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A B S T R A C T

We describe in this paper the implementation of E-Water, an open software Decision Support System (DSS),
designed to help local managers assess the Water Energy Food Environment (WEFE) nexus. E-Water aims at
providing optimal management solutions to enhance food crop production at river basin level. The DSS was
applied in the transboundary Mékrou river basin, shared among Benin, Burkina Faso and Niger. The primary
sector for local economy in the region is agriculture, contributing significantly to income generation and job
creation. Fostering the productivity of regional agricultural requires the intensification of farming practices,
promoting additional inputs (mainly nutrient fertilizers and water irrigation) but, also, a more efficient allo-
cation of cropland.

In order to cope with the heterogeneity of data, and the analyses and issues required by the WEFE nexus
approach, our DSS integrates the following modules: (1) the EPIC biophysical agricultural model; (2) a simplified
regression metamodel, linking crop production with external inputs; (3) a linear programming and a multi-
objective genetic algorithm optimization routines for finding efficient agricultural strategies; and (4) a user-
friendly interface for input/output analysis and visualization.

To test the main features of the DSS, we apply it to various real and hypothetical scenarios in the Mékrou river
basin. The results obtained show how food unavailability due to insufficient local production could be reduced
by, approximately, one third by enhancing the application and optimal distribution of fertilizers and irrigation.
That would also affect the total income of the farming sector, eventually doubling it in the best case scenario.
Furthermore, the combination of optimal agricultural strategies and modified optimal cropland allocation across
the basin would bring additional moderate increases in food self-sufficiency, and more substantial gains in the
total agricultural income.

The proposed software framework proves to be effective, enabling decision makers to identify efficient and
site-specific agronomic management strategies for nutrients and water. Such practices would augment crop
productivity, which, in turn, would allow to cope with increasing future food demands, and find a balanced use
of natural resources, also taking other economic sectors—like livestock, urban or energy—into account.

1. Introduction

The World Bank reports that, although the proportion of African
population living under the extreme poverty line has dropped off in the
last years (Beegle et al., 2016), food scarcity is still a major challenge,
especially in Sub-Saharan countries, and, in particular, in rural areas
where the main source of livelihood is agriculture (Markantonis et al.,
2017a). This is reflected in the predominant contribution of agriculture

and agro-related activities to income generation (around 30% of GDP
globally in the region) and job creation (78% in Burkina Faso, 45% in
Benin and 57% in Niger) (World Bank, Development Research Group,
2017).

Within this context, agriculture is characterized by a meager pro-
ductivity with poor levels of intensification. Therefore, developing
more efficient agricultural techniques is vital to enhance prosperity and
alleviate poverty, especially in rural areas. Indeed, it is well known that
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poverty reduction and agricultural productivity are strongly correlated
(Thirtle and Piesse, 2007). Other studies show, in turn, that improve-
ments in agricultural performance have paid in important benefits to
rural population, by increasing farmers’ incomes, job opportunities and
wages, being the latter particularly critical for impoverished house-
holds (Dorward, 2003; Poulton and Dorward, 2003).

To address all these issues, a cooperation project involving the Joint
Research Centre of the European Commission and the Global Water
Partnership West Africa was set. Food insecurity was identified as a
major concern for the whole region, especially in the northern area,
belonging to Niger. Interestingly, those regions with a more pro-
nounced food insecurity problem, were also those with lower agri-
cultural productions reported, due to modest yields and/or lack of
fertile land available (Markantonis et al., 2017b, 2018).

Several agronomic studies suggest that the management of poor
soils is the main limiting factor for agricultural production (Van Keulen
and Breman, 1990). However, due to its scarce and extremely variable
nature, rainfall has also a major influence in rainfed agriculture.
Therefore, climate change and its effects should also be taken into ac-
count when considering future developments, since the use of addi-
tional water, combined with improved fertilization management, could
entail important benefits to local crop production. Other factors that
could potentially affect agricultural growth are economic (accessibility
to fertilizers), droughts, floods and missing land. The latter is most
likely due to the inadequate management of soil fertility—which may
turn land unfertile, being, eventually, abandoned by local farm-
ers—and, to a lesser extent, to pressures from the livestock sector,
which demands land for animal pasture. Summarizing, farmers’ ability
to yield, at a local scale, crop products needed to elaborate food, feed
their animals and, more generally, increase their income and wellbeing
is greatly limited by the aforementioned determinants.

On the other hand, in the Mékrou river basin, yields are mainly
constrained by the low availability of nutrients, being water less in-
fluential, since the dominant agriculture is rainfed and produced during
the rainy season. Nevertheless, the prevailing pattern observed in the
region actually exhibits a simultaneous limitation of nutrients and
water for crop yields.

Within this framework, policies stimulating an escalation of agri-
culture—in terms of a more intense and efficient use of nutrients and
water—are clearly required. However, it is not evident how to minimize
their implementation costs: therefore the need to advise local managers
and stakeholders on how to optimize their investment decisions for
each combination of crops and regions.

In this regard, optimization techniques have previously been ap-
plied to the management of agriculture farms under different perspec-
tives (Plà et al., 2014). For instance, Hassan et al. (2005) reported that
linear programing (LP) allows to devise equilibrium solutions between
arable crop based farms and livestock. In another work Ohajianya and
Oguoma (2009) analyzed resource allocation patterns for 120 food
crops farms in Imo State, Nigeria, using LP to optimize resources. Al-
ternatively, Ibrahim et al. (2009) relied on LP to determine optimal
farm plans to evaluate the food security status of farming households. In
turn, Majeke and Majeke (2010), Harasimowicz et al. (2017) dealt with
the farm resource allocation problem, observing that better results were
obtained when using an LP model instead of the traditional planning
method. In Andreea and Adrian (2012), an LP method was proposed to
determine the optimal structure of crops. A multiobjective approach,
considering increasing productivity and the environmental impact, has
frequently been applied to farms management (Pastori et al., 2017; Plà
et al., 2014; Galán-Martín et al., 2017; Groot et al., 2012). However,
most mathematical programming methods in the agronomic field have
limited applicability, being in practice unavailable to stakeholders in-
volved in the development of generic agricultural, growth, or en-
vironmental policies. Furthermore, they usually focus on a single type
of analysis, as e.g. irrigation, fertilization or land reassignment.

Aimed at overcoming such limitations, DSSs are computer software

programs that use models, data and other related information to make
site-specific recommendations with various purposes. Recent examples
in the farming sector include the management of agricultural pesticides
(Beck et al., 1989), farm financial planning (Boggess et al., 1989;
Herrero et al., 1996), livestock enterprises (Stuth and Lyons, 1993), and
land and crop nutrient planning (Basso et al., 2013; Quemada and
Cabrera, 1995; Li et al., 2009), and river basin management Semenzin
et al. (2012). DSSs have mainly been designed to support farm advisors
and other involved technicians in their interaction with policy makers
and farmers (Nelson et al., 2002), although some systems allow direct
use by the latter. In addition to this type of farm-level decision making
support, agricultural system models are being increasingly used for
various local, national and global modeling tasks and analyses (Jones
et al., 2017).

Compared to other DSSs used in agriculture, whose focus is the si-
mulation of different scenarios against various management alter-
natives (Jones et al., 2003; McCown et al., 1996), our proposal in-
tegrates simulation modules and optimization algorithms. It seeks to
identify efficient management alternatives to hypothetical agricultural
scenarios, as e.g. population growth, climate change or increase in
system inputs. Motivated by the context of the Mékrou project, where
highly committed local stakeholders conveyed their actual needs
straightforwardly, our objective was to develop an integrated mod-
elization-optimization-easy-to-use DSS for the management of the
Mékrou basin, aiming to reduce poverty and increase growth in the
region.

The remainder of the paper is organized as follows. In Section 2, we
describe the DSS components. The Mékrou region case study is in-
troduced in Section 3, for which some DSS capabilities are illustrated in
Section 4. We end up in Section 5 with a discussion of our main findings
and future lines of research.

2. Methodology

Our aim is to assess how local agricultural production may poten-
tially mitigate food insecurity. In doing so, we need to deal with the
following issues: (1) multiple demands of spatially distributed food
crops; (2) limited fertilizers and water availability; and (3) variable
crop distribution and productivity along the river basin.

To that purpose, a DSS based on a built-in baseline scenario was
developed, integrating several models, tools and data, see Fig. 1: (1) A
geodatabase storing the required data to model (soil type, climate,
landuse and landcover), and to assess economic and food security
(based on crop market selling prices, crop use, productivity and man-
agement, diet habits and minimum food calories intake requirements).
(2) A biophysical crop-growing model, able to simulate multiple crop
yield at local level under different environmental and management
conditions. (3) A simplified multiple linear regression metamodel, de-
rived from the crop model outputs, used to estimate yield production
for each crop and region in terms of the applied fertilizer and irrigation.
(4) A linear programming optimization routine, incorporating the local
crop growth metamodel outputs, the available fertilizer and the irri-
gation water, and considering as decision variables the total crop area
and distribution. (5) A multiobjective genetic algorithm routine, de-
signed to spatially optimize water demands—subject to its availability
across the river basin—from different sectors, as e.g. agricultural, urban
or livestock.

In what follows, we describe the most complex modules in detail.

2.1. The biophysical model

EPIC is a biophysical, continuous, field-scale agriculture manage-
ment model (Williams et al., 1989; Williams, 1995). It simulates crop
growth, crop water requirements and the fate of nutrients and pesti-
cides as affected by farm management activities, such as the timing of
agrochemicals application, tillage, crop rotation, irrigation strategies,
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and nitrogen and phosphorus cycle.
The main components can be divided into the following categories:

hydrology, weather, erosion, nutrients, and plant growth. EPIC esti-
mates the development of crop growth on a daily time-step basis, taking
light interception and conversion of CO2 to biomass into account. In
turn, the phenological development is based on daily heat units accu-
mulation (PHU, 2007). As regards crop yield, it is calculated, via har-
vest index, as a fraction of above-ground biomass, and reduced ac-
cording to daily water and nutrient stress. On the other hand, the
hydrological model stems from the water balance equation in the soil
profile, with several processes simulating surface runoff and infiltra-
tion, evapotranspiration, lateral subsurface flow, and percolation. Fi-
nally, EPIC takes nitrogen and phosphorus cycles (mineralization, de-
nitrification, volatilization and fixation processes) into account. For a
detailed description of the model and the simulated processes see
Williams (1995), Wang et al. (2012), Pastori et al. (2017).

In our case study, EPIC was applied to the dominant crops in each
grid cell (3 km resolution) in the period between 1990 and 2016.
Specifically, the crops analyzed in this study were: (1) cereals (maize,
sorghum, millet and rice); (2) tubers (cassava, yam, and potatoes); (3)
leguminous (a vegetable crop, cowpea and soybeans); (4) fruit (pea-
nuts, oils, banana, although the latter is not spread in the region); and
(5) a cash crop (cotton).

2.2. The regression module

In order to involve stakeholders effectively in participatory mod-
eling tasks, simplified models allowing them to make informed and
timely decisions are required (Soltani et al., 2013). Such models must,
however, be endowed with a realistic sensitivity to the relevant input
parameters (Collins et al., 2013). As mentioned before, we have firstly
used EPIC to simulate the crop growth in the Mékrou river basin.
However, instead of the built-in EPIC model, we have integrated an ad
hoc metamodel within the optimization tool for computational reasons.
Such choice represents a compromise between admissible simulation
times and the ability to take relevant relationships—as e.g. linking crop
growth behavior to management strategies and environmental con-
ditions—into account (Barton, 1998; Kleijnen and Sargent, 2000). In
our case, we have considered a simple multiple linear regression model,
mimicking the input-output relationships of the complex process-based
EPIC model. The response variable is the crop yield, whereas the fer-
tilizer and irrigation applied are considered as explanatory variables.
Integrated within a DSS, the metamodel provides well-timed solutions,
although the computational burden of detecting optimal management
patterns can sometimes be significant.

In order to address spatial environmental variability (including
physical characteristics potentially affecting the crop growing process,

as e.g. soil suitability, climate or rain), specific metamodels were de-
vised for each crop and region sharing similar soil and climate condi-
tions. Under this approach, the influence of the environmental condi-
tions on the crop yield can be regarded as homogeneous at the
administrative level defined by regional communes. Since most agri-
cultural strategies and policy making actions are generally defined and
adopted at this spatial level, that local scale seems a reasonable choice.
Finally, we also took the potential variability of crop production under
different management strategies into account, considering alternative
scenarios to the baseline one, derived from current management prac-
tices.

2.3. The optimization module: model formulation and objectives

Our tool includes two optimization routines, denoted by Opti-
Agri and Opti-Water in Fig. 1. Opti-Agri focuses on the optimal
management of agricultural crops related to food security (the so-called
food crop demand satisfaction), and on the efficient use of limited re-
sources (fertilizers, water and land). The solver included in this routine
is based on linear programming techniques. In turn, Opti-Water
identifies efficient water management strategies, spatially optimizing
conflicting water demands arising from various sectors along the river
basin.The solver included in this routine has a genetic algorithm nature.
Note that both modules are linked, since the agricultural water demand
feeding the Opti-Water model is actually an output of the Opti-
Agri model. We describe them more in detail in the next section,
outlining the relevant notation in Table 1.

2.3.1. Opti-Agri module
It considers two main goals: (1) An economic objective, aimed at

maximizing farmers’ total benefit; and (2) A social objective, trying to
minimize food self-sufficiency. To tackle their simultaneous optimiza-
tion, we define auxiliary objective functions:

1. Minimize the deficit of population food requirements

∑ ∑ FRDmin
r c

r c,

2. Maximize the benefit of total agricultural excess

∑ ∑ APS SPmax ·
r c

r c r c, ,
(1)

The production dedicated to satisfy population food requirements
does not result into economic benefits. However, both objectives are

Fig. 1. Schematic representation of our DSS.
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actually not entirely conflicting, since greater productions could even-
tually help reduce the deficit of food requirements, while increasing, at
the same time, farmers’ benefit. Indeed, it may sometimes be impossible
to fully satisfy food demand, in which case the optimizer would not
return a solution. To avoid this eventuality, we reformulate (1), con-
sidering food demand as a constraint, and including a slack variable to
guarantee the existence of a feasible solution:

∑ ∑ −

+ ⩾

APS SP f

FRD f

max ( · log )

s.t. log 0
r c

r c r c r c

r c r c

, , ,

, ,

APS and FRD can actually be defined in terms of the agricultural
production and the food requirement as follows:

= ⎧
⎨⎩

− ⩾

= ⎧
⎨⎩

− <

APS
AP FR AP FR

FRD
FR AP AP FR

if
0 otherwise,

if
0 otherwise,

r c
r c r c r c r c

r c
r c r c r c r c

,
, , , ,

,
, , , ,

being FR a function of the diet and the population size

=FR FRI P·r c r c r, ,

In turn, AP is a linear function of the fertilization and irrigation rates

= + +AP CFixProduct CGrowF Area Fert CGrowI Area

Irr

· · · ·r c r c r c r c r c r c r c

r c

, , , , , , ,

,

The decision variables are Fert Irr,r c r c, , and Arear c, , and they account for

the different management options of fertilizer, irrigation and agri-
cultural land distribution. The first two are limited by the following
bound constraints:

⩽ ⩽
⩽ ⩽

MinLimFert Fert MaxLimFert
MinLimIrr Irr MaxLimIrr

r c r c r c

r c r c r c

, , ,

, , ,

Besides, we set constraints for the total fertilizer and irrigation available
at regional, country or global scale:

∑

∑

⩽

⩽

Fert Area FertAvail

Irr Area IrrAvail

·

·
c

r c r c r

c
r c r c r

, ,

, ,

We also define lower and upper bounds for the area dedicated to each
crop

⩽ ⩽AreaMin Area AreaMaxr c r c r c, , ,

Similarly, the total agricultural area available is bounded above by

∑ ⩽ ∀Area TotAreaReg r in R
c

r c r,

Finally, the maximum proportion of area available for a single crop in
the same region is given by

⩽Area RatMaxReg TotAreaReg·r c r c r, ,

2.3.2. Opti-Water module
It is aimed at reducing the impact on water usage in the region. It

also helps to identify the main stresses that could potentially affect
water resources in the river basin, as well as the efforts that would be
necessary to implement to enhance its usage. The solutions provided by
the system are site- and sector-specific, i.e., adapted to each region and
demanding activity.

Taking both environmental and economical considerations into ac-
count, this is a multiobjective problem, with the following objective
functions:

1. Maximize the water body status (flow regime)

∑ WBSmax
sb

sb
(2)

As a measure of the water body status, we use the water exploitation
index (WEI), defined as the ratio of withdrawals from renewable
natural water resources to average renewable natural water re-
sources (Alcamo et al., 2017; Rijsberman, 2006).

=
+ +

WEI
TD TD TD

Naturalflowsb
sb
U

sb
A

sb
L

sb (3)

Therefore, we can be reformulate (2) in terms of WEI as

∑ WEImin
sb

sb

However, minimizing WEI requires an effective decrease in the de-
mand, whose effect on the status of the basin depends on the actual
point of application. But applying the same reduction to each point
in the basin is not an easy task, and it is also greatly influenced by
the water usage (Pistocchi et al., 2017). Therefore, we can express
the economic objective as:

2. Minimize the effort required (water demand reduction)

∑ + +TD DR W TD DR W TD DR Wmin ( · )· ( · )· ( · )·
sb

sb
U

sb
U U

sb
A

sb
A A

sb
L

sb
L L

2.3.3. Optimization solvers
To solve the Opti-Agri linear programming model, we relied on

Table 1
Notation used in the optimization models.

Subscripts
r Region
c Crop
cg Crop group
sb Sub-catchment
R All regions

Decision variables
Fertr c, Fertilization rate
Irrr c, Irrigation rate

Arear c, Agricultural area

DRsb
U Reduction of urban demand

DRsb
A Reduction of agricultural demand

DRsb
L Reduction of livestock demand

Parameters
FRDr c, Food requirements deficit
APSr c, Agricultural production “surplus”
SPr c, Selling price of crops
APr c, Agricultural production
FRr c, Food requirement

FRIr cg, Individual food requirement
Pr Total population

CFixProductr c, Intercept of crop growth regression model
CGrowFr c, Fertilization coefficient of crop growth regression model
CGrowIr c, Irrigation coefficient of crop growth regression model

MaxLimFertr c, Maximum fertilizer
MinLimFertr c, Minimum fertilizer
MaxLimIrrr c, Maximum irrigation
MinLimIrrr c, Minimum irrigation
TopAreaRegr maximum agricultural area
RatMaxRegr c, Maximum proportion of area available

WBSsb Water body status
WEIsb Water exploitation index
TDsb

U Total urban demand

TDsb
A Total agricultural demand

TDsb
L Total livestock demand

WU cost/m3 of reducing urban consumption

W A cost/m3 of reducing agricultural consumption

WL cost/m3 of reducing livestock consumption
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the software package GLPK (Makhorin, 2012), licensed under the GNU
General Public License. Since the DSS core was developed in R (R
Core Team, 2017), we used the Rglpk (Theussl and Hornik, 2017)
package to provide a high level solver function based on the low level C
interface of the GLPK solver. The modules of the agronomic optimizer
were coded in GNU MathProg, which is a modification of AMPL (Fourer
et al., 1990). For the Opti-Water optimizer, the NSGA II multi-
objective genetic algorithm (Deb et al., 2002; Udias et al., 2018) was
applied, using its R implementation, nsga2R (Tsou, 2013).

3. A case study

The transboundary Mékrou river basin—representing 3% of the
wider Niger river basin area—covers an area of 10635 km2, see Fig. 2.
Running across Benin (80%), Burkina Faso (10%) and Niger (10%), it is
characterized by underdeveloped infrastructures and poor socio-
economic conditions. Agriculture is indeed the key economic sector for
poverty alleviation and food security in the three riparian countries.
Arable land accounts for 22% of total area, and it is mainly used for
food crop production and raising cattle. The current extension of cul-
tivated area in the region is approximately 730000 ha.

The water resources of the Mékrou river have several uses, being the
most representative ones domestic consumption, crop irrigation, animal
production, fishing and fish farming, recreation and religious practices.
The total need for drinkable water in 2014 was estimated at
1957358m3 and 1148884m3 in urban and rural areas, respectively,
serving a population of 280000 inhabitants. The main pressures on
water resources come from production activities related to agriculture,
livestock, fisheries, forests, hunting, mining, industry and energy.

The Mékrou river basin includes five Communes in Benin
(Banikoara, Karimama, Kérou, Kouandé and Péhunco), two in Niger

(Kirtachi and Parc W) and another one in Burkina Faso (Diapaga).
However, in addition to the hydrological definition of the Mékrou river
basin as the Area of Influence on the local economy, we also include the
so-called Area of Interest, which comprises another two Communes in
Burkina Faso (Tansarga and Bottou), and Niger (Tamou and Birni
Ngaoure). The population of the twelve Communes is shown in Table 2.

In the current situation, dry cereals (sorghum, millet, maize and
rice), tubers (mainly yams and cassava), oilcrops (sesame), legume
(cowpea) and cash crops (mainly cotton) are all rainfed crops sown
during the rainy season (April-May to late September early October),
therefore not receiving extra water input from irrigation. In turn, other
crops (mainly vegetables and rice, which is used both in rainy and dry
seasons) demand irrigation and, therefore, will depend on, and need to
be close to, shallow water resources from small ponds and rivers.

3.1. Source of data

3.1.1. EPIC modeling
A geodatabase was developed to support the application of EPIC to

the area of study. It stores the data required by: (i) EPIC (including soil,
meteorological daily data, crop distribution and agriculture manage-
ment information) to simulate different agronomic management stra-
tegies; and (ii) the optimization analysis tool (including population
density, per capita food calories requirements, diet habits, total food
demand, expected trend of population growth and selling prices of
agricultural products).

Specifically, the following datasets were used to setup EPIC: (1) The
Harmonized World Soil Database (HWSD) (FAO, 2017b) with an ap-
proximate resolution of 1 km (30″) was used to characterize the soils of
the simulation units. (2) A global digital elevation model with a hor-
izontal grid spacing of 30″ (NASA, 2017) providing the elevation and
slope. (3) Daily meteorological data (including precipitation, wet-day
frequency, minimum and maximum temperature, relative humidity,
solar radiation, and wind speed) with a 10′ resolution derived from the
ERA-Interim global dataset (Berrisford et al., 2009). It resulted in 125
virtual stations in the area of study for the period 1990–2012. (4) A
global crop distribution dataset derived from the Spatial Production
Allocation Model, SPAM (You et al., 2017), used to calculate the share
of each crop for each EPIC simulation unit.

Crop management is one of the most important inputs required for
EPIC modeling. It consists of detailed schedules and features of the most
common crop operations—like e.g. sowing, harvesting, tillage timing,
mineral fertilization, manure usage or irrigation—for each crop used in
the region. In this study, crop management practices were considered
reasonably homogeneous at the administrative level (communes),
meaning that just one strategy will be applied to each commune. In
general, all crop operations have been defined at this level, although
more specific fertilization and/or irrigation strategies could be

Fig. 2. Location of the Mékrou river basin.

Table 2
Mékrou Communes and their estimated population (2016).

Country Identifier Commune Source Population

Benin 1062 Banikoara INSAE, 2013 284313
1063 Karimama INSAE, 2013 76866
1064 Kérou INSAE, 2013 111180
1065 Kouandé INSAE, 2013 122675
1066 Péhunco INSAE, 2013 86005

Burkina Faso 1067 Bottou ISND 2006 68020
1068 Diapaga ISND 2006 48965
1069 Tansarga ISND 2006 56549

Niger 1070 Kirtachi INS 2011 39133
1071 Tamou INS 2014 95527
1072 Birni Ngaoure INS 2014 78000
1073 Parc W INS 2014 0

Total 1067232
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established for finer resolutions if required.
Given the fact that the dominant agriculture is rainfed, rain is the

most liming factor controlling farmers’ strategies. Therefore, crops
sowing periods were designed based on precipitation patterns, coin-
ciding with the start of the rainy season, following the method devised
by Rojas et al. (2005) and described in more detail in Pastori et al.
(2011). The growing period length and the harvest timing were based
on air temperature and the PHU accumulation method (Rijsberman,
2006).

The most recent version of the global map of irrigated areas from
FAO was used as the main reference to identify those areas where ir-
rigation needed to be considered (FAO, 2018b). According to it, only
some areas along the Niger river are actually using irrigation water,
something confirmed by the analysis of a household survey
(Markantonis et al., 2017b), where only Nigerian farmers reported
significant use of irrigation as a normal practice. In turn, nutrients input
from manure was derived from the livestock density (Robinson et al.,
2014), considering different coefficients for each animal category to
calculate the actual quantity of available nitrogen for crops. Finally,
mineral fertilization was obtained from national statistics reporting
total use of nitrogen for each crop (FAO, 2017a), and assigned to spe-
cific crops according to information coming from local surveys and
current yield productivity.

3.1.2. Multiobjetcive optimization
In order to perform the DSS optimization analysis, specific data,

defined at the administrative scale units, were required. The total
production under current conditions was extracted from national sta-
tistics in 2016, see Table 3.1 Population density and growth rates were
also obtained from regional statistics reported by the different coun-
tries.

Food demand was calculated by combining diet habits of local po-
pulation with the average dietary energy requirement (ADER) as de-
fined by FAO (FAO et al., 2014; FAO, 2018a) The latter was estimated
at 2400 kcal/pers/day for the three countries. Diet habits were, in turn,
gathered from local surveys (put in place purposely in each country for
the Mékrou project), and based on the annual per capita quantity of
each food crop consumed. This modified safe diet has the advantages of
taking the preferences of local population into account, guaranteeing,
at the same time, a security condition for food intake. Nevertheless,
there are other aspects that could potentially affect food crop in-
security, such as post-harvest losses, limited accessibility to market,
lack of infrastructure for food transport and storage, and a cropping
system highly sensitive to local and seasonal conditions. In order to
incorporate all these issues into the analysis of food production, we
used a food security factor, measuring the effective quantity of food
available for consumption, ranging from 20% for most crops to 50% for
rice and oil crops.

Finally, the economic value of agricultural production was also
addressed, by considering selling prices—as reported from local sur-
veys—for crop items produced in the area under study.

4. Analysis of results (DSS application)

In this section, we present the application of our DSS. Our main aim
is to forecast food demand by 2025, assuming current diet habits, a
total food calories intake of 2400 kcal/day and an annual 3% increase
in population, see Table 3. We derived specific equations to assess the
influence of management strategies and climate variability on food crop
growth, from a long-term simulation covering the period 1990–2016.
Local agricultural production in the region includes several annual and

perennial crops, being the most relevant ones: cereals (maize, millet,
sorghum and rice), tubers (yams and cassava). Less spread, but im-
portant especially for food diet, are potatoes, legumes with the dom-
inance of cowpea and peanuts and vegetables. Additionally, we also
simulated some tropical fruit crops and the cash crop cotton, a primary
source for the local agricultural economy, especially in Benin.

A flag variable, linked to local food production and demand, was
introduced to assess the potential risk associated with food safety.
Should food demand of a certain item not be satisfied with local pro-
duction, the flag variable would be set to “missing”, indicating in-
feasibility.

The DSS output is analyzed by means of graphics or tables, high-
lighting, for instance, eventual missing quantities for each main crop
food item at the regional level. Results for the analysis of the 2025 food
demand scenario are shown in Fig. 3. It is important to stress that this
indicator of food infeasibility is strictly linked to local production ca-
pacity, because it is not possible to exchange food items between dif-
ferent countries and regions.

In our case study, we assume that food crops cannot be traded be-
tween regions or countries, since our goal was to assess the self-suffi-
ciency of local agriculture production. Besides, most food crop pro-
duction is provided by small farmers, who aim to cover their own
subsistence, or to sell the excess in local markets. In addition, limited
road infrastructures and poor market organization would tend to fur-
ther decrease the possibility of such exchange. Nevertheless, some of
these alimentary infeasibilities would disappear globally at the level of
Area of Influence. Indeed, food crop demand is higher than production
in some regions (violating food security), whereas in others there is a
surplus of production, resulting in a net economic benefit for farmers.
When local food demand is fully satisfied (overproduction), all the
exceeding quantities are accounted for to calculate the additional eco-
nomic value. This is done based solely on selling prices, while dis-
regarding costs related to fertilizer and irrigation management.

4.1. Validation of the metamodel

Results provided by the decision tool are significantly affected by
the accuracy of the agricultural production simulation module.
Therefore, we need to verify the local prediction capacity of the em-
bedded regression models. Although we found slight variations for
different crops and regions, correlations between real and modeled
values were, in general, above 0.7, suggesting a good fit. The validation
was performed at the regional level (numbers in the Figure refers to
different regions) by comparing the average predicted and reported
yields. The comparison for two dominant crops (corn for cereals and
tomato for vegetables) is given in Fig. 4. The simulated and the reported
yields compare well and the model is able to capture the production
variability across the simulated regions.

4.2. Water availability

This module was run to shed light over the compromise between the
water used for different purposes (irrigation, livestock, urban) and the
environmental state of the river, evaluated through the WEI index (3).
Both objectives are conflicting, since extracting too much water from
the basin could jeopardize its environmental state.

The tool allows to identify, for each region, which strategies of
demand reduction produce a greater decrease in the impact on the
natural river flow. WEI can be assessed using one of the following ag-
gregation metrics: max, quantile, threshold or mean. Specifically
for the results showed in Fig. 5, we used the third quartile of WEI as the
aggregation metric. In addition, the optimization problem can be
launched configuring the relative importance of each water demand
usage compared with others. Therefore, users will be able to assess the
different costs required to reach the same benefit for each water de-
mand. To wit, in our case study we considered the implementation

1 Note the use of the following abbreviations: tropical fruit-BANA, cassava-
CASS, maize-CORN, cotton-COTS, cowpea-COWP, millet-PMIL, peanuts-PNUT,
potatoes-POTA, rice-RICE, sorghum-SGHY, vegetables-TOMA and yams-YAMS
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effort of reducing livestock and urban demands twice and ten times
greater than decreasing irrigation demand, respectively.

Fig. 5 shows the Pareto frontier, formed by the trade-off efficient
strategies between the WEI and the costs of demand reduction. As we
can observe, the former can be significantly decreased by reducing
water detractions from the river basin. In order to show how different
reductions in basin pressure can affect the global water body stress we
have selected two strategies. Strategy #20 is similar to the one in force,
with a stress index over 75%, and a very limited reduction in demand
applied. After implementing it, pressures were slightly reduced only at
four sub-basins, among which only one experimented a drop-off in the
consumption for irrigation greater than 30%. On the other hand,
strategy #13 achieved a significant reduction in WEI close to 55%, with
several decreases in consumption for irrigation and agriculture. More
extreme strategies rightward of #13 obtained considerably larger im-
provements in the river status (around 53%, almost twice bigger than
that of #13), but at the cost of almost four times greater efforts.

4.3. Crop management (land allocation, fertilization, irrigation)

As we have already mentioned, crop production is a key issue in the
Mékrou area for local economy and food security. With the aid of our
DSS, we were able to assess the ability of the agriculture sector to satisfy
the food demand of local population, subject to different agricultural
management strategies and external constraints. Thus, we were able to

identify site-specific optimal planning for efficient land management,
combined with enhanced fertilization/irrigation strategies, and taking
other constraints—as e.g. population density, minimum dietary re-
quirement and habits, and crop selling prices—into account.

Different scenarios, corresponding to various strategies for land and
crop management depending on changes in external constraints, were
tested and compared with a baseline setting, see Table 4. This baseline
scenario (BLS) referred to current conditions and management in the
Mékrou river basin. A second baseline scenario (BLS_2025) was defined
to analyze the 2025 time horizon, including new constraints and pro-
duction targets. It is based on the expected annual 3% population
growth rate, on local diet information (as extracted from local surveys),
and on the FAO standards for the required daily intake (2400 kcal/day/
hab). As we can observe, current food infeasibility is expected to almost
double by 2025, while the total gross benefit (without introducing new
management strategies) would significantly reduce 16%.

Alternative management strategies were also included in the ana-
lysis. For instance, we analyzed the eventual satisfaction of local food
self-sufficiency by increasing the intensity and efficiency of irrigation
and fertilization—currently very low compared with world standard-
s—and introducing different cropland allocation strategies. Results
refer to the 2025 scenario, see Fig. 6, since its associated increase in
food production infeasibility is particularly useful to explore our ability
to identify more intensive and efficient alternative solutions.

Table 3
2016 production (tons) by crop and region.

Id. Commune BANA CASS CORN COTS COWP PMIL PNUT POTA RICE SGHY TOMA YAMS

1062 Banikoara 2348 11546 48992 56788 16500 455 3427 50734 9575 24579 3111 49479
1063 Karimama 7485 178 11437 1102 6165 4512 144 309 22243 6017 17355 1030
1064 Kérou 2833 298 6078 26912 266 21 12857 173 120 682 11214 25420
1065 Kouandé 3134 80157 39339 13829 2248 324 36145 263167 8187 8506 25502 225253
1066 Péhunco 530 36975 31919 12210 450 217 9090 2098 3275 4319 4927 63628
1067 Bottou 1062 0 16409 13588 850 2861 4222 561 3260 21970 7623 65
1068 Diapaga 320 41 10152 7053 363 1228 1929 283 3616 11936 6726 98
1069 Tansarga 381 36 6816 3858 217 927 1709 382 803 12859 6770 44
1070 Kirtachi 1662 0 7326 0 219 20677 466 17002 4278 8053 12180 1984
1071 Tamou 4889 0 15294 147 524 51532 1114 31 10183 19040 30184 4
1072 Birni Ngaoure 13294 10 7338 7 997 44091 1070 0 6342 7762 3804 331
1073 Parc W 0 0 0 0 0 0 0 0 0 0 0 0

Fig. 3. Infeasibility (food self-sufficiency indicator) by crop and region for Baseline 2025 (BLS_2025 as defined in Table 4).
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4.3.1. Fertilizers
The tool tried different solutions, aiming to redistribute fertilizer

and irrigation water in an optimal way for each crop and region,

although country and global options were also available. As expected,
the impact of using additional nutrients in reducing food demand be-
comes evident when comparing it with sole irrigation practices, due to:

Fig. 4. Real vs modeled production for corn and tomato by region.

Fig. 5. Efficient Pareto water demand reduction according to water body stress indicator (third quartile) and the sum of demand reductions.
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(i) a very low current level of fertilization, with crop production mainly
limited by nutrient fertility; and (ii) the standard growing period taking
place during the rainy season, when the importance of irrigation can
become crucial (especially in dry years, or when dry spells occur at the
start and/or end of vegetative seasons). In fact, it can be observed that
the influence of fertilization on the benefit is almost twice as strong as
the irrigation effect. It seems that further increments in either fertilizer
or irrigation would still produce additional increases of benefit. Note,
however, that even when combining both strategies, some important
infeasibilities still remain. To wit, using 60% more fertilizer than in
current practice does not significantly reduce the satisfaction of food
demand, implying that the extra fertilizer impacts only on the benefit,
see Fig. 6a. Considering, in turn, the impact of irrigation on benefit and
demand, we observe that, even when doubling the water used for ir-
rigation, the Pareto curve does not reach its asymptotic value, see
Fig. 6b.

Based on the previous analysis, we have considered an alternative
scenario BLS_2025_FI200, see Table 4, where irrigation and fertiliza-
tion are simultaneously increased by 200%. Fig. 7 shows the proportion
of both resources used in each crop and each region under such a
scenario. The values represented refer to those quantities of fertilizer
and irrigation water identified as efficient strategies, which depend on
the application rate, but also on the effective surface used for each crop
in the region.

We focus now on cotton, which is an important nonfood crop, in-
tensively used in the area of study, particularly in Benin and Burkina

Faso. Since it is a cash crop, it attracts the biggest share of fertilization
(around 57%) under current management strategies. In this sense, it is
interesting to note that, even by including the food safety constraint
(the dominant objective is to satisfy local food demand), cotton (a
nonfood crop) is still the most fertilized crop. This is explained by the
fact that changes in landuse are not allowed in this scenario, and,
therefore, cotton remains the dominant crop for land occupation.
Furthermore, when food crops produce no additional income, farmers
can increase their benefit by fertilizing cotton. Under this scenario, the
proposed fertilization strategy for cotton is considerably intensive,
corresponding to an average use of around 150 kgN/(ha·yr), compared
with the baseline value of 40.

Among food crops, the distribution of nutrients varies considerably
for each region and country. In the Benin area, most fertilization under
current management practices (BLSs scenarios) is used for maize and
tubers, and locally also for rice. On the other hand, fertilization is very
low in the Niger area, with values within the range 1–2 kgN/(ha·yr),
implying that, in practice, crops would only receive nutrients input
when livestock manure is available. Since crop distribution is not al-
tered under the optimized scenario, the resulting quantities of fertilizers
used by crop depend exclusively on their own cropland occupation.
Thus, most fertilization is used for tubers and maize, and a smaller
share for vegetables and rice. Tubers are indeed a highly intensive crop,
since: (i) their productivity is enhanced by increasing fertilizers; (ii)
they are required in Benin for food demand satisfaction; and (iii) their
economic benefit also boosts as the average fertilization rate rises from
20 to around 400 kgN/(ha·yr).

As regards vegetables, apart from being needed to satisfy food de-
mand, they are also considerably affected by the significant increase in
fertilizers under the optimized scenarios. By raising nutrients up to
270 kgN/(ha ·yr), noticeable infeasibilities only persist in the Banikoara
region, although this is due to the very limited area dedicated to this
crop, around 0.2% of total cropland. Maize is another important crop
both for its value and for cereal food production. Under any of the
baseline cropland scenarios BLS, it covers around 16% of the total
agricultural area. In general, current crop distribution allows to locally
produce enough cereals, except in Kérou, which is not self-sufficient for
all cereals diet requirements, mainly because 70% of its crop area is
used for cotton.

4.3.2. Irrigation
Irrigation is very limited in the region, effectively restricted to some

crops—mainly vegetables or rice—and specific areas close to surface
waters along main rivers. Under scenario BLS_2025_FI200, irrigation

Table 4
Total estimated benefit and infeasibility for different scenarios.

Scenario Description Benefit (€) Infeas. (kg) Infeas. (€)

BLS Current condition
2016

179457 46864 22591

BLS2025 Food demand
increase 2025

154583 91041 43838

BLS2025_F200_I200 Fert. and irrig.
increase+ 200%
(vs BLS)

325468 65410 31217

Cotton0to100 Cotton land
redistribution

437720 15178 3609

Rest 0to100 Free cropland
redistribution

396775 7230 3376

BLS2025_10_60 Constrained
cropland
redistribution

487146 3720 970

Fig. 6. Total benefit from the selling crop surplus and economic value of food security infeasibility when BLS_2025 fertilization (left) and irrigation (right) conditions
increase. Number labels represent the increasing rate.
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is applied assuming that each crop and region can potentially benefit
from its use. In doing so, we aim at detecting for what crop (and where)
it would be more efficient to invest in water distribution and use.
However, a more detailed analysis would be required here to accurately
assess the transferability of the identified irrigation strategies.
Nevertheless, it is interesting to note that under this assumption, several
crops—actually not irrigated—would benefit from more irrigation use.
On the other hand, vegetables is the crop with the highest water con-
sumption—see the dark blue sectors in Fig. 7—with an approximate
31% global share, peaking to 67% in some areas of Niger. Other crops
contributing to water depletion are rice (around 24%) and maize,
cotton and tubers (all within 9–10%).

4.3.3. Land allocation
In order to analyze the influence of the redistribution of crops on

food security and benefit, three different land allocation optimization
scenarios were identified and analysed by applying the DSS based on

the BLS_2025_FI200 setting for other input (agricultural input man-
agement and food demand, see Table 4). The solution of the optimi-
zation process would identify a new optimal strategy for land allocation
that is highly dependent on the constraints in force. Therefore, in order
to take into account the impact of diversified constraints, three con-
figurations with substantial different assumptions were proposed and
assessed, as summarized in Table 5.

Fig. 8 shows the optimal land allocation area for the three constraint
scenarios proposed, together with the baseline scenario BLS2025. As
we can observe, the area distribution varies significantly across sce-
narios. As expected, under the Cotton0to100 scenario, all the crop-
land used for cotton is replaced by food and highly productive and
economically valued crops, like cowpeas (practically not present in the
baseline scenario), tubers (cassava and yam) and, to a lesser extent,
vegetables. In turn, areas initially used for cotton in Burkina Faso are
now mostly sown with cowpea and tubers. Finally, no significant
changes in the crop area distribution are observed in Niger, since cotton

Fig. 7. Crop regional distribution (baseline surfaces), and fertilization and irrigation proportions under BLS_2025_FI200 scenario. From left to right, the three
piecharts represent the shares of: cropland occupied (L), total fertilizer (F) and water (W) for each crop and region.
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was not used under the baseline scenario.
As for the second scenario, Rest0to100, where cotton is assumed

to be part of an established farming industry, an overall decrease in
vegetables and dry cereals (maize, millet and sorghum), as well as a
significant increase in tubers and cowpea, are observed. However, im-
portant differences arise when considering the regional level. To wit: (i)

millet and sorghum, although globally decreasing, are more used in the
Benin area; (ii) rice increases in the Burkina Faso region, but is reduced
elsewhere; and (iii) yam is reduced in Benin (see e.g. region #1062 in
Fig. 8), showing an opposite trend in other regions.

We finally consider the Rest10_60 scenario, where the possibility
of reallocating cropland is more restricted, to account for local farmers’
reluctance to changes. The most evident feature is the gain in cropping
area of tubers and cowpeas, although vegetables also show a significant
increase, see regions #1064 and #1066 in Fig. 8. Rice is increased only
in the Burkina Faso area (see region #1069 in Fig. 8), whereas, at the
other extreme, sorghum is fostered in Benin and Niger, but reduced in
Burkina Faso.

It is interesting to note that, while food security infeasibility is re-
duced in all the optimal scenarios considered, it is aggravated under the
BLS2025 scenario due to the assumed population growth, see Fig. 9.
On the other hand, irrigation and fertilization eradicate cereals

Table 5
Land allocation redistribution scenarios.

Land Constraint ID Description

Cotton0to100 Cotton area unrestricted. Other crops cannot reduce their
area, but they can increase up to 100%

Rest0to100 Cotton area constant. Other crops area unrestricted
BLS2025_10_60 Each crop area can vary within certain limits given by

MinArea=min{10%areaReg, 60%CropAreaActual}.
MaxArea=100% region

Fig. 8. Optimal regional crop area redistribution for the scenarios considered.
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infeasibilities and reduce significantly those in rice and vegetables.
Optimal land allocation scenarios are highly effective, eliminating al-
most completely the issue of demand satisfaction in vegetable and le-
guminous. BLS2025_10_60 scenario is especially relevant, since all the
infeasibilities disappear, except those of peanuts and, to a lesser extent,
rice. As we can observe in Fig. 9, peanut deficit occurs in regions #1062
and #1063, where its growth is only increased when using irrigation
but not fertilization. However, the main problems in those regions are
the missing cropland (which is not enough to satisfy local food de-
mands), and a very high initial infeasibility of vegetables.

Regarding the incomes obtained from each crop, tubers yield the
maximum profit in all the optimized scenarios, equaling the aggregated
benefit of the other crops, see Fig. 10. As we can observe in Fig. 8, areas
dedicated to tubers and the corresponding applied fertilizer are sig-
nificantly increased in many regions (up to 60% of the total area),
something that would probably imply an oversupply of products and a
drop-off in prices. Finally, note that some proposed solutions might not
be realistic as, for instance, the Cotton0to100 food security scenario
which, by completely replacing cotton, would theoretically have al-
lowed to reduce food scarcity.

Fig. 9. Comparison of total food security violation by crop group.

Fig. 10. Comparison of total benefit by crop group.
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4.4. Sensitivity analysis

The selection of modeling parameters plays a crucial role in the
analysis of results. Such parameters are usually subject to great un-
certainty, mainly due to market fluctuations and extreme weather
events. Sensitivity analysis has been adopted as a paradigm to evaluate
parameters uncertainty and its influence (Li et al., 2015). Specifically,
we have performed sensitivity analysis for the scenario providing best
results in terms of lower infeasibilities and greater benefits,
BLS2025_10_60. The following parameters were incorporated in the
analysis, with variations of ± 25% with respect to their base level: po-
pulation variation, crop market price (in particular for yam, the most
profitable crop), security factor, area constraints for land allocation,
and fertilizer, irrigation water and total agricultural area availabilities.

As shown in Fig. 11, the security factor and the total agricultural
area have the largest impact on both food demand infeasibility and total
benefit. Yam market price has also a great influence, since it is the key
factor for gross income but, as expected, it does not affect food in-
feasibility.

5. Conclusion

In this paper, we have described the DSS module, part of the E-water
tool. Specific attention has been devoted to the models and dataset
underlying the DSS as well as to the results obtained from its

application to the Mékrou river basin case study. The system was de-
veloped and applied to assess the Water Energy Food Ecosystem nexus,
providing optimal management solutions at river basin level, in a
context of food insecurity and increasing competition with other com-
peting sectors. Specifically, we focused on the identification of optimal
agricultural strategies for nutrient fertilizer and irrigation management,
as well as on the optimal handling of modified cropland allocation and
landuse.

Aiming to provide timely assessments, a simplified linear regression
agricultural approach, based on the EPIC biophysical process, was de-
veloped and integrated into the optimization tool. A linear programing
model and a multiobjective genetic algorithm were also designed to
perform tradeoff analysis among multiple and conflicting objectives,
related to agricultural productivity, food security and natural water
resources exploitation. All these components were embedded in a
friendly user interface allowing stakeholders, decision makers and local
expert technicians to easily build and customize new management and
application scenarios.

The developed E-Water software is open source, since it is intended
to be applied in developing countries, see https://aquaknow.jrc.ec.
europa.eu/. The tool can help analyze agronomic planning by finding
efficient patterns of fertilization, irrigation and land allocation, subject
to various environmental and practical considerations, such as water
exploitation, climate change, fertilizer available, population demand or
limited available agricultural areas. The system is designed to seek

Fig. 11. Sensitivity analysis of model parameters versus demand infeasibility (a) and versus the total benefit (b).
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solutions primarily prioritizing the minimization of food security, and
aiming at maximizing the production surplus as a secondary objective.
The tool also includes a sensitivity analysis module to assess robustness
of results.

Our model provides quantitative analyses of management decisions,
as given by irrigation and fertilization patterns for each crop and re-
gion. For instance, it is estimated that the foreseen population growt-
h—and the implied increase in food demand—by 2025 would trigger
food infeasibility by 95%. However, that could be significantly atte-
nuated by effectively applying fertilizer and irrigation (up to 30% for
some regions and crops), while increasing, at the same time, benefits by
105%. The identification of optimal agricultural management strategies
resulting from the increased use of fertilizers and irrigation has high-
lighted the local capacity to produce more food items. Nevertheless,
important deficits still remain, limiting the production capacity to
completely satisfy local food demand. Aiming to gain more insight, we
explored three alternative scenarios—focusing on optimal cropland
allocation—to assess whether different uses of existing cropland could
increase food self-sufficiency. Under the assumptions that cash crops
can be entirely abandoned, and that other food crops can be easily
interchanged, the analysis resulted in: (i) a nearly total eradication of
local incapacity to produce enough crops to satisfy food demand; and
(ii) a noticeable increase in profit, between 18% and 38%.

Optimal cropland allocation scenarios were found to be very de-
pendent on the restrictions considered, thus requiring the direct in-
volvement of local stakeholders to effectively define them (Markantonis
et al., 2017b). In this regard, we acknowledged that even when fixing
the area dedicated to cash crop cotton (thus limiting the possibility to
increase cropland for food crops), significant improvements were still
achieved regarding food self-sufficiency. Indeed, the redistribution of
current food cropland allowed an additional 15% reduction in the food
infeasibility indicator, compared with the optimal scenario, where only
fertilizer and irrigation were optimized, while land allocation was kept
constant.

We performed an illustrative sensitivity analysis for the
BLS2025_10_60 scenario, showing that food security was especially
affected by several factors, as the cropland area available, the popula-
tion growth rate the change in diet, and crop selling prices. This
highlights the need to characterize the parametrization of the scenarios
and the definition of constraints in a precise way.

We end up discussing the issue of availability of data. At the time of
completing the current tool design, only crop incomes were included in
the evaluation of the total benefit. In turn, there was no reliable in-
formation about costs associated with agricultural practices, and,
hence, they were disregarded. However, should these data eventually
become available, they could be easily integrated into the DSS.
Although they would not affect significantly the assessment of food
security, they could, however, substantially change the identification of
optimal strategies in relation with the added benefit resulting from the
surplus production.
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