold part of the 

membrane potential trajectory during membrane potential oscillations. This ensures that 

spikes can occur only within a narrow time window, sharpening the precision of spike timing 

and thus the robustness of phase precession across the entire grid firing field. Notably, the 

effect of active dendrites on phase precession does not require the activation of full-blown 

dendritic spikes: even a model exhibiting subthreshold recruitment of nonlinearities 

demonstrates enhanced phase precession. Moreover, the model can reproduce the 

experimentally observed phase precession of both spikes and theta MPOs18,19. The 

simplicity and robustness of this mechanism suggests that it may generalize to other phase-

precession models relying on coincidence of oscillations, such as those that have been 

proposed for CA1 pyramidal cells42–44.

Our findings suggest that dendritic nonlinearities are key elements in the creation of a stable 

grid code and are therefore critical for navigation. This complements recent work proposing 

that dendritic nonlinear events may contribute to behaviorally relevant computations in 

single neurons5–8. In hippocampal place cells, in vivo two-photon imaging has revealed 

dendritic Ca2+ transients that are correlated with their place field properties9, and 

intracellular recordings from place cells suggest that dendritic nonlinearities may contribute 

to defining the spatial tuning of a neuron10,11. Together with our in vivo results indicating 

that dendritic nonlinearities may also be engaged in MECII stellate cells during virtual 

navigation (Figs. 3 and 4), this suggests that active dendrites may provide a general 

mechanism for strengthening spatial representations at the single-cell level. Notably, the 

stabilizing role that we describe for active dendrites in a CAN may also generalize to other 

circuits that display attractor dynamics, both in the hippocampus45,46 and in other brain 

areas47.

Why use active dendrites to enhance circuit computations?

Active dendrites offer several key advantages over alternative mechanisms—such as tuning 

somatic and axonal excitability, or excitation–inhibition balance—for improving the signal-

to-noise ratio during grid cell firing. The nonlinear voltage-dependence of NMDAR 

activation exhibits exquisite sensitivity, being engaged already by a small number of 

synapses due to the high dendritic-input impedance (Supplementary Fig. 20)48. At the same 

time, since dendritic synapses are electrotonically remote from the axonal site of action 

potential generation, nonlinear integration can proceed independently of somatic 

spiking49,50. Moreover, by regulating the density of dendritic Nav channels and NMDARs, 

the threshold for supralinear integration can be widely adjusted over a large range of 

synaptic input frequencies to maximize the signal-to-noise ratio for grid cell firing. In 

contrast, changes in somatic and axonal excitability have only small effects on the shape of 

the input–output transfer function of MECII principal neurons36. Furthermore, dendritic 
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nonlinearities provide versatility, permitting a range of flexible transfer functions depending 

on the combination of dendritic branches that are activated (Supplementary Fig. 2). This 

allows grid cells to gate relevant inputs and suppress irrelevant inputs (similarly to what has 

been suggested for place cells10). Finally, active dendrites may also provide a mechanism 

for shaping circuit wiring during development: early in the assembly of the entorhinal 

circuit, synaptic inputs that contact a nonlinear dendritic branch may be strengthened by 

engaging these nonlinearities and in turn define the grid properties of a neuron.

Online Methods

Slice preparation

Acute horizontal brain slices were prepared from 26–30-d-old C57/BL6 male and female 

mice. Animals were briefly anesthetized with isoflurane before decapitation. All procedures 

were performed under license from the UK Home Office in accordance with the Animal 

(Scientific Procedures) Act 1986. Slicing was performed in ice-cold sucrose solution, 

containing (in mM): NaCl 87, sucrose 75, glucose 25, NaHCO3 25, MgCl2 7, KCl 2.5, 

NaH2PO4 1.25 and CaCl2 0.5. For a period of 30 min immediately after slicing, slices were 

stored in preheated (32 °C) artificial cerebrospinal fluid (ACSF) with low Ca2+ and high 

Mg2+ concentrations, containing (in mM): NaCl 125, glucose 25, NaHCO3 26, MgCl2 7, 

KCl 2.5, NaH2PO4 1.25 and CaCl2 0.5. Slices were subsequently stored at room temperature 

(20-25°C). Experiments were performed in ACSF, containing (in mM): NaCl 125, glucose 

25, NaHCO3 26, MgCl2 1, KCl 2.5, NaH2PO4 1.25 and CaCl2 2 at a temperature of 32–

34 °C. After some recordings (Supplementary Fig. 3), the slices were fixed in 4% 

paraformaldehyde and immunohistochemical staining was performed using rabbit anti-

calbindin (ab11426, Abcam) as the primary antibody and donkey F(ab’)2 anti-rabbit IgG 

(Alexa Fluor 488, ab150069, Abcam) as the secondary antibody51,52.

Electrophysiology and pharmacology

Somatic whole-cell patch-clamp recordings were obtained from stellate and pyramidal cells 

in layer 2 of medial entorhinal cortex. Stellate and pyramidal cells were identified by their 

somatodendritic morphology and their characteristic electrophysiological 

properties19,25,26,36,53–56. Current-clamp recordings were acquired with a MultiClamp 

700B amplifier at a 50-kHz sampling rate using custom software written in Matlab. Patch 

pipettes of 5-MΩ resistance were filled with internal solution containing (in mM): KMeSO4 

140, HEPES 10, KCl 7.4, MgCl2 0.3, EGTA 0.1, NaGTP 0.3, Na2ATP 3 and sodium 

phosphocreatine 1. Alexa Fluor 594 (50 μM) was added to this solution to visualize cell 

morphology. Series resistance of the recordings was usually less than 30 MΩ. In some 

recordings, 50 μM of D-APV and 0.5 μM of TTX were added to the regular ACSF solution 

to block NMDA receptors and voltage-gated sodium channels, respectively. All extracellular 

solutions were equilibrated with carbogen (95% O2 / 5% CO2) and had a pH of 7.3. 

Miniature EPSPs (mEPSPs; Supplementary Fig. 1) were measured in the presence of 0.5 μM 

TTX in the recording solution. The detection threshold for mEPSPs was when dV/dt 
exceeded 1 mV/s.
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To produce membrane potential ramps in vitro that mimicked membrane potential dynamics 

in vivo (Supplementary Fig. 6), we first applied the mean in vivo membrane potential 

waveform that we had previously recorded from stellate cells during firing field crossings18 

as a voltage clamp command in n = 5 stellate cells in vitro. The resulting clamp-current 

waveform was then averaged across recordings and injected as a current-clamp command to 

produce an in vivo-like voltage ramp. For voltage-clamp recordings (Supplementary Fig. 

17), pipettes were filled with internal solution containing (in mM): CsMeSO4 135, HEPES 

10, EGTA 10, NaGTP 0.3, Na2ATP 2 and MgATP 2. Series resistance was less than 15 MΩ. 

EPSCs were evoked by extracellular stimulation in layer I of MEC while holding MECII 

stellate cells at a potential of +40 mV. NMDAR-mediated EPSCs were isolated by blocking 

GABAA receptors with SR95531 (20 μM) and AMPA receptors with NBQX (10 μM).

Two-photon imaging and uncaging

Simultaneous two-photon imaging and dendritic stimulation at single-synapse resolution by 

uncaging of MNI-caged-L-glutamate was performed with two Ti-sapphire lasers tuned to 

810 nm and 720–730 nm for imaging and uncaging, respectively. To visualize dendrites and 

dendritic spines, cells were loaded with a fluorescent dye (50 μM Alexa Fluor 594) added to 

the pipette solution. Healthy dendrites close to the surface of the slice were selected for 

uncaging. MNI-caged-L-glutamate (24 mM, Tocris) was dissolved in a solution containing 

(in mM): NaCl 125, glucose 25, KCl 2.5, HEPES 10, CaCl2 2 and MgCl2 1 and applied 

locally via a glass pipette (tip diameter ~10 μm). Multiple spines were selected in a 

randomized manner within a maximal distance of ~50 μm on a single dendritic branch. 

gluEPSPs were first evoked by stimulating each spine individually at 300-ms intervals. We 

then stimulated an increasing number of synapses at short time intervals (0.6–8 ms, as 

indicated), with a 10-s pause between each trial. To estimate the expected linear summation 

of gluEPSPs, we first shifted individual membrane potential traces according to the 

corresponding experimental stimulation interval (0.6–8 ms for each trace) before computing 

the sum. Uncaging laser exposure time was 0.5 ms. The laser power was adjusted to produce 

gluEPSPs that were comparable to sEPSPs recorded in the same cell (Supplementary Fig. 1). 

Uncaging timing and location were controlled by custom software written in Matlab. 

Experiments were terminated if photodamage to the dendrite was observed (for example, 

swelling of the dendrite) or depolarization of the membrane potential was detected. 

Recordings from neurons with photodamaged dendrites were excluded from analysis. 

Recordings were also excluded if the slice exhibited physical drift due to slice swelling or 

inconsistency of perfusion. This was detected either by imaging or by sudden large changes 

(usually decreases) in EPSP amplitude.

Data analysis

Data analysis was performed with custom code written in Python57. Nonlinearity, D, of each 

experiment was quantified by

D =
i = 3

n

Mi
Li

1

n 2 100% (1)
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where Mi is the amplitude of the measured EPSP, Li is the amplitude of the EPSP 

constructed by linear summation of single synapse EPSPs, and n is the maximal number of 

synapses activated. Slow dendritic spikes were detected if the nonlinearity of the EPSP 

integral was 33% larger than the nonlinearity of the EPSP amplitude. A fast dendritic spike 

was defined as a step-like increase (>50%) in a plot of maximal dV/dt against the number of 

uncaging locations (Fig. 2 and Supplementary Fig. 3).

To examine whether signatures of active dendritic integration can be found in grid cells in 
vivo, we analyzed in vivo patch-clamp recordings from MECII neurons18. The full 

membrane potential (Vm) recording duration from n = 6 putative grid cells was used for this 

analysis. Peaks were identified in differentiated Vm traces (dV/dt) by detecting local maxima 

that exceeded 0.1 mV/ms within time windows of 200 μs. The analysis was restricted to 

subthreshold Vm by excluding parts of traces where dV/dt exceeded 5% of the maximal rate 

of rise of action potentials of each recording. Local Vm peaks corresponding to these dV/dt 
peaks were detected in high-pass-filtered Vm traces (fc = 10 Hz) within 5 ms following each 

dV/dt peak (Fig. 3b,c). dV/dt peaks were binned according to the phase of theta membrane 

potential oscillations (theta MPOs) during which they occurred. Theta MPOs were obtained 

by bandpass-filtering Vm between 5 and 10 Hz; 0° corresponds to the peak of theta MPOs. 

For each theta MPO bin with a width of 45° (as indicated), mean and s.d. of all dV/dt peaks 

were computed for each recording (Fig. 3d–g). Moreover, for each theta MPO bin with a 

width of 90° (as indicated), dV/dt peaks that exceeded the mean of all dV/dt peaks within a 

given bin by 1.5 s.d. were computed for each recording (Fig. 3f,g). These particularly fast 

peaks are indicated by red symbols in Figure 3. According to these criteria, the lowest 

threshold for these fast peaks was typically a maximal rate of rise of ~0.4 mV/ms (Fig. 3d). 

Thus, these fast in vivo events were characterized by maximal rates of rise resembling or 

exceeding the maximal rates of rise of fast dendritic spikes recorded in vitro (typically ~0.4 

mV/ms; Fig. 2a).

We analyzed plateau potentials across both somatic18 and putative dendritic in vivo patch-

clamp recordings from MECII neurons. Plateau potentials were defined as sustained 

depolarizations following action potentials with a full-width-at-half-maximal amplitude 

exceeding 15 ms. These criteria were chosen to identify plateau potentials that closely 

resembled published examples (for example, Bittner et al.11). Action potentials were 

detected when dV/dt exceeded 30 mV/ms. We did not observe any obvious isolated plateau 

potentials without a preceding action potential in our data set. We analyzed a total of n = 58 

recordings that produced trains of action potentials in response to depolarizing 1-s current 

injections. Recordings were categorized into putative dendritic and putative somatic 

recordings according to input resistance (Rin) and 20–80% rise time of action potentials 

(t20–80)6 (putative somatic: t20–80 < 0.2 ms and Rin < 80 Ω putative dendritic: t20–80 > 0.3 ms 

and Rin > 120 MΩ). The frequency of plateau potentials did not depend on recording 

parameters such as resting membrane potential or seal resistance (Supplementary Fig. 11), 

indicating that recording quality did not affect their occurrence. To measure action potential 

kinetics (Fig. 4 and Supplementary Fig. 12), we used the first action potential that was 

evoked by the lowest suprathreshold sustained current injection.
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Data are presented as mean ± s.e.m., unless stated otherwise. Error bars for dendritic spike 

proportions represent the s.d. of bootstrap analyses of the experimental data set (1,000 

repeats). Statistical significance of continuous data was assessed using two-sided Mann-

Whitney U tests and Wilcoxon signed-rank tests for unpaired and paired data, respectively. 

Statistical significance of dendritic spike proportions was assessed using Fisher’s exact test. 

Analyses of variance (ANOVA) were performed when more than two groups were tested. 

Differences were considered statistically significant when P < 0.05. No correction for 

multiple comparisons was applied58. No statistical methods were used to predetermine 

sample sizes, but our sample sizes are similar to those reported in previous 

publications11,17,18. Data collection and analysis were not performed blind to the 

conditions of the experiments.

Compartmental modeling

Studying phase precession required us to model the precise timing of action potentials 

produced by oscillatory synaptic inputs. To achieve realistic predictions of membrane 

potential trajectories, we therefore decided to use a detailed compartmental model 

implemented in NEURON59 (Figs. 3 and 6 and Supplementary Figs. 8 and 20). We used a 

reconstructed morphology of a mouse MEC stellate cell25 and HCN-channel gating kinetics 

based on experimental data from stellate cells60. Voltage-gated potassium (Kv) and sodium 

(Nav) channel kinetics were adopted from a CA1 pyramidal cell model61. Active 

conductance densities, axial resistivity (Ri), specific membrane resistance (Rm) and 

capacitance (Cm) were fitted to reproduce the experimentally determined mean f–I 
relationship, input resistance, sag ratio, sag time-constant, membrane time-constant, resting 

membrane potential and afterhyperpolarization amplitude using a genetic algorithm 

(NSGAII)62–64 (Supplementary Table 1).

Subthreshold synaptic input–output curves (Supplementary Fig. 8b) were produced by first 

finding all sites on the dendritic tree that were located 175 μm from the soma. We then 

performed simulations that closely followed our experimental protocol (Fig. 1): at each site, 

we distributed 20 synaptic conductances within 25 μm. We then activated individual synaptic 

conductance changes in isolation and computed the linear sums of the individual responses. 

Next, we stimulated an increasing number of synaptic conductance changes at 1-ms intervals 

and plotted the amplitudes of the measured responses against the amplitudes of the linear 

sums. This procedure was repeated for each site to yield a set of input–output curves. The 

analysis of simulated data was identical to that of experimental data.

To determine the effect of dendritic Nav channels on phase precession (Fig. 6 and 

Supplementary Fig. 19), we used a modeling and analysis strategy similar to one described 

previously18. In brief, we converted the synaptic inputs of rate-based neurons in a CAN 

model (see below) into discrete events driving synaptic conductance changes in our 

compartmental stellate cell model. Feedforward excitation was provided by six directional 

velocity-controlled oscillating (VCO) inputs that were only active when the current running 

direction matched the VCO’s preferred direction ± 90° (ref. 65).
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Rate-based modeling (Fig. 5 and Supplementary Fig. 15)

Previous work has suggested that the mechanisms underlying the rate code of grid cell firing 

are best explained by a continuous attractor network (CAN) model17,18,66. We 

implemented a CAN model in a sheet of 128 × 128 neurons with periodic boundaries 

building on a previous implementation (courtesy of Y. Burak and I. Fiete13). This rate-based 

model allowed us to efficiently test the effect of a large range of parameters on network 

performance, which is essential for exploring the effects of a large range of noise 

amplitudes. The dynamics of rate-based neurons was defined by

si =
kVV i for V i 0

0 for V i < 0with (2)

dV i
dt + V i = 1 + kNMDA pi 0.5 Ii + Bi + i and (3)

Ii =
j
W i js j (4)

where si represents the firing rate of neuron i, Vi represents the membrane potential of 

neuron i, τ = 10 ms is the integration time constant of the neural response, kNMDA = 0.4 

(unless indicated otherwise) is the relative strength of NMDARs, pi is the fraction of open 

NMDARs in neuron i (equations (8) and (9)), Ii is inhibitory recurrent input to neuron i, Bi is 

excitatory feedforward input to neuron i, Wij is the synaptic weight from neuron j to neuron 

i, and ξi is colored synaptic noise (equations (10)–(12)). By subtracting 0.5 from pi, mean 

network firing rates were kept approximately constant across simulations. For a threshold-

linear implementation of the model without NMDARs, we set kNMDA = 0. The gain of the 

neural transfer function, kV, was set to 0.88 (unless indicated otherwise), which minimized 

drift and velocity error for kNMDA = 0. This strategy was chosen to ensure that reductions of 

drift and velocity error by NMDARs could not be explained by a simple linear gain change. 

The implementation of NMDARs as a multiplicative term is consistent with predictions of 

NMDAR recruitment in a compartmental model (Supplementary Fig. 9). Bi was defined by

Bi = AB(1 + ei v) (5)

where êi is the unit vector pointing along neuron i's preferred direction i (one of W, N, S or 

E), v is the animal velocity vector in m s–1, and α was set to 0.0825. The recurrent weight 

matrix was purely inhibitory in our implementation:

W i j = W0(xi x j le i) with (6)
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W0(x) = AW e x 2
e x 2

(7)

where xi is neuron i’s location in the neural sheet and ranges from (−64, −64) to (64, 64). In 

our implementation, we used l = 2, γ = 1.02β, β = 3λ–2 and λ = 13. AB = 10 and AW = 10 

are scaling factors that were chosen to compensate for the ‘notau’ option in the original 

implementation. As in Burak and Fiete13, we computed the animal velocity vector v from an 

experimentally determined rat trajectory12.

It is currently unknown how spatially modulated excitatory and inhibitory inputs are 

distributed on the dendritic tree of grid cells. To implement a model that applies to a large 

range of potential synaptic input configurations, we therefore used a generalized approach in 

which we subject the sum of all synaptic inputs to a single function, which can take a 

nonlinear form.

The dynamics of NMDAR open probability pi in neuron i was computed as follows:

NMDA
dpi
dt + pi = p (V i) with (8)

p (V) = 1 1

1 + e

V cNMDA
mNMDA

(9)

where the steady-state open probability, p∞(V), was assumed to be a sigmoid function of 

membrane potential V with center cNMDA = 0.1 and slope mNMDA = 0.2, yielding a neural 

transfer function that qualitatively matched the experimentally determined dendritic input–

output curves. Unless indicated otherwise, τNMDA was set to 50 ms, in agreement with our 

experimental data (Supplementary Fig. 17).

Synaptic noise, ξi, was implemented as an Ornstein-Uhlenbeck process using an exact 

update rule for an integration time step, h67, 68:

i = i, exc i, inh with (10)

i, exc(t + h) = exc, 0 + ( i, exc(t) exc, 0(t))e
h/ exc + AexcG1 and (11)
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i, inh(t + h) = inh, 0 + ( i, inh(t) inh, 0(t))e
h/ inh + AinhG2 (12)

where ξi,exc and ξi,inh are excitatory and inhibitory synaptic noise, respectively; ξexc,0 and 

ξinh,0 are average synaptic noise; τexc and τinh are synaptic time constants; G1 and G2 are 

random numbers drawn from a normal distribution with zero mean; and unit s.d. Aexc and 

Ainh are amplitude coefficients given by

Aexc =
Dexc exc

2 1 e
2h/ exc and (13)

Ainh =
Dinh inh

2 1 e
2h/ inh (14)

where Dexc and Dinh are noise diffusion coefficients. Excitatory and inhibitory noise were 

assumed to be symmetric in our simulations, with τexc = τinh = 2 ms. Noise diffusion 

coefficients and average synaptic noise were set as high as possible without disrupting the 

periodic activity bumps in the CAN when the original simulation parameters from Burak 

and Fiete13 were used (ξexc,0 = ξinh,0 = 1.2, Dexc = Dinh = 0.04, yielding a ratio similar to 

ξ0/D, as in Destexhe et al.67).

Integrate-and-fire neurons (Supplementary Fig. 16)

An implementation of a CAN model using integrate-and-fire neurons was adopted from 

Pastoll et al.34. Topology and connectivity of the model were adopted from the original 

implementation: the network consisted of 68 × 58 excitatory and 34 × 30 inhibitory neurons 

interconnected in an ‘E-surround’ configuration34. Constant excitatory input currents to the 

excitatory neurons in the original model (Iext_e_const and Iext_e_theta) were replaced by 

mixed AMPAR/NMDAR-type synapses driven by Poisson spike trains at 1 kHz. The 

dynamics of the synapses was defined by

AMPA
dgAMPA

dt + gAMPA = 0 (15)

dgNMDA
dt =

gNMDA
NMDA,decay + NMDA x(1 gNMDA) and (16)
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NMDA,rise
dx
dt + x = 0 (17)

where gAMPA and gNMDA are the AMPAR and NMDAR conductances, αNMDA = 0.5 

defines NMDAR saturation, τNMDA,rise = 2 ms and τNMDA,decay = 100 ms are the rise and 

decay time constants of NMDAR, and x is the activation gating variable of NMDARs. For 

each presynaptic spike occurring at time t1, the synapse activity was updated from its 

previous state at time t0 according to the following equations:

x(t1) = x(t0) + wp (V) and (18)

gAMPA(t1) = gAMPA(t0) + w (19)

where w = 1 is the synaptic weight and p∞(V) is the steady-state open probability of the 

NMDAR (equation (9)). Total synapse conductance was computed as gAMPA + kNMDA 

gNMDA. The maximal total conductance was set to 2.3 nS. A version of an AMPAR/

NMDAR-type synapse without Mg2+ block was implemented by setting p∞(V) = 1 in 

equation (18).

Spatial rate maps of model neurons were discretized into 1-cm × 1-cm bins. No smoothing 

of the data was performed. To quantify spatial periodicity (‘gridness’), we first calculated the 

spatial autocorrelation for rate maps of each model neuron21. We then selected a centered 

ring-shaped region of interest from the autocorrelogram that included peaks closest to the 

center but excluded the central peak. We next rotated this ring in steps of 1° and at each step 

computed the correlation coefficient of the rotated with the original ring. We then 

determined maximal correlation values at 60° and 120° rotation (rmax,60 and rmax,120) and 

minimal correlation values at 30°, 90° and 150° rotation (rmin,30, rmin,90 and rmin,150). 

Gridness was then determined as min(rmax,60, rmax,120) – max(rmin,30, rmin,90, rmin,150)21. 

Mean gridness values were computed for ten randomly selected model neurons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Editorial summary

Combining electrophysiology and computational modeling, the authors show that the 

dendrites of entorhinal cortex stellate and pyramidal cells are electrically excitable and 

that this improves the robustness of grid cell firing. The results suggest that active 

dendrites are critical for spatial navigation, a fundamental computation in the brain.
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Figure 1. Supralinear synaptic integration in MEC principal neurons.
(a) Two-photon image of a MECII stellate cell filled with Alexa Fluor 594 via somatic 

patch-clamp recording. Inset shows the selected dendrite and the uncaging locations (red 

spots). (b) Somatic voltage responses to increasing number of stimulated synapses (indicated 

in the inset in a). Top traces show arithmetic sums expected from the individual responses; 

bottom traces show recorded responses (15 spines, 0.6-ms stimulation interval). (c) The 

amplitudes of somatically recorded glutamate uncaging-evoked EPSPs (gluEPSPs) were 

markedly larger than the arithmetic sum of the individual responses (dashed line indicates 

unity). Top, single experiment (as in a and b); bottom, summary of 34 experiments. Grey 

lines represent individual experiments; the black line connects binned averages across 

experiments (red). Error bars represent s.e.m.. (d) Nonlinearity depends on the interval 

between uncaging events (*P < 0.05). No significant difference in the degree of 

supralinearity was found between stellate cells (SC) and pyramidal cells (PC) of MECII (at 

≤1-ms stimulation intervals). Nonlinearity in stellate cells at different stimulation intervals: 8 

ms, 9 ± 9% (n = 6); 4 ms, 54 ± 16% (n = 11); ≤1 ms, 65 ± 7% (n = 34); one-way ANOVA 

for different stimulation intervals, P = 0.02, F = 4.22; nonlinearity in pyramidal cells at 

stimulation intervals; ≤1 ms: 48 ± 11% (n = 9; Mann-Whitney U test, P = 0.18 compared to 

stellate cells).
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Figure 2. Supralinear integration and dendritic spikes depend on voltage-gated sodium (Nav) 
and NMDA receptor channels.
(a) Left: examples of fast (orange arrows) and slow (blue arrows) dendritic spikes. Right: 

plots of dV/dt against number of uncaging locations. Fast dendritic spikes cause a step-like 

increase in dV/dt (arrows). (b) Top: fast dendritic spikes are present in 21 ± 7% (n = 34) of 

all recordings and abolished when Nav channels are blocked with tetrodotoxin (TTX) and/or 

when NMDARs are blocked with APV ((2R)-amino-5-phosphonovaleric acid). Bottom: 

slow dendritic spikes are present in 26 ± 7% (n = 34) of all recordings, still present in TTX 

(29 ± 17%; n = 7; Fisher’s exact test, P = 1.0) and abolished when NMDARs are blocked 

with APV. Uncaging interval ≤ 1 ms. Individual data points (not indicated in the figure) are 

either zeroes (no spikes were observed in a recording) or ones (spikes were observed in a 

recording). Bar graphs indicate the percentage of recordings containing spikes; error bars 

were calculated by Monte Carlo methods. (c) Application of TTX and APV reduces or 

abolishes supralinear dendritic integration. Grey dots represent individual recordings. 

Control: 65 ± 7% (n = 34); TTX: 36 ± 11% (n = 7; Mann-Whitney U test, P = 0.07 

compared to control); APV: 11 ± 21% (n = 3; Mann-Whitney U test, P = 0.02 compared to 

control). TTX+APV: 11 ± 5% (n = 3; Mann-Whitney U test, P = 0.02 compared to control). 

One-way ANOVA, P = 0.03, F = 3.16.
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Figure 3. Engagement of active dendritic conductances in MECII principal neurons in vivo.
(a) Left: membrane potential (Vm; top), theta membrane potential oscillations (theta MPOs; 

middle, green trace) and differentiated membrane potential (dV/dt; bottom) during a firing 

field crossing in a MECII neuron (experimental data from Schmidt-Hieber and Häusser18). 

Grey dashed vertical lines indicate peaks (0° phase) of theta MPOs. Right: membrane 

potentials and differentiated membrane potentials at higher magnification for two episodes 

corresponding to the horizontal bars at the bottom of the traces on the left. Filled circles on 

dV/dt traces indicate peaks in dV/dt that are below (black) or above (red) the mean + 1.5 s.d. 
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of all peaks within 90° bins of theta MPO phases. (b) Plot of peaks in membrane potential 

against corresponding peaks in dV/dt for the recording shown in a. Colors as in a. Green line 

represents a linear regression (r = 0.49; P < 10−5; n = 8,265 peaks). (c) As in b, for a detailed 

compartmental model of a MECII stellate cell with active (left; r = 0.45; P < 10−5; n = 

14,411 peaks) or passive dendrites (right; r = 0.31; P < 10−5; n = 25,228 peaks). See Online 

Methods for model details. (d) Plot of peaks in dV/dt against the phase of theta MPOs for 

the recording shown in a. Colors as in a. Yellow filled circles represent binned averages. (e) 

As in d, for compartmental model data with active (left) or passive dendrites (right) as in c. 

(f) Analysis of n = 6 stellate cell recordings (data from Schmidt-Hieber & Häusser18). Peaks 

in dV/dt (top) and fraction of dV/dt peaks exceeding mean + 1.5 s.d. of all peaks within 90° 

bins of theta MPOs (bottom) are plotted against theta MPO phase. Black lines and symbols, 

average data. Error bars represent s.e.m. Colored lines and symbols show individual 

recordings. (g) As in f, for compartmental model data with active (black) or with passive 

dendrites (blue).
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Figure 4. Plateau potentials suggest that active dendritic conductances are engaged in vivo.
(a) Example of a putative somatic recording from a MEC neuron in vivo. Plateau potentials 

(arrows) occur spontaneously (left, top trace shows animals speed, bottom trace shows 

membrane potential) but not during current injections (right, top traces show membrane 

potential, bottom traces show current injections). (b) Example of a putative dendritic 

recording from a MEC neuron in vivo. Plateau potentials (arrows) occur both spontaneously 

(left, top trace shows animals speed, bottom trace shows membrane potential) and upon 

current injections (right, top traces show membrane potential, bottom traces show current 

injections). Inset (top right) shows an enlarged view of an evoked plateau potential. (c) 

Frequency and duration of plateau potentials correlate with parameters that are characteristic 

of dendritic recordings. Plateau frequencies per action potential (top) and plateau durations 
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(bottom) are significantly correlated with rise times of action potentials (left) and input 

resistance (right). Black lines represent linear regressions (n = 58 recordings). (d) Summary 

bar graphs of evoked and spontaneous plateau frequencies per action potential in (left) 

putative somatic (evoked, 0.4 ± 0.4%; spontaneous, 1.0 ± 1.0%, n = 6) and (right) dendritic 

recordings (evoked, 14.7 ± 7.2%; spontaneous, 1.9 ± 1.9%, n = 6). Filled gray circles 

represent individual recordings. Error bars represent s.e.m.
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Figure 5. Active dendrites in MECII neurons can enhance the robustness of the rate code of grid 
cell firing.
(a,b) CAN model simulations were performed either in the absence (a) or the presence (b) 

of a slow supralinear integration mechanism, as provided by NMDARs (τNMDA = 50 ms). 

(c,d) Left: animal trajectory (blue; data from Hafting et al.12) and CAN network prediction 

of animal position in the absence (c) (black) or in the presence (d) (red) of NMDARs are 

superimposed. Right: color-coded spatial rate maps for an example model neuron in the 

absence (c) or in the presence (d) of NMDARs. (e,f) Left: correlation between rotated 

autocorrelation maps plotted against the rotation angle. Simulations were performed in the 

absence (e) or in the presence (f) of NMDARs. Right: autocorrelation matrices of the spatial 

rate maps shown in c and d, respectively. (g) To quantify network drift, mean squared 

displacement is plotted as a function of simulation time interval in the absence of velocity 

inputs in the absence (black) or in the presence (red) of NMDARs. (h) Absolute difference 

between animal velocity and optimally scaled network velocity plotted against time in the 

absence (black) or in the presence (red) of NMDARs. (i) From top to bottom: network 

diffusion coefficient in the absence of velocity inputs, summed squared velocity error and 

gridness, each plotted against noise s.d. for CAN network simulations with (red symbols) or 

without (black symbols) NMDARs. (j) The same quantities as in i plotted against τNMDA. 

Simulations were performed using either the original animal trajectory (red symbols) or a 
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version that was slowed by a factor of 2 (blue symbols). In the simulations in a–h, noise s.d. 

= 1.6, and error bars represent s.e.m. of 7 simulations, which were initialized with different 

pseudorandom number generator seeds.
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Figure 6. Active dendrites in MECII neurons can promote the precision of the temporal code of 
grid cell firing.
(a,d) A detailed compartmental model of a MECII stellate cell was used to simulate grid cell 

firing in a hybrid CAN–oscillatory-interference model with passive (a) or active (d) 

dendrites (see Online Methods for details). Left: voltage-gated sodium conductance density 

plotted against dendritic distance from soma. Right: color-coded firing rate maps. (b,e) 

Example traces of simulated somatic membrane potential during a firing field crossing in the 

model with passive (b) and with active (e) dendrites. Raster plots at top show timings of 

excitatory velocity-controlled oscillators (VCOs, red) and inhibitory ramp inputs (blue). (c,f) 
While phase precession degraded in the model with (c) passive dendrites (n = 80 spikes), the 

model with (f) active dendrites (n = 153 spikes) produced clear phase precession of spikes 

with reference to the LFP. Red lines represent circular–linear regressions.

Schmidt-Hieber et al. Page 29

Nat Neurosci. Author manuscript; available in PMC 2019 February 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts


	Abstract
	Results
	Supralinear integration in dendrites of MECII principal neurons
	Dendritic spikes and supralinearity depend on Nav and NMDAR channels
	Testing the contribution of nonlinear dendritic integration under in vivo conditions
	Signatures of active dendrites in stellate cell recordings in vivo
	Plateau potentials during putative dendritic in vivo stellate cell recordings
	Slow supralinear integration promotes the robustness of the grid cell rate code
	Supralinear integration sharpens the precision of phase precession

	Discussion
	Active dendrites in MECII principal cells
	How do active dendrites improve grid cell firing?
	Why use active dendrites to enhance circuit computations?

	Online Methods
	Slice preparation
	Electrophysiology and pharmacology
	Two-photon imaging and uncaging
	Data analysis
	Compartmental modeling
	Rate-based modeling (Fig. 5 and Supplementary Fig. 15)
	Integrate-and-fire neurons (Supplementary Fig. 16)

	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6

