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Artificial intelligence (AI) algorithms have existed for 
decades and have recently been propelled to the fore-

front of medical imaging research. To a large extent, this 
is related to improvements in computing power, avail-
ability of a large amount of training data, and innovative 
and improved neural network architectures, with the rec-
ognition that certain types of algorithms are well suited 
to image analysis. The latter discovery was accelerated by 
the ImageNet competition and represents a fundamen-
tal transformation in research mechanics and methods in 
computer vision.

Currently, in most studies, researchers collect data, 
perform analysis, and publish results. The same research-
ers may continue to augment and expand the data set 
and perform subsequent analysis with resulting publica-
tions. The data for each study are held quite closely and 

are rarely shared among institutions outside of multi-
center trials. Competitions represent a different model of 
research: Research data are made available to the pub-
lic, usually with a baseline performance metric. Groups 
around the world are invited to analyze the data and cre-
ate algorithms to beat the performance of the prior gen-
eration. For example, the baseline performance metric for 
this challenge was set by the previous skeletal age model 
developed by Larson et al (1).

The Radiological Society of North America (RSNA) 
Pediatric Bone Age Machine Learning Challenge was cre-
ated to evaluate the performance of computer algorithms 
in executing a common image analysis activity that is fa-
miliar to many pediatric radiologists: estimating the bone 
age of pediatric patients based on radiographs of their 
hand (1–5). This challenge used a data set of pediatric 
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Purpose:  The Radiological Society of North America (RSNA) Pediatric Bone Age Machine Learning Challenge was created to show 
an application of machine learning (ML) and artificial intelligence (AI) in medical imaging, promote collaboration to catalyze AI 
model creation, and identify innovators in medical imaging.

Materials and Methods:  The goal of this challenge was to solicit individuals and teams to create an algorithm or model using ML 
techniques that would accurately determine skeletal age in a curated data set of pediatric hand radiographs. The primary evaluation 
measure was the mean absolute distance (MAD) in months, which was calculated as the mean of the absolute values of the differ-
ence between the model estimates and those of the reference standard, bone age.

Results:  A data set consisting of 14 236 hand radiographs (12 611 training set, 1425 validation set, 200 test set) was made available 
to registered challenge participants. A total of 260 individuals or teams registered on the Challenge website. A total of 105 submis-
sions were uploaded from 48 unique users during the training, validation, and test phases. Almost all methods used deep neural 
network techniques based on one or more convolutional neural networks (CNNs). The best five results based on MAD were 4.2, 
4.4, 4.4, 4.5, and 4.5 months, respectively.

Conclusion:  The RSNA Pediatric Bone Age Machine Learning Challenge showed how a coordinated approach to solving a medical 
imaging problem can be successfully conducted. Future ML challenges will catalyze collaboration and development of ML tools 
and methods that can potentially improve diagnostic accuracy and patient care.

© RSNA, 2018
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patient age, 127 months) deidentified hand radiographs and a 
validation set that contained 1425 images (mean patient age, 
127 months). Images for the training and validation sets were 
obtained from Children’s Hospital Colorado (Aurora, Colo),  
and Lucile Packard Children’s Hospital at Stanford. The im-
ages were labeled, with skeletal age estimates and sex from the 
accompanying clinical radiology report provided at the time 
of imaging.

A separate test set containing 200 images (mean age, 132 
months) was used to evaluate the performance of the submit-
ted algorithms. Images for the test set were obtained from Lu-
cile Packard Children’s Hospital.

The ground truth skeletal age estimates for all image sets 
were based on six separate estimates for each image that con-
sisted of (a) the clinical radiology report from their respective 
institution, (b) four pediatric radiologists who reviewed the 
cases independently (two pediatric radiologists from each in-
stitution), and (c) a second review by one of the pediatric radi-
ologists who reviewed the cases approximately 1 year after the 
first review. The Greulich and Pyle standard (2) was used by 
reviewers to determine the ground truth bone age.

The ground truth estimate for each case in the test data 
set was determined in two steps: First, a preliminary ground 
truth estimate was obtained as the simple mean of the six 
reviewers’ estimates. The performance of each reviewer was 
evaluated by determining the mean difference and the mean 
absolute difference (MAD) between the reviewer’s per-
formance and the mean of all reviewers’ estimates, which 
ranged from 20.75 to 1.16 months and from 4.8 to 7.0 
months, respectively. Next, each reviewer’s estimate was cor-
rected for bias, and a reviewer weight was determined as the 
inverse of the MAD (1/MAD) and ranged from 0.14 for 
the reviewer with the highest MAD to 0.21 for the reviewer 
with the lowest MAD. The final ground truth estimate was 
determined by calculating the weighted mean of the cor-
rected reviewer estimates. These data were the foundation 
for the work by Larson et al (1).

The details of this challenge’s web-based platform are de-
scribed in Appendix E4 (online).

Results
A total of 260 individuals or teams from around the world 
registered on the challenge website. A total of 105 submissions 
were uploaded from 48 unique users during the training, vali-
dation, and test phases. The 10 best submissions and MADs are 

Abbreviations
AI = artificial intelligence, MAD = mean absolute difference, ML = ma-
chine learning

Summary
The RSNA Pediatric Bone Age Machine Learning Challenge showed 
the application of machine learning in medical imaging, promoted 
ways in which these emerging tools and methods can improve diag-
nostic care, and identified innovators in machine learning applica-
tions in medical imaging.

Implication for Patient Care
Machine learning challenges will stimulate collaboration and devel-
opment of machine learning tools and methods that can improve 
diagnostic care.

hand radiographs with associated bone age assessments pro-
vided by multiple expert reviewers.

The RSNA promotes excellence in patient care and health 
care delivery through education, research, and technologic inno-
vation. Machine learning (ML) competitions align with the re-
search and technologic innovation aspects of the RSNA mission.

The aim of this article is to describe how and why the RSNA 
Informatics Committee and volunteers created, organized, 
implemented, and evaluated this challenge. The challenge was 
created to (a) show the application of ML and AI in medical 
imaging, (b) promote ways in which these emerging tools and 
methods might improve diagnostic care, and (c) identify in-
novators in ML and AI applications in medical imaging. The 
organizers and sponsors of the challenge are shown in Appen-
dix E1 [online], and the timeline of the competition is shown 
in Appendix E2 [online].

Most ML challenges consist of three phases—(a) the train-
ing or learning phase, (b) the validation phase, and (c) the 
test phase—that correspond to similarly named data sets. 
In the training phase, a model (eg, a neural net) is trained 
on a known data set by using a supervised learning method 
(eg, gradient descent or stochastic gradient descent). Subse-
quently, the fitted model is used to predict responses for the 
observations in a second smaller data set, which is termed 
the validation data set. Performance of the model is assessed 
through validation to determine if the training phase was 
effective. Finally, a test data set is used to perform an unbi-
ased evaluation of the performance of the trained model. 
Participants in the challenge had the option to display their 
results on a public leaderboard during the validation and 
test phases of the competition. The final results were based  
on the test phase submissions. Challenge terms, conditions, 
and rules are shown in Appendix E3 (online).

Materials and Methods
The institutional review boards at Stanford University and the 
University of Colorado approved the curation and use of pe-
diatric hand radiographs for the purposes of this ML competi-
tion. Patient consent was waived after approval by the institu-
tional review board.

The data sets (Fig 1) made available to participants were 
composed of an initial training set that contained 12 611 (mean 

Figure 1:  Sex distribution and number of images in the training, 
validation, and test bone age data sets.
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listed in Appendix E5 (online). 
The box plot of the five best 
submissions comparing pre-
dicted bone age with ground 
truth is shown in Figure 2.

First Place: Alexander 
Bilbily, MD, BHSc, FRCPC; 
Mark Cicero, MD, BESC, 
FRCPC (Canada)
The winning approach used 
both the pixel and sex informa-
tion in the same network at an 
image size of 500 3 500 pix-
els (Fig 3). The Inception V3 
architecture was used for the 
pixel information and was con-
catenated with the sex infor-
mation, with additional dense 
layers after concatenation, to 
enable the network to learn 
the relationship between pixel 
and sex information (6,7). 
Data augmentation proved to 
be a necessary step for success 
in this challenge, as it was used in many of 
the submissions. Finally, the combination of 
multiple high-performing models in an en-
semble approach at test time also improved 
overall performance.

Second Place: Ian Pan, MA (United 
States)
The second-place approach trained sex-
specific models by using contrast-enhanced 
image patches of 224 3 224 pixels instead 
of the entire image. Each image was divided 
into 49 overlapping patches (Fig 4, 5). The 
final prediction was calculated by taking the Xth percentile of 
the patch predictions, where X was typically around the 50th 
percentile (ie, the median). This approach used transfer learn-
ing and fine-tuned ResNet-50 architectures pretrained on the 
ImageNet data set. As in other approaches, data augmentation 
and ensembling (nine models) were leveraged to avoid overfit-
ting and to improve performance.

Third Place: Felipe Campos Kitamura, MD, MSc; 
Lucas Araújo Pereira, BSc; Rafael Teixeira Sousa, 
MSc; Larissa Vasconcellos De Moraes, BSc; 
Anderson Da Silva Soares, PhD; Nitamar Abdala, 
MD, PhD; Gabriel Alencar De Oliveira; Igor Rafael 
Martins Dos Santos, MD (Brazil)
The third-place model did not use any known deep learning 
model (ie, Inception, ResNet). This group developed a new vari-
ant of a convolutional neural network by creating the Ice Module 
(Fig 6). This model is considerably smaller than Inception V4 (ap-
proximately 1% of the number of parameters). They split the 

Figure 2:  Box plot shows the five best submissions comparing predicted bone age with ground truth. 
The x-axis represents the image number from the test data set, and the y-axis represents the bone age pre-
dicted by the competitors’ models. A full interactive summary of challenge data and analytics, including 
this box plot, can be accessed at https://rsnachallenges.cloudapp.net:5006/rsna_interactive.

Figure 3:  Depiction of the inputs, outputs, and layers of the first-place network design.

data set into five parts and trained a model on each part. The 
best four parts were used for prediction on the test set, and their 
average score comprised the final output (simple ensemble).

Fourth Place: Hans Henrik Thodberg, PhD (Denmark)
The fourth-place approach used conventional (nondeep) ML. 
The image preprocessing segmented the hand image into 15 
bones. Bone age was estimated in each of the 13 bones by using 
hand-crafted features as opposed to features learned by deep 
learning (Fig 7). Three kinds of features were used: the shape 
of the bone, the intensity pattern across the growth zone, and 
the pattern of Gabor texture energies across the growth zone.

Fifth Place: Leon Chen, MD; George Shih, MD 
(United States)
The fifth-place approach was unique due to the creation of a 
segmentation mask module. A total of 400 manual segmenta-
tion masks for the hand, wrist, and distal forearm were created 
to train a dilated convolutional u-net to predict segmentation 
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Figure 4:  Preprocessing pipeline for the second-place method used to construct inputs to the neural network. The image is manually 
cropped and resized to a length of 560 pixels, and the contrast is enhanced; this is followed by extraction of 49 patches of 224 3 
224 pixels. CLAHE = contrast limited adaptive histogram equalization, CNN = convolutional neural network.

Figure 5:  Network archi-
tecture of the third-place team 
shows a convolutional neural 
network followed by two dense 
layers. The convolutional lay-
ers extract imaging features. 
The dense layers use imaging 
features and sex input to output 
the predicted age.

Figure 6:  The Ice Module 
architecture is composed of a 
transpose convolution followed 
by a convolutional and pooling 
layer bypassed by a residual 
connection. This Ice Module is 
used in the convolutional part 
of the network architecture of 
the third-place team.

masks for the entire data set (Fig 8). A bone age prediction 
network was then trained on masked images, which consisted 
of an ensemble of convolution neural networks with a final 
regression layer and a sex-embedding layer.

The technical details of the five best methods are described in 
Appendixes E6–E10 (online).

Discussion
The field of computer vision has been evolving at a dramatic 
pace in recent years. While the majority of advancements and 
discoveries in this area were based on standard color photo-
graphic images containing common objects (eg, cars, airplanes, 
fruits), the recent successes have fostered tremendous interest in 
applying these principles to diagnostic imaging. Although many 
image types share important similarities, medical images impose 
several distinct challenges to ML applications. These challenges 
vary from technical difficulties related to processing Digital Im-
aging and Communications in Medicine files to a variety of clin-
ical considerations, such as normal variations in human anatomy 
and different clinical presentations of the same disease, image 
quality degradation secondary to artifact, the unwarranted vari-
ability in image interpretation, and patient privacy concerns. 
Additionally, use of crowdsourcing to create annotations for 

medical images is particularly challenging because of the specific 
domain knowledge required to interpret these images.

The RSNA Pediatric Bone Age Challenge was made possi-
ble by the availability of a large data set curated by radiologists 
with subspecialty training. The data set was initially created for 
the group’s own research but, more importantly, it was made 
freely available to the public so that other investigators could 
take advantage of this valuable resource. In recent years, greater 
emphasis has been placed on collaborative science and related 
mandates to make all research data open access to encourage 
reproducibility and to provide greater legitimacy to research 
results. ML and related data science initiatives for medical im-
aging will succeed with greater access to accurately curated and 
publicly available data sets. The broad availability of the data set 
allows individuals with different backgrounds to explore non-
traditional solutions, accelerating discoveries at a pace that is 
more rapid than that of the traditional scientific method. This 
is even more apparent in image challenge competitions, where 
individuals collaborate to solve a specific clinical problem and 
often share discoveries and methods with other participants in 
forums or blog posts. Although some data science challenges 
offer monetary rewards for the best results, the worldwide en-
thusiasm and spirit of collaboration and competition remains 
novel in the scientific community and is the driving force be-
hind participation.
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The winning methods featured in this challenge represented 
a substantial performance improvement compared with the 
best performing algorithm published only a year earlier and 
produced a smaller rating error when compared with that of 
one radiologist. The performance of the five best algorithms 
in this competition was not statistically different. However, 
each of the solutions used distinct approaches, including deep 
learning and traditional ML methods. This suggests that spe-
cific ML algorithms and data processing techniques should not 
be overemphasized at the expense of others, as no clearly su-
perior method has been identified yet for medical images. ML 
techniques are often complementary to each other depending 
on the task. This is further demonstrated by the common use 
of algorithm ensembles in the challenge, a technique that uses 
a weighted vote or an average of multiple algorithms to better 
generalize predictions.

All five winning algorithms used a preprocessing step, in 
which images were normalized or important anatomic areas 
were selected prior to algorithm training. Preprocessing seems 
to be an important component for generalizability of the algo-
rithm. This is shown with some of the rotated images available 
in the original data set. Algorithms that used a preprocessing 
step that segmented the appropriate anatomy or randomly ro-
tated the images seemed to be less prone to errors when images 
were rotated in the test data set.

Although ensembles were popular in this challenge and have 
likely contributed to improvements in algorithm performance, 
it is important to carefully determine whether the added ben-
efit in performance outweighs the additional effort required 
for clinical implementation when portability and speed of the 
application are important considerations. For example, a 1% 
increase in performance may not be as advantageous in the 
clinical setting if it significantly affects execution speed. On 

Figure 8:  Approximately 400 manual mask annotations were used by the fifth-place team to train a dilated convolu-
tional u-net to generate masks for the remaining (approximately 12 000) hand radiographs. This was then used to train 
the convolutional neural networks.

Figure 7:  Radiograph of a boy’s left hand shows the preprocessing 
method used by the fourth-place participant. A bone age value is esti-
mated for each of the 13 bones.
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the other hand, a 10% improvement in performance may be 
clinically advantageous, even if it doubles computational time. 
Further details of using ensembles to improve bone age predic-
tion are described in Appendix E11 (online).

Despite the similar results between the models, there are 
numerous potential effects of such models on clinical care. 
These models could systematically standardize image inter-
pretation tasks, such as bone age assessment, to yield more re-
liable and reproducible results (8). In nonlinear image tasks, 
the models may help alert the interpreter that an image devi-
ates from a certain standard or norm. Ultimately, ML models 
may identify and diagnose diseases based on imaging findings 
with great precision.

As ML algorithms become more embedded in clinical prac-
tice, radiologists will need to expand their understanding of 
these methods and what functions the models were created to 
perform. More importantly, it will be imperative to understand 
the limitations of these tools and models in the patient care con-
tinuum. Education in this field may need to start early in resi-
dency or even medical school and should cover traditional and 
newer ML methods as they become more common.

On the basis of our initial experience, the RSNA image chal-
lenge competition has a unique opportunity to foster scientific 
advancements through a new form of independent scientific col-
laboration and validation in the field of medical imaging ML 
but may generate enough thoughtful discussions to ensure that 
future clinically endorsed algorithms would be scientifically vali-
dated and will provide meaningful clinical improvements to pa-
tient care.

In conclusion, the first RSNA Pediatric Bone Age Machine 
Learning Challenge successfully achieved the following objec-
tives set forth by the organizers: (a) to show the application of 
ML and AI in medical imaging, (b) to promote ways in which 
these emerging tools and methods may improve diagnostic care, 
and (c) to identify innovators in ML and AI applications in med-
ical imaging. This challenge showed the power of sharing data 
publicly to solve a problem and create a tool that can provide 
more accurate, efficient, and timely diagnosis. This will hope-
fully be one of many challenges sponsored by the RSNA and 
other medical societies.
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