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Abstract

In biomedical and epidemiological studies, gene-environment (G-E) interactions have been shown 

to importantly contribute to the etiology and progression of many complex diseases. Most existing 

approaches for identifying G-E interactions are limited by the lack of robustness against outliers/

contaminations in response and predictor spaces. In this study, we develop a novel robust G-E 

identification approach using the trimmed regression technique under joint modeling. A robust 

data-driven criterion and stability selection are adopted to determine the trimmed subset which is 

free from both vertical outliers and leverage points. An effective penalization approach is 

developed to identify important G-E interactions, respecting the “main effects, interactions” 

hierarchical structure. Extensive simulations demonstrate the better performance of the proposed 

approach compared to multiple alternatives. Interesting findings with superior prediction accuracy 

and stability are observed in the analysis of TCGA data on cutaneous melanoma and breast 

invasive carcinoma.
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1. Introduction

Despite significant main effects of genetic (G) and environmental (E) risk factors, recent 

studies have shown that gene-environment interactions also demonstrate important 

implications in medical genetics and epidemiology. There are a large number of successful 

approaches developed for detecting important G-E interactions associated with the etiology, 

diagnosis and prognosis of many complex diseases. Among them, one of the most popular 

strategy is to describe interactions using the products of two factors and then conduct a 

marginal [1,2] or joint [3,4] regression analysis. Recently, joint analysis has attracted 
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increasing interest as it can accommodate all G factors and their interactions in a single 

model, given that the biological processes are usually dominated by the joint effects of 

multiple genetic changes. To facilitate the estimation and interpretation, the “main effects, 

interactions” hierarchical constraint is often imposed [5,6], where an interaction can be 

identified only if its corresponding main effects are also identified. Compared to marginal 

analysis, there are more challenges in joint analysis due to the high dimensionality of 

genomic measurements and hierarchical constraint. We refer to [7], [8] and [9] for 

comprehensive discussions.

Despite many advantages, most of the existing interaction analysis approaches have the 

limitation of nonrobustness. They usually assume that data have no outliers/contaminations. 

However, in practice, outliers/data contaminations are not uncommon in both predictor and 

response spaces [10], which are known as leverage points and vertical outliers. More 

specifically, for some types of G factors, such as gene expression, outliers/contaminations 

may occur because of technical problems in profiling, human errors and genetic 

abnormalities [11]. For the disease-related clinical response (for example, Breslow’s depth 

for skin cutaneous melanoma), outliers/contaminations can be caused by errors in data 

collection and recording and inadvertently uncorrect sampling. In addition, sometimes there 

are extremely long or short survivals in prognosis studies due to the mistakes in death 

records as well as misclassification in the cause of death. In Figure 1, we show the 

distributions of some G factors and Breslow’s depth for the SKCM (skin cutaneous 

melanoma) data collected by TCGA (The Cancer Genome Atlas), where both leverage 

points and vertical outliers are clearly observed. More information on this data is available in 

the data analysis section of this article. For nonrobust approaches, it has been shown that 

these outliers can lead to biased estimation and false marker identification. Recently, a few 

approaches have been developed for robust G-E interaction analysis, including those based 

on quantile regression [12] or correlation [13], least absolute deviation (LAD) loss [6], rank-

based loss function [3], and others. However, these approaches are only robust to outliers in 

response but cannot accommodate leverage points in predictor space. The interaction studies 

on both vertical outliers and leverage points are still much limited [14].

In this study, we develop a joint model respecting the “main effects, interactions” 

hierarchical structure for G-E interaction analysis. The unique characteristic of this study is 

accommodating outliers/contaminations in both predictor and response spaces. The 

proposed approach is built on the robust trimmed regression technique, which can 

accommodate many types of data, such as continuous biomarkers and censored survival 

times. It significantly differs from least absolute deviation regression and other robust 

approaches which only have robustness property towards vertical outliers. Our study extends 

the traditional trimmed regression to interaction analysis and develops the “coefficient 

decompostion+penalization” framework for hierarchical selection, which may have 

independent methodological value. Advanced from the existing trimmed regression 

approaches which are usually built with the predefined size of trimmed set, we propose a 

more flexible data-driven process to determine the number of outliers, leading to satisfactory 

efficiency and robustness. In addition, a stability selection strategy is adopted to more 

accurately select the trimmed subject set. Overall, this study provides a practically useful 

new venue for G-E interaction analysis.
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2. Methods

For a subject, let y be the response of interest, which can be a continuous marker, categorical 

disease status, or survival time. Let z = (z1,…, zq) be the q environmental/clinical variables 

and x = (x1,…, xp) be the p genetic variables. We consider the joint regression model with 

all G and E effects and their interactions,

𝔼(y; z, x) = ϕ α0 + zα + xβ + ∑
k = 1

q
w(k)ηk , (1)

where ϕ is the known link function, 𝔼 ·  denotes expectation, α0 is the intercept, α = (α1,

…, αq)′, β = (β1,…, βp)′ and ηk = (ηk1,…, ηkp)′ k = 1,…, q are the regression coefficients 

for main E factors, main G factors and their interactions, respectively, and w(k) = (zkx1,…, 

zkxp).

We assume n independent subjects and use the subscript “i” to denote the ith subject. Denote 

the design matrices of E and G variables as Zn×q and Xn×p, and the response vector as yn×1. 

Under model (1), the unknown parameters θ = α0, α′, β′, η1′ , ⋯, ηq′ ′ can be estimated by 

minimizing the negative log-likelihood function,

L(θ; Z, X, y) = 1
n ∑

i = 1

n
li(θ),

with the deviance li (θ), which are usually not robust to vertical outliers or leverage points.

2.1. Robust trimmed estimation and selection

Instead of using the negative log-likelihood function directly, we propose the following 

robust objective function based on trimming technique,

L(θ; Z, X, y, 𝒮) = 1
𝒮 ∑

i ∈ 𝒮
li(θ), (2)

where 𝒮 is an outlier-free subset of {1,2,…, n} and 𝒮  denotes the cardinality of set 𝒮. We 

first consider the most popular linear regression model,

yi = α0 + ziα + xiβ + ∑
k = 1

q
wi

(k)ηk + εi, (3)

with
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li(θ) = yi − α0 − ziα − xiβ − ∑
k = 1

q
wi

(k)ηk

2
≜ ri

2,

where εi is the random error.

Let r = (r1,…, rn)′, then 𝒮 is defined as

𝒮 = 1 ≤ i ≤ n: ri − median(r) < μMAD(r) , (4)

where median(r) and MAD(r) are the median and median absolute deviation of vector r 

adjusted by a factor 1.4826, and μ > 0 is a tuning parameter.

The penalization is adopted for regularized estimation and variable selection, which has 

been a popular choice in several recent studies. For respecting “main effects, interactions” 

hierarchy, the coefficient for the interaction term ηk is decomposed as ηk = β ⊙ γk, where ⊙ 
represents the component-wise multiplication. Then, the following robust penalized 

objective function is proposed,

Lp(θ; Z, X, y, 𝒮) = 1
𝒮 ∑

i ∈ 𝒮
yi − α0 − ziα − xiβ − ∑

k = 1

q
wi

(k) β ⊙ γk

2

+ ∑
j = 1

p
ρ β j ; λ1, ξ + ∑

k = 1

q
∑
j = 1

p
ρ γk j ; λ2, ξ ,

(5)

Where ρ ν ; λ1, ξ = λ1∫ 0
ν 1 − x

λ1ξ +
dx is the minimax concave penalty (MCP) [15], λ1 and 

λ2 are data-dependent tuning parameters, and ξ is the regularization parameter. The 

proposed estimate θ is defined as the minimizer of (5) with the optimal subset 𝒮. The 

nonzero components of β and β ⊙ γk(k = 1, ⋯q) are regarded as the important main G effects 

and interactions that are associated with the response.

The proposed approach is motivated by the following considerations. As opposed to the 

nonrobust squared loss, the robust trimmed squared loss is adopted in (5) based on a subset 

𝒮 of subjects. The definition of 𝒮 in (4) can exclude those subjects with extreme absolute 

residuals due to the deviated values in the spaces of predictors and/or response. It 

significantly advances from the existing robust G-E interaction analyses [3, 6,12] which can 

only accommodate outliers in response but not in predictors. Besides, the robust measures of 

central location (median) and scale (MAD) are adopted in 𝒮, leading to more accurate 

detection of the number of outliers. Different from the existing studies on the least trimmed 

squares estimator [16,17] where the size of 𝒮 is predefined, the proposed approach 

determines the value of 𝒮  based on the residuals themselves and data-driven parameter μ. 

The identification of 𝒮 becomes more flexible to achieve sufficiently high efficiency for the 
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dataset without outliers and satisfactory robustness against data contamination. When μ is 

large enough, the proposed approach is reduced to the squared loss. In addition, motivated 

by the pairwise interaction analysis with strong hierarchial constraint developed in [18], we 

adopt the decomposition ηk = β⊙γk so that if an interaction term is selected (βjγkj ≠ 0), the 

corresponding main genetic effect must also be selected (βj ≠ 0). The MCP penalty is then 

imposed on βj and γkj for variable selection given its satisfactory statistical and numerical 

properties. Here, E factors are not subject to penalized selection and always included in the 

model as they are usually pre-selected by clinical evidences and with low dimensionality. 

This decomposition framework for respecting hierarchical G-E interaction structure has the 

advantage of lucid interpretation and a less complex computational algorithm.

We also modify li (θ) to accommodate other types of response variables. For example, for 

the right-censored survival response with observed logarithm survival time y and censoring 

indicator δ, we consider the weighted squared loss under the accelerated failure time (AFT) 

model,

li(θ) = wi yi − α0 − ziα − xiβ − ∑
k = 1

q
wi

(k)ηk

2
≜ ri

(w) 2,

where the data {(xi, zi, yi, δi),i = 1,…,n} have been sorted by yi in ascending order, and the 

weight wi is the Kaplan-Meier (KM) estimator defined as 

w1 =
δ1
n , wi =

δt
n − i + 1 ∏ j = 1

i − 1 n − j
n − j + 1

δ j
, i = 2, ⋯, n. This weighted approach has been 

adopted in many published studies due to its considerably low computational cost and good 

statistical properties [19]. Using the subjects with nonzero weights and their corresponding 

ri
(w), the proposed approach can then proceed in the same manner. For categorical and count 

data under generalized linear model, a similar weighted squared loss can be conducted based 

on the Taylor series expansion. In numerical study, we examine both continuous data under 

the linear regression model and survival data under the AFT model.

2.2. Algorithm

A modified C-steps algorithm is developed to obtain the optimal subset 𝒮 and corresponding 

estimation θ, which is motivated by the stability selection [20]. We present the proposed 

algorithm in Algorithm 1. In this algorithm, the most challenging step is the optimization of 

the objective function (5) given the outlier-free subset 𝒮. In Algorithm 2, we adopt an 

iterative coordinate descent (CD) algorithm, which optimizes Lp (θ; Z, X, y, 𝒮) with respect 

to one parameter at a time and iteratively cycles through all parameters until convergence. 

Denote y𝒮 as the components of y indexed by 𝒮 and X𝒮 as the rows of X indexed by 𝒮.

Algorithm 1: Robust trimmed estimation and selection—Step 1: For t = 1,…, T,

Step 1.1 Set m = 0. Draw q + 10 observations from the dataset at random as the elemental 

subset 𝒮(t, 0). Compute
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θ(t, 0) = argminθLp θ; Z, X, y, 𝒮(t, 0)

Step 1.2 Set m = m + 1. Compute

r(t, m) = y − α0
(t, m − 1) − Zα(t, m − 1) − Xβ(t, m − 1) − ∑

k = 1

q
W(k) β(t, m − 1) ⊙ γk

(t, m − 1) ,

𝒮(t, m) = 1 ≤ i ≤ n: ri
(t, m) − median r(t, m) < μMAD r(t, m) ,

and

θ(t, m) = argminθLp θ; Z, X, y, 𝒮(t, m)

Step 1.3 Repeat Step 1.2 until convergence, where the convergence criterion is taken as

Lp θ(t, m); Z, X, y, 𝒮(t, m) − Lp θ(t, m − 1); Z, X, y, 𝒮(t, m − 1)

Lp θ(t, m − 1); Z, X, y, 𝒮(t, m − 1) < 10−4 .

Step 1.4 Return the subset 𝒮
t, mstop  of the subjects selected at the stopping iteration mstop.

Step 2: Compute the final set 𝒮 of the selected subjects,

𝒮 = i: 1
T ∑

t = 1

T
I i ∈ 𝒮

t, mstop > τ ,

where I(·) is the indicator function and τ ∈ (0, 1) is a tuning parameter.

Step 3: Compute the final estimation θ of the unknown parameters,

θ = argminθLp(θ; Z, X, y, 𝒮) .

Algorithm 2: Iterative coordinate descent (CD) algorithm—Step 1 Initialize 

b = 0, α0
(b), α(b) ′ ′ = (Z𝒮′ Z𝒮)−1Z𝒮′ y𝒮 with Z = 1n × 1, Z , β(b) = 0, and γk

(b) = 0, where we 

denote b as the index of iteration.

Step 2 Set b = b + 1. With α0, α and γk fixed at α0
(b − 1), α(b − 1) and γk

(b − 1), optimize (5) 

with respect to β. Let y(b) = y − Zα(b − 1) − α0
(b − 1) and 

X(b) = X + ∑k = 1
q W(k) ⊙ 1n × 1γk

(t − 1) ′, then
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β(b) = argmin 1
𝒮 y𝒮

(b) − X𝒮
(b)β 2

2 + ∑
j = 1

p
ρ β j ; λ1, ξ . (6)

For j = 1,…, p, conduct the following steps sequentially,

Step 2.1 Compute

r( − j)
(b) = y𝒮

(b) − ∑
l < j

x𝒮, l
(b) βl

(b) − ∑
l > j

x𝒮, l
(b) βl

(b − 1), χ j
(b) = 1

n x𝒮, j
(b) ′x𝒮, j

(b) , φ j
(b) = 1

n (x𝒮, j
(b) )′r( − j)

(b) ,

Step 2.2 Update the estimate of βj as

β j
(b) =

ST φ j
(b), λ1 / χ j

(b) − 1
ξ φ j

(b)/ χ j
(b) ≤ λ1ξ,

φ j
(b)/ χ j

(b) else,

where ST(ν,λ1) = sgn(ν)(|ν| − λ1)+ is the soft-thresholding operator.

Step 3 With α0, α and β fixed at α0
(b − 1), α(b − 1) and β(b), optimize (5) with respect to γk,k = 

1,…, q. Let y̆(b) = y − Zα(b − 1) − Xβ(b) − α0
(b − 1) and W(k) (b) = W(k) ⊙ 1n × 1β(b) ′, then

γ1
(b) ′, ⋯, γq

(b) ′ ′ = argmin 1
𝒮 y̆𝒮

(b) − ∑
k = 1

q
W𝒮

(k) (b)
γk

2

2
+ ∑

k = 1

q
∑
j = 1

p
ρ γk j ; λ2, ξ , (7)

For k = 1, …, q and j ∈ j: β j
(b) ≠ 0 , conduct the two steps similar to Step 2.1 and Step 2.2 

sequentially.

Step 4 Compute

α0
(b), α(b) ′ ′ = Z𝒮′ Z𝒮

−1Z𝒮′ y𝒮 − X𝒮β(b) − ∑
k = 1

q
W𝒮

(k) β(b) ⊙ γk
(b) .

Step 5 Repeat Steps 2–4 until convergence, where the convergence criterion is taken as

Lp θ(b); Z, X, y, 𝒮 − Lp θ(b − 1); Z, X, y, 𝒮

Lp θ(b − 1); Z, X, y, 𝒮
< 10−4 .

Different from the original C-steps algorithm which conducts a sufficiently large number of 

initial subsampling (500 adopted in [16,17]) and returns the results with the smallest 

objective function, the proposed algorithm identifies the optimal outlierfree subset based on 
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the stability selection. With stability selection, we do not simply select one model which 

may not be optimal with insufficient initializations. The subset selection depends on the 

whole process where the outliers have smaller probability to be included, leading to more 

accurate detection and the lower requirement for a large number of initializations. In our 

numerical study, we set T = 50, which generates satisfactory result. Another advantage of 

the proposed algorithm is in Step 3 of Algorithm 2. Due to the decomposition ηkj = βjγkj, 

we only need to update γkj when βj ≠ 0, dramatically reducing the searching space and 

computational cost. Both algorithms are guaranteed to converge as the value of the objective 

function (5) decreases at each step. It is observed that convergence is achieved in a small to 

moderate number of iterations in both simulation and case study. For a simulated dataset 

with q = 5, p = 1000 and n = 250, the analysis with T = 50 takes about five minutes using a 

laptop with standard configurations.

Tuning parameters—We set μ = 2.5 in our numerical studies based on the 99.5% quantile 

of the standard normal distribution, motivated by that 1% of the observations are expected to 

be outliers for the normal distribution. For simulation scenarios with continuous G factors 

and AR structure under linear model (see the next section for details), we further examine 

the outlier detection results (as a function of μ) to better comprehend the effects of μ. In 

Table A1, two specific measures are considered, including true positive (TP) and false 

positive outliers (FP). For the five different error distributions, a larger μ detects fewer false 

positives but also fewer true positives. On the other hand, a smaller μ produces more true 

positives as well as more false positives. When μ = 2.5, it is observed to be able to 

effectively control the false positives and have satisfactory performance on the detection of 

true positives. As suggested by [20], the stability selection results are not sensitive to the 

threshold value τ in a range of (0.6,0.9). In our numerical studies, we set τ = 0.6. For the 

regularization parameter ξ in the MCP penalties, we follow the published studies [21] and 

set ξ = 6. A grid search is conducted to choose the values of (λ1,λ2) of the MCP penalties 

using BIC criterion with model size as the degrees of freedom.

3. Simulation

We assess the performance of the proposed analysis with extensive simulations. A total of 

forty simulation scenarios are considered. Under all scenarios, we set q = 5 and p = 1,000. 

There are thus a total of 1,005 main effects and 5,000 interactions. (a) Two types of G 

factors are considered, mimicking continuous gene expression and categorical SNP data, 

respectively. The continuous G variables are generated from a multivariate normal 

distribution with marginal means 0 and marginal variances 1. We consider two correlation 

structures. The first is an AR (auto-regressive) structure where the correlation between the 

jth and kth G variables is 0.3|j−k|. The second is a Band (banded) structure where the 

correlation between jth and kth G variables is 0.33 if |j−k| = 1 and 0 otherwise. For the 

discrete G variables, we further dichotomize the above continuous variables at the 1st and 

3rd quartiles and generate 3-level measurements (0,1,2). (b) There are three continuous and 

two binary E factors, where the three continuous ones are simulated from a multivariate 

normal distribution with marginal means 0 and the AR structure as mentioned above, and the 

two binary ones are simulated from a binomial distribution with a success probability of 0.6. 
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(c) All E factors, eight main G factors and fourteen G-E interactions are assumed to have 

nonzero coefficients randomly generated from Uniform(0.6, 1), where the strong hierarchy 

is satisfied. The rest coefficients are zero. (d) We consider two types of response variables 

and models. The first is a continuous response under the linear model (3). The second is the 

censored survival data under the AFT model, where the observed logarithm survival times 

are generated based on model (3), and the censoring times generated from an exponential 

distribution with the parameter adjusted so that the censoring rate is around 20%. (e) Five 

types of data contaminations are considered. The first three ones have no outliers in 

predictors. The first one (D1) has error distribution N(0,1) which is also without outliers in 

response. The second (D2) and third (D3) ones have error distribution 

90%N(0,1)+10%Cauchy(0,5) and 90%N(0,1)+10%N(20,1), where outliers exist in response. 

The fourth (D4) and fifth (D5) ones are assumed to contain leverage points. Specifically, for 

dataset with continuous G factors, 2% and 8% of the subjects have G factor measurements 

added by 20 and N(0,2), respectively. For dataset with categorical G factors, 10% of the 

subjects are re-generated from a multinomial distribution with probability (0.5,0.3,0.2) for 

(0,1,2). The error distributions for D4 and D5 are N(0,1) and 90%N(0,1) + 10%Cauchy(0,5). 

Thus, D4 only has outliers in predictors, while D5 has outliers in both predictor and 

response spaces. (f) We set the sample size n = 250 and n = 300 for the continuous and 

survival responses, respectively.

Besides the proposed approach (referred to as “LTS-MCP-Hier”), the following alternatives 

for joint analysis are also considered. The first four approaches conduct variable selection on 

all G factors and G-E interactions directly, without considering the hierarchical structure. 

LS-MCP is based on the nonrobust squared loss function and MCP penalty, implemented by 

the R package ncvreg. LAD-LASSO consists of the robust least absolute deviations and 

LASSO penalty which has robustness property towards vertical outliers. It is realized using 

the R package quantreg. RLARS is the robust least angle regression with robust correlation 

measure for variable selection [22] and is realized using the R package robustHD. It has 

been demonstrated to be robust to both vertical outliers and leverage points. LTS-MCP is 

similar to the proposed, except that the hierarchical structure is not reinforced and the 

original C-steps algorithm is used instead of stability selection. The last one is LS-MCP-
Hier, which has the same modeling framework as the proposed, except that the nonrobust 

squared loss function is adopted. The above alternative approaches cover different types of 

G-E interaction analyses and can comprehensively evaluate the merits of the proposed 

approach. They are chosen due to their popularity and competitive performance among the 

existing approaches.

For each approach, we evaluate the identification performance for main effects (M) and 

interactions (I) separately, by the number of true positives M:TP and I:TP and the number of 

false positives M:FP and I:FP. In addition, the root of the sum squared error θ − θ0
2

(RSSE) is used to assess the estimation accuracy, where θ and θ0 are the estimated and true 

values of θ. We also examine the prediction performance using an independent testing set 

with 100 subjects under the same simulation scenarios. We adopt the prediction mean 

squared error (PMSE) for continuous outcome and C-statistic (Cstat) for survival outcome. 

The C-statistic quantifies the overall adequacy of risk prediction for censored survival data 
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based on the time-integrated AUC (area under curve), where a larger value indicates better 

prediction [23].

For each scenario, 200 replicates are simulated, and summary statistics (mean and standard 

deviation) are computed. Summary results for the scenarios with continuous G factors and 

AR structure under linear and AFT models are shown in Tables 1 and 2, respectively. The 

rest of the results are provided in Appendix. The proposed LTS-MCP-Hier is observed to 

have competitive performance under all simulation scenarios. For the dataset without 

contamination (D1), the proposed approach can achieve satisfactory efficiency that is 

comparable to the nonrobust LS-MCP-Hier, and outperforms the robust alternatives and 

even nonrobust LS-MCP. The majority of true positives are identified by the proposed 

approach while with a small number of false positives. The advantage of the proposed 

approach over the alternatives becomes prominent for the datasets with different types of 

contaminations. For example, for the scenario with outliers in predictors (D4) under linear 

model (Table 1), the proposed approach has (M:TP, M:FP, I:TP, I:FP)=(7.4, 3.8, 11.1, 2.7), 

compared to (1.4, 22.6, 3.1, 68.0), (4.1, 4.0, 4.2, 13.4), (7.2, 0.7, 6.9, 11.6), (6.2, 7.9, 10.0, 

30.1), and (5.4, 54.5, 3.9, 5.4) for LS-MCP, LAD-LASSO, RLARS, LTS-MCP and LS-

MCP-Hier, respectively. The superior identification performance of the proposed approach 

over LAD-LASSO and RLARS provides a strong support to the proposed trimming strategy 

for accommodating outliers. In addition, it performs better than LTS-MCP, which suggests 

that the “coefficient decomposition” and stability selection framework can improve the 

identification of both main effects and interactions. The proposed approach also behaves 

better in terms of estimation and prediction. For example, for the scenario with 

contamination type D2 under AFT model (Table 2), the proposed approach has (ESSE, 

Cstat)=(2.71, 0.89), compared to (46.11, 0.55), (4.11, 0.74), (4.83,0.73), (3.71,0.82), and 

(59.00,0.58) for LS-MCP, LAD-LASSO, RLARS, LTS-MCP and LS-MCP-Hier, 

respectively. For the datasets with categorical G variables, the similar pattern is observed 

that the proposed approach demonstrates superior or comparable performance compared to 

five alternatives in identification, estimation and prediction accuracy.

In practical genetic interaction analyses, the important interactions may have different 

magnitude of signals, including those with weak but nonzero effects [24]. To be thorough, 

we also examine the scenarios with both moderately large and weak effects. Specifically, we 

consider data with continuously distributed G factors and AR correlation structure, and with 

a continuous outcome under the linear regression model. The simulation settings for 

coefficients are similar to those in (c) as mentioned above. One different is that seven of the 

fourteen important interactions are with weaker signals equal to 0.2. Results with five types 

of data contaminations are shown in Table A8. It can be seen that the performance of all 

approaches decay compared to those in Table 1. However, the proposed approach is again 

observed to have favorable performance. For example, under the scenario with D4, the 

values of (I:TP, I:FP) for interactions are (7.7, 1.4) (proposed), (2.3, 69.4) (LS-MCP), (3.2, 

14.2) (LAD-LASSO), (5.0, 10.1) (RLARS), (7.2, 27.0) (LTS-MCP), and (3.7, 5.1) (LS-

MCP-Hier).

In the interaction analysis literature, it has been suggested that there may exist important 

interactions in the absence of the corresponding main effects [7]. For comprehensive 
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consideration, we conduct another analysis on scenarios where the “main effects, 

interactions” hierarchy is violated for some interactions. Specifically, data with continuous 

G factors, AR correlation structure, and a continuous response are generated. Besides the 

fourteen nonzero G-E interactions as described above, six additional nonzero interactions are 

considered without the corresponding main G effects. As shown in Table A9, the proposed 

approach performs slightly worse than LTS-MCP which is similar to the proposed but does 

not reinforce the hierarchy. However, it still outperforms other alternatives, including two 

nonrobust approaches LS-MCP and LS-MCP-Hier, and two robust ones LAD-Lasso and 

RLARS which do not respect the hierarchy and may be favored here.

4. Data Analysis

The Cancer Genome Altas (TCGA) provides comprehensive profiling data in various cancer 

types. With high quality and public availability, the TCGA data have contributed to 

thousands of genetic studies and serve us as an ideal testbed. In this study, we analyze 

TCGA data on skin cutaneous melanoma (SKCM) and breast invasive carcinoma (BRCA). 

The processed level 3 data are considered which can be downloaded from TCGA 

Provisional using the R package cgdsr.

4.1. Skin Cutaneous Melanoma (SKCM) Data

Cutaneous melanoma, the most dangerous type of skin cancer, has been demonstrated to 

account for approximately 75% of all deaths from skin cancer. The response of interest is the 

continuous (log2-transformed) Breslow’s depth, which is analyzed using a linear model. It 

describes the thickness of the tumor, which is considered as one of the most significant 

factors in predicting progression of melanoma [25]. For E variables, we include age, 

American Joint Committee on Cancer (AJCC) tumor pathologic stage, gender, and Clark 

level. For G variables, we consider mRNA gene expressions, which are collected using the 

IlluminaHiseq RNAseq V2 platform and have been lowess-normalized, log-transformed, and 

median centered. There are 298 subjects available with 18,355 measurements of gene 

expressions. We conduct a simple prescreening as the number of cancer-related genes is not 

expected to be large, which selects the top 2,000 genes with the largest variances across all 

the samples for downstream analyses.

The estimated coefficients with the proposed approach are listed in Table 3. Compared to 

age and gender, stage and Clark level are more relevant to the Breslow’s depth, which is 

consistent with the literature. The proposed approach identifies a total of 43 important genes 

and 26 G-E interactions associated with Breslow’s depth. Existing literature shows 

potentially useful implications of our findings. For instance, gene FGFR3 has been shown to 

deactivate the malignant transformation as a tumor suppressor in melanoma cancer cells. An 

increased expression of antigen from gene FMR1NB has been found in melanoma stem 

cells, which may be a cause of treatment failure. Gene LAMP1 has been observed to express 

on the surface of metastatic melanoma cells, and its downregulation could reduce lung 

metastasis. Gene SPRR1A has been found to express dramatically higher levels in thin 

melanomas. In addition, gene SPRR2G has been characterized as keratinocyte-associated 

and has been found to have decreased expression in the primary melanoma. Gene S100A7, 

Xu et al. Page 11

J Stat Comput Simul. Author manuscript; available in PMC 2019 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



known as psoriasin, has been observed to significantly over-express in human epithelial skin 

tumors, as well as in breast and bladder cancer.

We also analyze the data using the alternatives, and the comparison results are summarized 

in Table A10. The numbers of overlapping identifications of main effects and interactions 

are presented, respectively, along with the corresponding RV-coefficients [26]. The RV-

coefficient evaluates the similarity of two data matrices with a larger value indicating a 

higher degree of similarity. It is observed that significantly different sets of main effects and 

interactions are found by different approaches with moderate RV-coefficients. LS-MCP, 

LAD-LASSO, RLARS and LTS-MCP, which do not reinforce the hierarchical structure, 

identify much smaller number of main effects compared to that of interactions. Both LTS-

MCP-Hier and LS-MCP-Hier identify a moderate number of main effects and interactions.

To provide an indirect support to the identification analysis, we evaluate the prediction 

accuracy using PMSE based on 200 times resampling (9/10 training subjects and 1/10 

testing subjects), which has also been adopted in the literature. The proposed approach is 

observed to have the best prediction performance with PMSE=0.26, compared to 1.01 (LS-

MCP), 0.32 (LAD-LASSO), 0.49 (RLARS), 0.87 (LTS-MCP) and 0.58 (LS-MCP-Hier). We 

also examine the selection stability by calculating the observed occurrence index (OOI) [19]. 

Using the same resampling strategy, the OOI measures the identified probability for each 

main effect or interaction, where a larger value indicates better stability in identification 

among random samples. The mean OOI of the identified main effect and interactions using 

the proposed approach is 0.85, compared to 0.32 (LS-MCP), 0.81 (LAD-LASSO), 0.50 

(RLARS), 0.10 (LTS-MCP) and 0.81 (LS-MCP-Hier), suggesting satisfactory stability of the 

proposed approach.

4.2. Breast Invasive Carcinoma (BRCA) Data

Breast cancer is the second cause of cancer death among female, which can be influenced by 

a number of environmental and genetic factors [27]. The response of interest is the censored 

survival time, which is analyzed based on AFT model. In this study, we focus on the female 

Whites with primary tumor. Data are available on 353 subjects, with 60 deaths during the 

follow-up period. For E variables, we include age, AJCC tumor pathologic stage, ER status 

(positive/negative) and weight. For G variables, there are 16,277 measurements of mRNA 

expressions and the top 2,000 genes are selected for the downstream analyses using the same 

prescreening as described in the previous section.

The coefficients estimated from the proposed approach are provided in Table 4. The three E 

variables age, stage and weight have negative coefficients, indicating that higher levels are 

associated with shorter survival, and the positive coefficient of ER status suggests that the 

subjects with negative ER status tend to have better prognosis. In addition, there are 32 

important main effects along with 43 interactions. These findings are validated by the 

literature search. For example, gene ASH2L has been shown to be over-expressed in human 

breast cancer among other candidate oncogenes. Gene ATAD1 has been found to be down-

regulated in different subtypes of breast tumors in gene expression profiling, whose 

interactions with age, tumor stage and ER status are identified using the proposed approach. 

Abnormal expression of gene FGF4 has been found in human breast cancer cells, and the 
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up-regulation of endogenous FGF4 expression indicates its biological significance in 

tumorigenesis. Gene KAT6A has been suggested to be a novel oncogene in breast cancer as 

a chromatin modifier. Gene MED1 has been demonstrated a key role in tamoxifen resistance 

of human breast cancer cells, suggesting its potential as a therapeutic target in cancer 

treatment. Over-expression of gene MTBP has been observed to be strongly correlated with 

reduced breast cancer patient survival. Gene NSD3 has been showed to be amplification in 

primary breast carcinomas, suggesting a possible involvement in human tumorigenesis. 

Gene PHB2 has been demonstrated to play a crucial role in modulation of ER status in 

breast cancer cells.

Data are also analyzed using the alternatives. The summary results of comparison are shown 

in Table A11. Small numbers of overlapping main effects and interactions are found across 

different approaches, whereas moderate common information is contained among different 

identifications given the values of RV-coefficients. We also compute C-statistics to evaluate 

the prediction accuracy of survival response using the same resampling process. The 

proposed approach demonstrates improved prediction ability with a C-statistic value of 0.55, 

compared to 0.49 (LS-MCP), 0.49 (LAD-LASSO), 0.47 (RLARS), 0.51 (LTS-MCP) and 

0.47 (LS-MCP-Hier). In addition, the proposed approach has better stability with the 

average OOI as 0.49, compared to 0.09 (LS-MCP), 0.43 (LAD-LASSO), 0.27 (RLARS), 

0.08 (LTS-MCP) and 0.4 (LS-MCP-Hier). The improved prediction and stability confirm the 

validity of the proposed analysis.

5. Discussion

Identifying important G-E interactions associated with complex multifactorial human 

diseases is an important goal of high-dimensional cancer studies. In this study, we propose a 

novel effective interaction analysis approach based on the least trimmed regression. The 

proposed approach can accommodate the vertical outliers as well as the leverage points, 

which are not uncommon in practice but have not been well studied. It differs significantly 

from the existing robust interaction analyses that usually focus on model mis-specification 

or outliers/contaminations in response. A robust criterion based on the (weighted) residuals 

is developed for choosing the optimal number of outliers, which can accommodate multiple 

types of responses, such as continuous biomarkers and censored survival time. The 

coefficient of each interaction is decomposed as the product of the corresponding main 

effect and interaction-specific coefficient, which has an intuitive formulation to 

automatically respect the strong hierarchial structure. The modified stability selection-based 

C-steps algorithm and iterative coordinate descent algorithm are adopted to optimize the 

objective function, which leads to the estimation of main effects and interactions as well as 

the optimal outlier-free subject set. Extensive simulations are conducted, including various 

scenarios without data contamination, with vertical outliers, and with leverage points. The 

results demonstrate the competitive performance of the proposed analysis in terms of 

identification, estimation and prediction. In the data analysis of cutaneous melanoma and 

breast invasive carcinoma with gene expression measurements, the proposed approach 

identifies biologically sensible markers with better prediction performance and stability.
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In this study, we have considered a continuous response under the linear model and a 

censored survival time under the AFT model. For the categorical and count data under 

generalized linear models, the iterated weighted squared loss can be adopted as an 

approximation to the negative log-likelihood. Thus, with minor modifications, the proposed 

approach can be extended to accommodate other types of responses. The proposed approach 

is built on the trimmed regression which has been demonstrated to have solid statistical 

properties for the analysis of low-dimensional data and high-dimensional main effects. Thus 

it may be reasonable to conjecture that the proposed approach also has good theoretical 

properties. The detailed study is postponed to future research. In simulation, we focus on the 

leverage points in G factors, more extensive numerical studies with outliers in E factors are 

deferred to future investigation. In data analysis, more biological and functional analyses are 

needed to provide more evidence of the identified interactions.

Acknowledgements

We thank the organizers and participants of International Workshop on Perspectives on High-Dimensional Data 
Analysis (HDDA-VIII-2018). We thank the editor and reviewer for their careful review and insightful comments, 
which have led to a significant improvement of the article.

Funding

This work was supported by the [National Institutes of Health] under Grant [CA216017, CA204120]; and [the 
National Natural Science Foundation of China] under Grant [61402276, 91546202].

Appendix A. The additional numerical results

Table A1.

Outlier detection results under simulation scenarios with continuous G factors and AR 

structure under linear model. TP: true positive outliers. FP: false positive outliers. In each 

cell, mean (sd) based on 200 replicates.

μ D1: N(0,1) D2: 0.9N(0,1)+0.1Cauchy(0,5) D3: 0.9N(0,1)+0.1N 20,1 D4: N(0,1) and with 
leverage points

D5: 0.9N(0 
1)+0.1Cauchy(0,5) 
and with leverage 

points

TP FP TP FP TP FP TP FP TP FP

1.0 0.0(0.0) 98.6(4.5) 17.9(2.1) 80.2(4.9) 25.0(0.1) 71.5(3.9) 12.9(2.1) 87.4(4.1) 19.2(2.0) 80.3(5.2)

1.1 0.0(0.0) 85.0(4.5) 17.5(2.2) 68.8(4.6) 25.0(0.1) 61.6(4.3) 11.9(2.1) 76.4(4.7) 18.9(2.2) 68.3(5.0)

1.2 0.0(0.0) 75.0(4.2) 17.0(2.4) 59.6(4.8) 25.0(0.0) 53.1(4.5) 11.0(2.0) 65.8(4.1) 18.3(2.0) 58.6(4.6)

1.3 0.0(0.0) 65.2(5.8) 16.7(2.5) 50.9(5.1) 25.0(0.0) 45.4(4.7) 10.2(2.0) 56.8(4.3) 18.0(2.2) 49.4(4.8)

1.4 0.0(0.0) 55.9(6.4) 16.5(2.4) 42.9(5.8) 25.0(0.0) 37.5(5.2) 9.7(1.8) 47.6(4.5) 17.8(2.2) 41.7(5.1)

1.5 0.0(0.0) 47.4(6.4) 16.1(2.6) 36.1(5.5) 25.0(0.0) 30.9(5.6) 9.0(1.8) 40.0(3.7) 17.5(2.3) 34.1(5.1)

1.6 0.0(0.0) 40.3(7.1) 15.9(2.6) 30.1(5.4) 25.0(0.0) 25.2(5.5) 8.2(1.6) 33.4(4.7) 17.2(2.2) 27.6(4.7)

1.7 0.0(0.0) 33.7(6.8) 15.7(2.8) 24.7(5.4) 25.0(0.0) 20.1(5.1) 7.9(1.5) 27.2(4.4) 16.9(2.3) 22.5(4.3)

1.8 0.0(0.0) 28.3(6.8) 15.3(2.8) 19.5(4.8) 25.0(0.0) 15.9(4.7) 7.5(1.4) 23.1(4.8) 16.7(2.4) 17.6(4.3)

1.9 0.0(0.0) 23.4(6.4) 15.1(2.8) 15.7(4.5) 25.0(0.0) 12.7(4.4) 7.3(1.3) 18.2(4.4) 16.4(2.4) 14.3(4.0)

2.0 0.0(0.0) 19.1(5.7) 14.8(2.7) 12.6(3.9) 25.0(0.0) 10.0(4.2) 7.0(1.3) 14.6(3.9) 16.1(2.5) 11.0(3.6)

2.1 0.0(0.0) 15.7(5.4) 14.4(2.7) 10.0(4.0) 25.0(0.0) 7.9(3.9) 6.6(1.2) 11.4(3.9) 15.7(2.5) 8.7(3.2)

2.2 0.0(0.0) 12.8(5.4) 14.2(2.7) 7.8(3.6) 25.0(0.0) 5.8(2.9) 6.3(1.1) 9.0(3.5) 15.4(2.5) 6.9(3.3)
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μ D1: N(0,1) D2: 0.9N(0,1)+0.1Cauchy(0,5) D3: 0.9N(0,1)+0.1N 20,1 D4: N(0,1) and with 
leverage points

D5: 0.9N(0 
1)+0.1Cauchy(0,5) 
and with leverage 

points

2.3 0.0(0.0) 10.4(4.7) 13.9(2.7) 5.8(3.2) 25.0(0.0) 4.4(2.3) 6.3(1.0) 6.9(2.9) 15.1(2.6) 5.2(2.9)

2.4 0.0(0.0) 8.5(4.0) 13.6(2.8) 4.5(2.7) 25.0(0.0) 3.4(2.2) 6.1(0.9) 5.3(2.7) 14.8(2.7) 3.6(2.4)

2.5 0.0(0.0) 6.9(3.5) 13.2(2.9) 3.4(2.3) 25.0(0.0) 2.5(1.9) 5.8(0.9) 4.1(2.1) 14.4(2.6) 2.5(1.8)

2.6 0.0(0.0) 5.4(3.2) 12.9(2.9) 2.5(2.0) 25.0(0.0) 1.9(1.6) 5.7(0.8) 3.3(2.0) 14.0(2.7) 2.0(1.7)

2.7 0.0(0.0) 4.2(2.9) 12.7(2.8) 2.0(1.9) 25.0(0.0) 1.5(1.5) 5.5(0.8) 2.4(1.8) 13.7(2.8) 1.5(1.7)

2.8 0.0(0.0) 3.2(2.5) 12.4(2.9) 1.5(1.7) 25.0(0.0) 1.0(1.3) 5.2(0.9) 1.9(1.6) 13.2(2.8) 1.2(1.2)

2.9 0.0(0.0) 2.4(2.0) 12.1(2.9) 1.2(1.4) 25.0(0.0) 0.7(1.1) 5.2(0.9) 1.4(1.4) 13.0(2.6) 1.0(1.1)

3.0 0.0(0.0) 1.8(1.7) 11.9(2.8) 0.9(1.2) 25.0(0.0) 0.4(0.7) 5.0(0.9) 1.0(1.2) 12.3(2.6) 0.7(1.0)

3.1 0.0(0.0) 1.4(1.4) 11.6(2.9) 0.8(1.1) 25.0(0.0) 0.3(0.6) 5.0(0.6) 0.8(1.1) 12.1(2.6) 0.6(1.0)

3.2 0.0(0.0) 1.1(1.3) 11.4(2.8) 0.6(1.0) 24.6(2.6) 0.2(0.5) 5.0(0.7) 0.6(0.9) 11.9(2.6) 0.4(0.7)

3.3 0.0(0.0) 0.9(1.1) 11.1(2.9) 0.4(0.8) 24.1(3.6) 0.2(0.5) 4.9(0.7) 0.6(1.0) 11.4(2.5) 0.4(0.7)

3.4 0.0(0.0) 0.7(1.0) 10.8(3.0) 0.3(0.7) 23.1(5.6) 0.2(0.4) 4.9(0.6) 0.4(0.7) 11.0(2.7) 0.2(0.5)

3.5 0.0(0.0) 0.6(0.9) 10.6(3.0) 0.3(0.6) 21.0(8.1) 0.1(0.4) 4.8(0.6) 0.3(0.6) 10.9(2.7) 0.1(0.4)

3.6 0.0(0.0) 0.4(0.7) 10.4(2.9) 0.2(0.5) 15.5(10.0) 0.1(0.4) 4.7(0.7) 0.2(0.6) 10.6(2.6) 0.1(0.4)

3.7 0.0(0.0) 0.4(0.7) 10.0(2.9) 0.1(0.4) 12.1(10.4) 0.0(0.2) 4.6(0.8) 0.2(0.7) 10.4(2.5) 0.1(0.4)

3.8 0.0(0.0) 0.2(0.5) 9.9(2.8) 0.1(0.3) 8.3(9.2) 0.0(0.1) 4.6(0.8) 0.1(0.5) 9.9(2.5) 0.0(0.2)

3.9 0.0(0.0) 0.2(0.5) 9.7(2.7) 0.1(0.3) 5.1(7.4) 0.0(0.1) 4.6(0.8) 0.1(0.3) 9.4(2.3) 0.0(0.2)

4.0 0.0(0.0) 0.1(0.3) 9.5(2.7) 0.1(0.3) 2.8(4.4) 0.0(0.1) 4.6(0.9) 0.1(0.2) 9.4(2.4) 0.0(0.2)

Table A2.

Summary results under simulation scenarios with continuous G factors and Band structure 

under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0,1)

LTS-MCP-Hier 7.8(0.4) 0.8(1.9) 12.0(2.0) 1.0(1.1) 2.34(0.53) 0.99(0.53)

LS-MCP 5.5(0.9) 3.9(4.4) 10.9(0.9) 12.9(11.1) 2.92(0.45) 1.31(0.62)

LAD-Lasso 8.0(0.1) 11.4(5.6) 13.1(1.5) 30.4(11.6) 1.78(0.39) 1.47(0.56)

RLARS 7.4(0.7) 0.7(1.1) 7.5(1.8) 11.4(7.2) 3.25(0.44) 2.29(0.80)

LTS-MCP 6.0(1.0) 6.5(3.3) 10.7(1.0) 25.8(8.9) 2.63(0.49) 1.34(0.25)

LS-MCP-Hier 8.0(0.1) 0.5(1.7) 12.7(1.1) 0.5(0.7) 1.79(0.35) 0.81(0.19)

D2: 0.9N(0, 1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.8(0.4) 0.9(2.9) 11.4(2.0) 1.1(1.0) 2.28(0.50) 1.14(0.60)

LS-MCP 2.1(1.8) 18.2(8.0) 2.3(2.4) 71.9(11.6) 30.32(40.12) 547.58(2145.90)

LAD-Lasso 7.5(0.6) 2.8(2.2) 7.0(2.4) 7.5(3.4) 3.13(0.35) 4.11(1.22)

RLARS 7.1(0.8) 0.8(1.1) 6.0(1.8) 11.4(6.8) 3.67(0.50) 3.33(1.23)

LTS-MCP 5.8(0.9) 8.4(3.9) 10.4(1.1) 29.5(10.3) 2.80(0.43) 1.37(0.36)

LS-MCP-Hier 5.8(1.4) 150.7(118.1) 2.4(3.2) 27.2(74.9) 28.76(42.09) 1181.23(5245.02)

D3: 0.9N(0,1) + 0.1N(20,1)
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M:TP M:FP I:TP I:FP RSSE PMSE

LTS-MCP-Hier 7.8(0.4) 0.9(2.3) 11.7(1.8) 1.0(1.1) 2.15(0.47) 1.05(0.50)

LS-MCP 2.7(1.0) 24.1(5.2) 2.7(1.4) 67.9(5.2) 9.96(0.68) 33.43(7.57)

LAD-Lasso 7.3(0.8) 3.0(1.8) 5.4(2.1) 8.0(2.7) 3.39(0.34) 5.09(1.51)

RLARS 5.8(1.2) 1.4(1.4) 3.7(1.8) 11.4(4.9) 4.31(0.48) 5.55(2.15)

LTS-MCP 6.0(0.9) 7.3(3.7) 10.7(1.0) 26.4(8.9) 2.67(0.49) 1.20(0.28)

LS-MCP-Hier 6.1(0.9) 94.6(7.1) 2.4(1.5) 5.3(5.2) 8.79(0.62) 33.32(6.65)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.0(1.3) 6.8(13.7) 9.9(3.5) 2.8(2.2) 2.91(0.90) 1.26(2.64)

LS-MCP 1.3(0.9) 22.2(5.2) 3.1(1.9) 69.0(6.5) 7.21(0.86) 18.85(6.15)

LAD-Lasso 3.9(1.2) 4.1(2.3) 4.0(1.6) 12.8(3.5) 4.05(0.33) 9.23(2.16)

RLARS 7.1(0.8) 0.8(1.1) 6.9(1.9) 12.1(7.9) 3.42(0.43) 2.88(0.96)

LTS-MCP 5.8(1.2) 8.9(4.4) 10.4(1.3) 31.7(11.1) 2.78(0.58) 3.12(0.68)

LS-MCP-Hier 5.2(1.2) 56.4(35.5) 3.4(2.7) 5.0(3.3) 5.44(1.27) 14.17(8.50)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.2(1.2) 5.6(12.7) 9.8(2.9) 2.7(2.2) 2.75(0.87) 1.09(2.28)

LS-MCP 0.5(0.7) 18.0(9.6) 1.5(1.5) 69.0(16.7) 25.10(32.12) 258.07(680.53)

LAD-Lasso 3.6(1.4) 4.4(2.1) 4.0(2.1) 12.4(3.4) 4.06(0.36) 9.17(2.26)

RLARS 6.7(0.9) 1.1(1.3) 5.9(1.6) 13.3(7.4) 3.77(0.43) 3.65(1.24)

LTS-MCP 6.0(1.0) 9.3(4.0) 10.7(1.2) 32.7(8.5) 2.67(0.52) 2.55(0.35)

LS-MCP-Hier 4.3(1.6) 154.0(110.7) 1.0(1.8) 26.0(61.5) 27.86(39.79) 1019.76(4540.05)

Table A3.

Summary results under simulation scenarios with continuous G factors and Band structure 

under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0,1)

LTS-MCP-Hier 7.8(0.5) 8.0(9.5) 10.1(2.7) 0.8(1.0) 2.67(0.50) 0.90(0.03)

LS-MCP 6.2(1.0) 13.0(5.4) 11.0(0.9) 38.9(10.2) 2.59(0.54) 0.92(0.02)

LAD-Lasso 7.4(0.9) 13.8(7.9) 6.6(4.0) 31.1(16.6) 3.32(0.61) 0.83(0.06)

RLARS 7.2(0.8) 10.5(2.8) 3.1(1.4) 22.2(4.4) 4.22(0.35) 0.78(0.05)

LTS-MCP 5.8(1.0) 14.8(4.6) 6.6(1.7) 57.8(7.4) 3.36(0.31) 0.85(0.03)

LS-MCP-Hier 8.0(0.2) 2.6(4.4) 11.7(1.3) 0.8(1.1) 2.04(0.35) 0.92(0.02)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.7(0.6) 7.5(7.6) 9.2(2.7) 1.2(1.1) 2.88(0.58) 0.88(0.03)

LS-MCP 1.1(1.2) 12.9(7.8) 1.2(1.5) 61.1(8.9) 46.82(93.14) 0.56(0.07)

LAD-Lasso 5.8(1.5) 4.9(2.4) 1.8(1.5) 12.4(3.4) 4.08(0.35) 0.74(0.06)

RLARS 6.1(1.6) 7.3(3.9) 1.5(1.1) 24.1(5.9) 5.42(5.41) 0.72(0.06)

LTS-MCP 5.7(1.2) 16.0(4.1) 5.7(1.7) 58.5(6.1) 3.66(0.35) 0.83(0.03)

LS-MCP-Hier 5.5(1.4) 193.2(160.4) 2.1(2.4) 73.5(236.8) 57.08(118.64) 0.58(0.07)
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M:TP M:FP I:TP I:FP RSSE Cstat

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 8.0(0.1) 3.8(6.7) 11.4(1.7) 0.9(1.0) 2.12(0.42) 0.92(0.01)

LS-MCP 2.5(1.0) 26.6(5.4) 2.6(1.3) 70.5(6.3) 10.76(0.69) 0.63(0.04)

LAD-Lasso 6.6(1.1) 4.3(2.2) 2.9(1.9) 11.0(3.0) 3.77(0.33) 0.78(0.05)

RLARS 6.3(1.1) 4.2(2.9) 1.4(1.2) 12.0(5.7) 4.40(0.39) 0.77(0.04)

LTS-MCP 6.0(1.1) 11.2(4.0) 9.2(1.8) 47.4(9.4) 2.93(0.50) 0.89(0.02)

LS-MCP-Hier 5.9(1.1) 101.8(7.3) 2.5(1.6) 7.0(6.3) 9.68(0.59) 0.66(0.04)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 6.8(1.2) 10.3(9.7) 9.1(3.4) 1.7(1.5) 3.46(0.71) 0.84(0.07)

LS-MCP 3.1(1.1) 15.2(4.5) 4.9(2.1) 53.2(6.0) 4.98(0.62) 0.74(0.05)

LAD-Lasso 6.0(1.3) 7.2(5.8) 3.4(2.5) 18.8(10.2) 3.92(0.38) 0.76(0.05)

RLARS 6.8(1.0) 12.1(4.0) 2.8(1.6) 21.8(4.7) 4.41(0.39) 0.76(0.04)

LTS-MCP 5.4(1.3) 15.8(3.9) 5.5(1.9) 61.7(5.9) 3.73(0.41) 0.81(0.04)

LS-MCP-Hier 5.8(1.1) 42.5(23.6) 4.5(2.4) 2.9(2.1) 4.18(0.64) 0.77(0.05)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.1(1.1) 10.1(12.0) 9.5(3.2) 1.8(1.3) 3.30(0.75) 0.84(0.06)

LS-MCP 0.9(1.0) 13.1(7.1) 1.1(1.3) 57.1(10.2) 36.77(71.77) 0.56(0.06)

LAD-Lasso 5.2(1.7) 4.6(2.3) 1.8(1.5) 12.9(3.7) 4.16(0.33) 0.73(0.06)

RLARS 6.2(1.3) 8.5(4.6) 2.5(1.5) 22.6(6.7) 6.82(16.01) 0.73(0.06)

LTS-MCP 5.8(1.1) 15.9(4.3) 5.1(1.6) 61.1(5.2) 3.74(0.42) 0.81(0.04)

LS-MCP-Hier 5.0(1.7) 173.4(152.1) 2.0(2.3) 66.5(240.4) 52.85(129.70) 0.57(0.06)

Table A4.

Summary results under simulation scenarios with categorical G factors and AR structure 

under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0,1)

LTS-MCP-Hier 7.9(0.3) 0.3(1.0) 12.3(1.5) 0.6(0.9) 2.03(0.42) 0.95(0.44)

LS-MCP 6.2(1.1) 4.5(4.2) 11.3(1.3) 14.3(11.5) 2.48(0.54) 1.13(0.37)

LAD-Lasso 8.0(0.0) 10.7(5.7) 13.4(1.0) 27.9(10.1) 1.68(0.31) 1.37(0.41)

RLARS 4.1(1.2) 13.2(5.8) 2.3(1.6) 8.4(5.0) 4.73(0.44) 8.87(3.01)

LTS-MCP 6.7(0.9) 7.0(3.3) 11.3(1.1) 27.6(8.1) 2.19(0.49) 1.19(0.25)

LS-MCP-Hier 8.0(0.0) 0.3(0.8) 13.1(0.9) 0.5(0.7) 1.66(0.27) 0.80(0.17)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 8.0(0.2) 1.0(2.8) 11.8(2.0) 0.9(1.1) 2.13(0.47) 1.07(0.45)

LS-MCP 1.9(1.8) 21.1(8.4) 2.2(2.4) 74.7(11.4) 35.47(49.17) 712.17(2635.35)

LAD-Lasso 7.8(0.4) 2.4(1.7) 7.8(2.3) 7.2(3.5) 3.02(0.34) 4.05(1.16)

RLARS 4.0(1.1) 11.4(5.3) 1.9(1.4) 7.8(4.4) 4.85(0.41) 9.86(3.38)

LTS-MCP 6.5(1.0) 8.5(3.5) 11.1(1.2) 32.1(7.9) 2.35(0.52) 1.24(0.28)
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M:TP M:FP I:TP I:FP RSSE PMSE

LS-MCP-Hier 6.0(1.5) 153.5(116.8) 2.4(3.2) 24.5(72.4) 28.86(41.92) 1214.97(5318.06)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 8.0(0.2) 0.5(1.4) 12.3(1.6) 0.8(0.9) 1.94(0.41) 0.93(0.41)

LS-MCP 2.8(1.1) 25.0(5.4) 2.7(1.4) 67.2(6.0) 9.90(0.71) 34.37(7.31)

LAD-Lasso 7.5(0.6) 2.8(1.9) 5.6(2.2) 8.4(2.6) 3.33(0.33) 5.04(1.54)

RLARS 3.8(1.1) 10.1(3.8) 0.9(0.9) 6.3(3.2) 5.14(0.50) 11.87(3.95)

LTS-MCP 6.7(1.1) 7.6(3.5) 11.4(1.1) 28.0(7.5) 2.21(0.52) 1.03(0.22)

LS-MCP-Hier 6.4(1.0) 94.4(7.5) 2.2(1.5) 5.1(5.6) 8.64(0.53) 31.64(6.01)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.7(0.6) 7.7(12.3) 10.1(3.0) 1.3(1.1) 2.50(0.61) 1.71(1.08)

LS-MCP 4.4(1.3) 21.5(5.7) 6.8(1.9) 55.4(7.3) 4.95(0.79) 6.95(2.98)

LAD-Lasso 7.0(0.9) 7.6(4.0) 4.7(2.4) 9.0(4.1) 3.51(0.37) 6.35(1.97)

RLARS 5.7(1.1) 13.7(6.6) 2.7(1.7) 8.7(4.8) 4.46(0.42) 7.11(2.26)

LTS-MCP 6.2(1.1) 11.9(5.1) 10.5(1.6) 34.4(7.0) 2.67(0.59) 2.17(0.56)

LS-MCP-Hier 7.7(0.6) 52.4(20.8) 6.5(2.2) 2.4(2.4) 3.61(0.67) 4.38(1.90)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.9(0.4) 1.7(4.7) 11.2(2.3) 1.0(1.1) 2.27(0.53) 1.56(0.78)

LS-MCP 1.4(1.4) 22.2(7.7) 1.6(2.0) 76.1(10.6) 39.92(54.72) 771.74(2428.31)

LAD-Lasso 7.2(0.9) 4.5(2.6) 4.6(2.2) 8.0(2.9) 3.51(0.31) 6.12(1.65)

RLARS 5.6(1.1) 11.0(5.6) 2.7(1.8) 9.3(5.8) 4.50(0.40) 7.18(2.21)

LTS-MCP 6.4(0.9) 10.1(4.2) 11.1(1.4) 32.8(7.5) 2.43(0.55) 1.86(0.38)

LS-MCP-Hier 5.4(1.5) 164.5(117.5) 1.7(2.4) 29.5(75.9) 31.75(42.57) 1196.18(4354.42)

Table A5.

Summary results under simulation scenarios with categorical G factors and AR structure 

under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0,1)

LTS-MCP-Hier 7.8(0.4) 6.4(10.0) 10.1(2.7) 0.8(1.0) 2.43(0.53) 0.90(0.03)

LS-MCP 7.0(1.0) 12.3(4.6) 12.1(1.2) 38.1(8.7) 1.92(0.67) 0.92(0.01)

LAD-Lasso 7.5(0.7) 14.6(8.2) 8.0(4.1) 33.2(16.6) 3.16(0.60) 0.85(0.05)

RLARS 2.6(1.3) 3.5(2.8) 0.7(0.9) 34.4(6.8) 5.65(0.54) 0.61(0.07)

LTS-MCP 6.1(1.0) 15.2(4.3) 6.7(1.7) 57.4(8.5) 3.27(0.32) 0.85(0.03)

LS-MCP-Hier 7.9(0.3) 1.3(3.0) 12.3(1.2) 0.5(0.8) 1.89(0.36) 0.92(0.02)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.8(0.4) 6.2(5.4) 9.3(3.3) 1.1(1.1) 2.64(0.59) 0.88(0.04)

LS-MCP 1.1(1.4) 16.5(8.8) 1.2(1.5) 63.9(9.9) 58.01(114.22) 0.55(0.07)

LAD-Lasso 5.8(1.6) 4.7(2.4) 1.9(1.3) 12.1(3.4) 4.09(0.33) 0.74(0.06)

RLARS 1.0(1.1) 2.8(2.3) 0.5(0.8) 32.4(8.8) 232.54(898.65) 0.55(0.05)
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M:TP M:FP I:TP I:FP RSSE Cstat

LTS-MCP 6.2(0.9) 15.5(4.3) 5.6(1.7) 59.7(4.9) 3.57(0.33) 0.83(0.03)

LS-MCP-Hier 5.4(1.5) 198.8(160.5) 2.0(2.7) 70.5(239.0) 59.85(123.92) 0.58(0.08)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 8.0(0.2) 1.2(3.0) 12.4(1.3) 0.6(0.8) 1.90(0.34) 0.92(0.01)

LS-MCP 2.5(1.1) 26.5(5.0) 2.5(1.5) 71.4(5.6) 10.67(0.75) 0.63(0.04)

LAD-Lasso 6.5(1.1) 4.3(2.5) 2.8(1.7) 10.8(3.5) 3.79(0.29) 0.78(0.04)

RLARS 1.2(1.0) 1.6(1.7) 0.5(0.7) 25.7(9.8) 5.75(0.75) 0.60(0.06)

LTS-MCP 6.3(0.8) 12.2(4.0) 9.4(1.7) 48.6(9.6) 2.77(0.52) 0.90(0.02)

LS-MCP-Hier 5.9(1.2) 101.6(7.2) 2.2(1.7) 7.6(6.1) 9.60(0.61) 0.66(0.04)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.2(0.8) 15.4(10.4) 8.7(2.4) 1.2(1.1) 3.67(0.44) 0.85(0.05)

LS-MCP 3.3(1.3) 18.8(4.1) 3.0(1.7) 53.8(5.1) 6.07(0.70) 0.67(0.05)

LAD-Lasso 2.3(1.6) 11.5(4.9) 0.3(0.7) 14.5(6.7) 4.48(0.29) 0.63(0.05)

RLARS 3.9(1.2) 21.4(6.0) 0.3(0.5) 17.4(6.3) 5.38(0.40) 0.64(0.04)

LTS-MCP 5.6(1.1) 19.2(5.3) 4.2(1.6) 59.4(5.9) 4.00(0.35) 0.78(0.04)

LS-MCP-Hier 5.9(1.1) 66.0(8.2) 1.7(1.3) 2.9(2.7) 5.03(0.67) 0.71(0.05)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.5(0.7) 13.6(19.0) 9.1(3.4) 1.0(1.1) 3.28(0.62) 0.84(0.05)

LS-MCP 0.5(0.8) 16.2(7.7) 0.4(0.7) 64.4(9.4) 63.10(119.35) 0.52(0.03)

LAD-Lasso 1.6(1.6) 12.9(5.6) 0.2(0.5) 10.1(5.0) 4.60(0.27) 0.60(0.05)

RLARS 3.4(1.6) 15.4(8.1) 0.4(0.7) 18.8(6.2) 63.57(153.77) 0.61(0.06)

LTS-MCP 6.0(1.0) 16.8(4.2) 5.0(2.0) 59.0(5.1) 3.82(0.37) 0.81(0.03)

LS-MCP-Hier 4.6(2.2) 201.0(155.2) 1.6(2.8) 87.9(263.4) 63.33(132.06) 0.51(0.05)

Table A6.

Summary results under simulation scenarios with categorical G factors and Band structure 

under linear model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0,1)

LTS-MCP-Hier 7.9(0.3) 0.4(1.1) 11.6(1.9) 0.8(1.0) 2.18(0.49) 0.98(0.45)

LS-MCP 5.9(1.2) 4.8(5.0) 11.1(1.0) 15.4(13.4) 2.64(0.59) 1.19(0.52)

LAD-Lasso 8.0(0.1) 12.7(5.5) 13.2(1.3) 31.8(11.8) 1.72(0.34) 1.42(0.48)

RLARS 4.1(1.4) 13.4(6.1) 2.3(1.4) 9.0(4.8) 4.72(0.46) 9.01(3.04)

LTS-MCP 6.2(1.1) 6.5(3.9) 11.0(1.1) 25.7(8.3) 2.40(0.59) 1.26(0.26)

LS-MCP-Hier 8.0(0.0) 0.4(1.1) 13.1(1.0) 0.5(0.7) 1.67(0.33) 0.79(0.18)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.9(0.3) 0.6(1.8) 11.8(1.5) 0.9(1.0) 2.14(0.40) 1.10(0.43)

LS-MCP 1.8(1.8) 21.8(8.9) 2.2(2.4) 74.2(10.9) 35.32(48.40) 673.99(2547.57)

LAD-Lasso 7.6(0.6) 2.7(2.0) 7.2(2.3) 7.3(3.2) 3.12(0.40) 4.32(1.44)
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M:TP M:FP I:TP I:FP RSSE PMSE

RLARS 4.0(1.4) 11.5(5.4) 1.8(1.4) 8.2(4.0) 4.81(0.41) 9.70(3.17)

LTS-MCP 6.3(1.0) 8.4(3.7) 10.8(1.3) 31.8(8.1) 2.52(0.51) 1.28(0.29)

LS-MCP-Hier 5.9(1.6) 152.2(118.4) 2.4(3.3) 25.3(74.6) 28.95(42.00) 1126.17(4531.24)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 7.9(0.2) 0.6(1.5) 12.0(1.4) 0.7(0.8) 2.07(0.41) 0.99(0.43)

LS-MCP 2.6(1.1) 25.3(5.3) 2.6(1.5) 68.3(5.4) 9.98(0.74) 33.57(6.78)

LAD-Lasso 7.2(0.8) 2.9(1.8) 5.6(2.2) 8.3(2.9) 3.41(0.33) 5.31(1.51)

RLARS 3.7(1.3) 9.6(3.9) 0.9(1.0) 6.4(3.0) 5.06(0.52) 11.42(4.16)

LTS-MCP 6.4(1.1) 7.8(3.3) 11.0(1.1) 27.5(7.3) 2.41(0.58) 1.16(0.23)

LS-MCP-Hier 6.1(1.1) 93.7(6.3) 2.4(1.4) 5.7(5.4) 8.57(0.49) 30.92(5.83)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.5(0.6) 7.5(8.7) 9.3(2.8) 1.2(1.2) 2.72(0.56) 1.82(1.11)

LS-MCP 4.1(1.2) 21.6(4.9) 6.7(1.7) 55.9(5.9) 5.00(0.69) 7.12(2.55)

LAD-Lasso 6.6(0.9) 7.0(3.9) 4.5(2.2) 9.1(3.5) 3.61(0.36) 6.63(1.89)

RLARS 5.3(1.3) 13.1(7.1) 2.7(1.6) 8.7(5.4) 4.52(0.37) 7.49(1.89)

LTS-MCP 6.0(1.1) 13.3(6.4) 10.0(2.0) 34.8(8.3) 2.85(0.55) 2.54(0.79)

LS-MCP-Hier 7.3(0.6) 49.5(21.6) 6.2(2.1 2.1(2.2) 3.66(0.67) 4.63(1.97)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.7(0.6) 2.3(6.9) 10.9(2.6) 0.9(1.0) 2.33(0.57) 1.55(0.81)

LS-MCP 1.4(1.5) 22.0(7.8) 1.6(1.8) 77.6(10.0) 39.63(52.58) 743.55(2252.92)

LAD-Lasso 6.8(0.9) 4.4(2.9) 4.5(1.9) 8.9(3.3) 3.60(0.31) 6.35(1.59)

RLARS 5.3(1.3) 10.0(5.2) 2.6(1.6) 9.3(5.7) 4.50(0.37) 7.29(2.12)

LTS-MCP 6.2(1.1) 9.6(3.8) 10.8(1.0) 32.7(7.3) 2.64(0.49) 1.93(0.37)

LS-MCP-Hier 5.3(1.6) 160.8(108.0) 1.6(1.6) 32.8(78.2) 31.77(42.35) 1097.13(4234.09)

Table A7.

Summary results under simulation scenarios with categorical G factors and Band structure 

under AFT model. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0,1)

LTS-MCP-Hier 7.9(0.4) 7.0(11.8) 11.8(2.8) 0.9(1.2) 2.52(0.56) 0.89(0.03)

LS-MCP 6.8(1.1) 14.4(5.1) 11.7(1.2) 41.4(7.5) 2.15(0.66) 0.92(0.02)

LAD-Lasso 7.3(1.0) 14.1(7.8) 6.8(4.2) 32.0(15.9) 3.36(0.58) 0.82(0.06)

RLARS 2.3(1.3) 2.9(1.9) 0.7(0.8) 34.7(7.6) 5.51(0.55) 0.61(0.06)

LTS-MCP 6.2(1.0) 14.8(4.0) 7.0(2.0) 56.1(7.2) 3.24(0.36) 0.85(0.04)

LS-MCP-Hier 7.9(0.2) 1.5(3.6) 12.2(1.3) 0.6(0.8) 1.92(0.36) 0.92(0.02)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.7(0.5) 8.9(7.4) 9.6(3.1) 1.1(1.1) 2.75(0.58) 0.88(0.04)

LS-MCP 1.0(1.3) 16.5(8.9) 0.8(1.1) 64.9(10.7) 56.73(108.19) 0.54(0.06)
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M:TP M:FP I:TP I:FP RSSE Cstat

LAD-Lasso 5.8(1.3) 4.9(2.4) 1.7(1.3) 12.9(3.5) 4.11(0.32) 0.74(0.05)

RLARS 0.9(0.9) 2.7(2.4) 0.4(0.6) 32.2(8.6) 198.16(1027.54) 0.54(0.05)

LTS-MCP 6.1(1.1) 15.9(3.9) 5.9(1.9) 59.1(5.8) 3.58(0.39) 0.82(0.03)

LS-MCP-Hier 5.5(1.6) 196.3(157.2) 1.9(2.4) 66.8(224.0) 57.70(118.80) 0.58(0.08)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 8.0(0.1) 1.8(3.4) 12.2(1.2) 0.6(0.7) 1.96(0.36) 0.92(0.01)

LS-MCP 2.5(1.0) 26.4(5.9) 2.2(1.2) 72.3(5.5) 10.74(0.70) 0.62(0.04)

LAD-Lasso 6.5(1.0) 4.6(1.8) 2.7(1.8) 11.1(3.0) 3.78(0.31) 0.77(0.04)

RLARS 1.2(0.9) 1.4(1.2) 0.4(0.6) 25.3(9.1) 81.94(762.49) 0.59(0.06)

LTS-MCP 6.2(1.1) 11.4(4.0) 9.5(1.6) 47.3(8.5) 2.81(0.41) 0.90(0.02)

LS-MCP-Hier 5.9(1.1) 101.8(8.3) 2.3(1.5) 7.4(6.8) 9.60(0.58) 0.66(0.04)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.0(1.0) 18.7(9.7) 8.5(2.3) 0.9(1.0) 3.85(0.42) 0.85(0.05)

LS-MCP 3.0(1.3) 18.7(4.0) 2.6(1.5) 54.4(4.6) 6.12(0.59) 0.65(0.04)

LAD-Lasso 2.2(1.4) 11.9(4.9) 0.3(0.5) 15.4(7.8) 4.52(0.25) 0.62(0.04)

RLARS 3.6(1.2) 21.3(4.4) 0.4(0.6) 18.0(5.5) 5.34(0.43) 0.63(0.05)

LTS-MCP 5.4(1.1) 20.1(4.8) 4.3(1.7) 58.0(4.9) 4.04(0.39) 0.78(0.04)

LS-MCP-Hier 5.5(1.2) 67.6(9.0) 1.7(1.4) 2.5(2.1) 5.06(0.60) 0.70(0.06)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.4(0.7) 12.1(10.4) 9.0(3.0) 1.2(1.1) 3.35(0.59) 0.84(0.05)

LS-MCP 0.5(0.9) 15.3(7.7) 0.5(0.7) 65.6(9.7) 64.24(125.79) 0.52(0.03)

LAD-Lasso 1.6(1.7) 12.9(5.4) 0.3(0.5) 9.7(4.9) 4.62(0.30) 0.60(0.05)

RLARS 3.0(1.6) 15.2(8.2) 0.4(0.7) 19.5(6.6) 104.31(331.36) 0.60(0.06)

LTS-MCP 5.8(1.1) 18.0(4.9) 5.3(1.9) 57.6(5.9) 3.76(0.39) 0.81(0.04)

LS-MCP-Hier 4.3(2.2) 204.0(159.3) 1.4(2.6) 81.3(250.6) 60.77(122.85) 0.51(0.05)

Table A8.

Summary results under simulation scenarios with some weak signals. In each cell, mean (sd) 

based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0,1)

LTS-MCP-Hier 8.0(0.2) 0.4(1.2) 8.0(1.4) 0.6(0.7) 1.54(0.32) 0.92(0.25)

LS-MCP 6.7(0.9) 2.3(3.0) 7.7(1.3) 9.5(10.2) 2.14(0.45) 1.07(0.39)

LAD-Lasso 8.0(0.0) 5.7(3.2) 8.6(1.3) 16.5(8.3) 1.44(0.26) 1.21(0.32)

RLARS 7.8(0.4) 0.2(0.6) 5.0(1.5) 8.2(5.6) 2.43(0.41) 1.45(0.41)

LTS-MCP 6.8(0.8) 6.9(3.7) 7.2(1.4) 25.3(9.1) 2.03(0.46) 0.97(0.22)

LS-MCP-Hier 8.0(0.0) 0.5(1.0) 9.0(1.2) 0.7(0.7) 1.38(0.21) 0.76(0.14)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 8.0(0.1) 0.6(1.4) 8.3(1.4) 0.8(0.9) 1.56(0.26) 0.89(0.20)
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M:TP M:FP I:TP I:FP RSSE PMSE

LS-MCP 1.8(1.7) 18.9(8.0) 1.5(1.5) 73.9(10.1) 38.28(56.15) 761.65(2767.61)

LAD-Lasso 8.0(0.2) 2.3(1.5) 5.8(1.6) 7.3(2.4) 2.03(0.30) 1.96(0.58)

RLARS 7.6(0.6) 0.8(1.1) 4.3(1.4) 10.3(6.8) 2.71(0.39) 1.82(0.58)

LTS-MCP 6.7(0.9) 8.2(3.8) 7.1(1.4) 31.1(10.3) 2.12(0.49) 1.00(0.27)

LS-MCP-Hier 5.5(1.5) 166.6(124.1) 1.3(1.6) 31.3(79.7) 32.79(45.78) 1446.11(5735.58)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 8.0(0.1) 0.4(1.2) 8.6(1.4) 0.7(0.9) 1.48(0.24) 0.82(0.18)

LS-MCP 2.9(1.1) 25.2(5.4) 2.0(1.0) 67.4(5.0) 9.44(0.63) 31.63(6.25)

LAD-Lasso 7.9(0.3) 2.6(1.7) 5.1(1.7) 7.8(2.4) 2.18(0.36) 2.29(0.77)

RLARS 6.5(1.1) 1.4(1.4) 3.0(1.4) 11.6(5.7) 3.31(0.40) 3.04(1.08)

LTS-MCP 6.8(0.9) 6.5(3.2) 7.4(1.2) 28.2(9.1) 2.01(0.48) 0.93(0.20)

LS-MCP-Hier 5.9(1.0) 93.1(6.0) 1.7(1.4) 5.4(4.6) 8.07(0.52) 28.15(5.19)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.8(0.6) 1.4(2.7) 7.7(2.0) 1.4(1.8) 1.75(0.54) 1.01(0.93)

LS-MCP 1.5(0.9) 22.1(4.8) 2.3(1.4) 69.4(6.4) 6.41(0.85) 14.50(4.92)

LAD-Lasso 4.5(1.2) 4.0(2.2) 3.2(1.8) 14.2(3.5) 3.27(0.32) 6.70(1.77)

RLARS 7.6(0.6) 0.5(0.7) 5.0(1.4) 10.1(6.3) 2.53(0.38) 1.65(0.59)

LTS-MCP 6.5(1.2) 6.7(4.3) 7.2(1.4) 27.0(12.7) 2.12(0.58) 1.30(0.35)

LS-MCP-Hier 5.5(1.3) 27.1(29.1) 3.7(2.4) 5.1(2.7) 3.99(0.85) 7.47(4.51)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.7(0.9) 1.5(2.8) 8.0(2.1) 1.3(1.3) 1.76(0.53) 1.04(1.04)

LS-MCP 0.5(0.8) 17.1(8.9) 1.1(1.1) 69.2(18.5) 32.48(44.17) 600.83(2389.98)

LAD-Lasso 4.5(1.4) 4.0(2.1) 3.5(1.8) 12.6(3.4) 3.28(0.32) 6.54(1.70)

RLARS 7.3(0.7) 1.0(1.1) 4.3(1.7) 11.3(6.7) 2.81(0.39) 1.98(0.63)

LTS-MCP 6.7(0.9) 8.4(3.9) 7.0(1.4) 32.0(10.5) 2.17(0.51) 1.31(0.29)

LS-MCP-Hier 4.4(1.5) 168.7(117.3) 1.0(1.5) 27.6(71.1) 31.14(43.24) 1186.95(4305.08)

Table A9.

Summary results under simulation scenarios where the hierarchy is violated for some 

interactions. In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0,1)

LTS-MCP-Hier 7.8(0.4) 4.0(4.4) 10.5(2.0) 2.5(1.7) 3.46(0.35) 3.90(0.95)

LS-MCP 5.5(1.0) 5.0(4.4) 16.8(1.0) 17.8(9.8) 2.95(0.44) 1.51(0.60)

LAD-Lasso 7.9(0.4) 15.0(7.4) 17.9(2.9) 36.0(12.1) 2.23(0.59) 2.25(1.17)

RLARS 7.3(0.7) 1.0(1.5) 8.9(2.2) 14.4(7.9) 4.02(0.38) 4.29(1.08)

LTS-MCP 6.2(1.1) 7.0(3.0) 16.8(1.3) 26.8(6.9) 2.48(0.57) 1.11(0.35)

LS-MCP-Hier 7.8(0.4) 6.0(5.9) 11.3(1.9) 2.9(1.6) 3.40(0.45) 3.78(1.28)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)
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M:TP M:FP I:TP I:FP RSSE PMSE

LTS-MCP-Hier 7.7(0.5) 6.0(5.9) 10.1(2.0) 2.9(1.6) 3.58(0.34) 4.19(1.02)

LS-MCP 2.2(1.8) 17.0(7.4) 3.5(3.2) 71.4(10.6) 38.37(84.37) 2057.01(11618.56)

LAD-Lasso 7.2(0.7) 2.0(1.5) 8.2(2.7) 7.7(3.1) 3.88(0.36) 6.93(1.99)

RLARS 7.0(0.9) 1.0(1.5) 7.1(2.3) 12.4(7.2) 4.44(0.43) 5.43(1.59)

LTS-MCP 6.1(1.0) 8.0(3.0) 16.2(1.6) 33.2(6.8) 2.78(0.53) 1.39(0.48)

LS-MCP-Hier 5.8(1.4) 110.0(32.6) 2.4(2.6) 34.2(95.9) 29.73(50.07) 1510.65(6857.39)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 7.6(0.6) 5.0(4.4) 10.2(2.2) 2.8(1.6) 3.60(0.47) 4.32(1.49)

LS-MCP 2.6(1.1) 22.0(5.2) 4.0(1.6) 66.9(5.3) 10.47(0.68) 38.04(6.53)

LAD-Lasso 6.9(0.9) 2.5(2.2) 6.4(2.2) 8.7(3.1) 4.13(0.34) 8.07(2.19)

RLARS 5.8(1.1) 1.0(1.5) 4.4(1.9) 11.9(5.8) 5.12(0.49) 8.10(2.43)

LTS-MCP 6.2(1.0) 8.0(3.0) 16.6(1.4) 29.2(6.1) 2.61(0.54) 1.18(0.37)

LS-MCP-Hier 6.2(1.0) 96.5(8.2) 2.7(1.6)) 7.3(5.7) 9.76(0.64) 42.01(9.31)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.3(1.1) 7.5(8.2) 9.4(3.2) 2.8(1.8) 3.78(0.76) 5.35(3.54)

LS-MCP 1.1(0.9) 21.0(4.4) 4.9(2.5) 67.0(6.2) 7.90(0.91) 22.21(7.30)

LAD-Lasso 3.8(1.2) 4.0(3.0) 6.0(2.4) 13.0(4.3) 4.56(0.35) 11.86(2.85)

RLARS 6.8(1.0) 0.0(0.0) 8.1(1.9) 12.8(6.6) 4.27(0.42) 4.78(1.44)

LTS-MCP 6.2(1.1) 9.0(3.0) 16.5(1.5) 32.4(6.6) 2.64(0.57) 1.24(0.43)

LS-MCP-Hier 4.8(1.3) 91.0(7.4) 2.2(2.1) 5.0(4.1) 7.55(1.16) 28.00(10.44)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage points

LTS-MCP-Hier 7.5(0.9) 8.0(4.4) 9.5(2.5) 3.0(2.0) 3.77(0.71) 5.32(3.72)

LS-MCP 0.6(0.7) 19.0(5.9) 2.0(1.8) 68.5(17.0) 32.80(78.33) 1370.28(8180.45)

LAD-Lasso 3.9(1.3) 4.0(1.5) 5.5(2.1) 12.2(3.5) 4.57(0.33) 12.16(3.24)

RLARS 6.6(1.0) 1.0(1.5) 6.8(2.2) 12.2(6.5) 4.57(0.40) 5.88(1.67)

LTS-MCP 6.2(1.1) 10.0(3.0) 16.4(1.5) 34.4(7.1) 2.68(0.57) 1.28(0.44)

LS-MCP-Hier 4.4(1.6) 113.0(25.2) 1.4(2.1) 31.8(88.0) 28.25(46.51) 1477.08(7265.55)

Table A10.

Analysis of SKCM data: numbers of overlapping interactions (RV-coefficients) identified by 

different approaches.

Main: G LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier

LTS-MCP-Hier 43 0(0.58) 1(0.00) 0(0.00) 12(0.33) 22(0.48)

LS-MCP 13 0(0.00) 0(0.00) 0(0.03) 0(0.03)

LAD-Lasso 1 0(0.00) 0(0.00) 1(0.00)

RLARS 0 0(0.00) 0(0.00)

LTS-MCP 50 15(0.98)

LS-MCP-Hier 47

Interaction LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier
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LTS-MCP-Hier 26 0(0.02) 0(0.73) 0(0.28) 3(0.00) 4(0.58)

LS-MCP 72 0(0.02) 1(0.03) 6(0.00) 1(0.02)

LAD-Lasso 25 0(0.48) 2(0.01) 3(0.41)

RLARS 31 1(0.00) 0(0.20)

LTS-MCP 110 4(0.03)

LS-MCP-Hier 24

Table A11.

Analysis of BRCA data: numbers of overlapping interactions (RV-coefficients) identified by 

different approaches.

Main: G LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier

LTS-MCP-Hier 32 1(0.27) 5(0.41) 0(0.22) 2(0.37) 14(0.73)

LS-MCP 6 1(0.27) 0(0.16) 0(0.11) 1(0.23)

LAD-Lasso 27 0(0.21) 0(0.33) 3(0.43)

RLARS 12 1(0.22) 0(0.27)

LTS-MCP 17 2(0.47)

LS-MCP-Hier 51

Interaction LTS-MCP-Hier LS-MCP LAD-Lasso RLARS LTS-MCP LS-MCP-Hier

LTS-MCP-Hier 39 1(0.09) 0(0.20) 0(0.15) 0(0.20) 6(0.33)

LS-MCP 17 2(0.19) 0(0.17) 0(0.12) 1(0.15)

LAD-Lasso 36 3(0.26) 0(0.21) 1(0.32)

RLARS 35 0(0.24) 0(0.09)

LTS-MCP 60 0(0.15)

LS-MCP-Hier 21
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Figure 1. 
Analysis of SKCM data: the distributions of some G factors and the Breslow’s depth.
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Table 1.

Summary results under simulation scenarios with continuous G factors and AR structure under linear model. 

In each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE PMSE

D1: N(0,1)

LTS-MCP-Hier 7.8(0.4) 0.6(1.6) 12.7(1.9) 0.7(0.8) 2.15(0.49) 0.99(0.43)

LS-MCP 5.7(0.9) 3.0(3.5) 10.8(0.9) 10.7(10.7) 2.80(0.41) 1.29(0.56)

LAD-Lasso 8.0(0.0) 10.6(5.6) 13.3(1.2) 28.0(11.4) 1.68(0.33) 1.35(0.45)

RLARS 7.5(0.6) 0.5(0.8) 7.3(1.9) 12.5(8.2) 3.27(0.42) 2.51(0.91)

LTS-MCP 6.4(0.9) 6.9(2.8) 11.0(1.1) 26.4(7.4) 2.39(0.53) 1.23(0.28)

LS-MCP-Hier 8.0(0.0) 0.3(1.2) 13.0(1.0) 0.4(0.6) 1.70(0.30) 0.80(0.18)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.9(0.3) 0.6(1.8) 12.0(1.5) 0.9(0.9) 2.12(0.38) 1.12(0.34)

LS-MCP 2.2(1.8) 18.0(8.0) 2.7(2.6) 71.0(10.6) 30.42(40.46) 555.38(1853.39)

LAD-Lasso 7.8(0.5) 2.2(1.5) 7.6(2.3) 7.0(3.3) 3.01(0.36) 3.85(1.23)

RLARS 7.2(0.7) 0.7(1.0) 5.7(1.8) 11.0(5.7) 3.68(0.41) 3.55(1.24)

LTS-MCP 6.2(1.1) 7.8(3.3) 10.6(1.3) 30.9(9.7) 2.55(0.55) 1.18(0.32)

LS-MCP-Hier 5.8(1.5) 151.3(125.9) 2.6(3.4) 25.6(59.8) 28.80(42.28) 1351.47(5973.38)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 7.9(0.3) 0.6(1.8) 12.0(1.6) 0.9(0.8) 2.01(0.41) 1.03(0.40)

LS-MCP 2.9(1.2) 24.3(4.7) 3.1(1.4) 66.2(5.5) 9.82(0.68) 32.66(6.95)

LAD-Lasso 7.5(0.7) 2.6(1.7) 6.1(2.3) 8.2(3.2) 3.29(0.33) 4.68(1.46)

RLARS 6.3(1.0) 1.4(1.5) 3.8(1.7) 11.7(5.8) 4.25(0.48) 5.23(1.79)

LTS-MCP 6.4(1.0) 7.6(3.0) 10.9(1.1) 28.3(6.2) 2.44(0.53) 1.09(0.27)

LS-MCP-Hier 6.5(0.9) 94.1(5.9) 2.4(1.5) 5.8(5.6) 8.81(0.64) 33.23(7.21)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.4(1.0) 3.8(8.0) 11.1(3.1) 2.7(2.1) 2.12(0.79) 1.08(2.02)

LS-MCP 1.4(0.9) 22.6(5.1) 3.1(2.0) 68.0(6.4) 7.38(1.03) 19.15(6.64)

LAD-Lasso 4.1(1.3) 4.0(2.4) 4.2(2.2) 13.4(3.6) 3.99(0.35) 9.27(2.47)

RLARS 7.2(0.8) 0.7(1.2) 6.9(2.0) 11.6(7.1) 3.42(0.34) 2.92(0.91)

LTS-MCP 6.2(1.2) 7.9(3.6) 10.0(1.3) 30.1(9.2) 2.47(0.60) 2.43(0.40)

LS-MCP-Hier 5.4(1.5) 54.5(37.3) 3.9(3.2) 5.4(3.1) 5.52(1.39) 14.61(9.16)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with 
leverage points

LTS-MCP-Hier 7.7(0.7) 3.4(8.4) 10.6(2.6) 2.3(2.3) 2.20(0.75) 1.02(1.77)

LS-MCP 0.7(0.7) 18.0(8.9) 1.5(1.4) 69.3(17.5) 25.80(32.38) 271.98(796.53)

LAD-Lasso 3.8(1.4) 4.0(1.9) 4.0(2.0) 12.5(3.5) 4.02(0.36) 9.20(2.59)

RLARS 6.8(0.9) 0.9(1.2) 5.6(2.0) 11.4(6.8) 3.79(0.42) 3.77(1.04)

LTS-MCP 6.3(1.1) 8.6(3.9) 10.8(1.2) 31.9(10.1) 2.47(0.57) 2.05(0.32)

LS-MCP-Hier 4.5(1.5) 152.6(99.4) 1.0(1.6) 24.6(62.0) 27.97(39.71) 1088.91(4898.79)
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Table 2.

Summary results under simulation scenarios with continuous G factors and AR structure under AFT model. In 

each cell, mean (sd) based on 200 replicates.

M:TP M:FP I:TP I:FP RSSE Cstat

D1: N(0,1)

LTS-MCP-Hier 7.8(0.5) 5.6(9.6) 11.0(2.7) 0.9(1.1) 2.48(0.52) 0.90(0.03)

LS-MCP 6.3(1.1) 12.3(4.8) 11.3(1.2) 38.3(9.6) 2.39(0.66) 0.92(0.02)

LAD-Lasso 7.5(0.8) 15.5(8.1) 8.4(3.9) 36.5(15.7) 3.06(0.59) 0.85(0.05)

RLARS 7.3(0.7) 10.3(3.8) 3.2(1.6) 21.8(4.3) 4.22(0.35) 0.78(0.04)

LTS-MCP 6.0(1.0) 14.8(4.9) 6.4(1.8) 57.4(10.4) 3.37(0.34) 0.85(0.04)

LS-MCP-Hier 8.0(0.2) 1.0(1.9) 12.1(1.5) 0.6(0.8) 1.94(0.34) 0.92(0.02)

D2: 0.9N(0,1) + 0.1Cauchy(0,5)

LTS-MCP-Hier 7.7(0.5) 5.5(4.1) 9.1(2.8) 1.3(1.1) 2.71(0.58) 0.89(0.03)

LS-MCP 1.2(1.4) 13.9(8.6) 1.1(1.4) 59.6(10.7) 46.11(87.78) 0.55(0.07)

LAD-Lasso 5.8(1.7) 4.6(2.1) 1.7(1.3) 12.0(3.4) 4.11(0.40) 0.74(0.07)

RLARS 6.3(1.6) 7.6(4.9) 1.6(1.3) 22.9(6.3) 4.83(0.68) 0.73(0.06)

LTS-MCP 6.0(1.0) 15.4(4.0) 5.5(1.8) 59.7(5.5) 3.71(0.33) 0.82(0.03)

LS-MCP-Hier 5.4(1.5) 196.6(162.2) 2.0(2.4) 70.9(223.4) 59.00(119.77) 0.58(0.07)

D3: 0.9N(0,1) + 0.1N(20,1)

LTS-MCP-Hier 8.0(0.2) 2.2(4.8) 11.9(1.6) 0.9(0.9) 2.01(0.38) 0.92(0.01)

LS-MCP 2.5(1.1) 24.6(4.9) 2.4(1.4) 72.2(6.1) 10.72(0.71) 0.64(0.04)

LAD-Lasso 6.6(1.2) 3.9(2.2) 2.7(1.6) 11.1(3.3) 3.79(0.28) 0.78(0.04)

RLARS 6.4(1.0) 4.2(3.2) 1.4(1.1) 12.4(6.3) 4.41(0.42) 0.78(0.04)

LTS-MCP 6.1(1.0) 11.4(4.1) 9.0(1.7) 48.9(10.3) 2.95(0.49) 0.89(0.02)

LS-MCP-Hier 5.8(1.1) 100.5(7.8) 2.5(1.5) 8.3(7.2) 9.75(0.56) 0.66(0.03)

D4: N(0,1) and with leverage points

LTS-MCP-Hier 7.1(1.0) 10.9(14.7) 9.0(4.0) 1.2(1.2) 3.18(0.83) 0.84(0.07)

LS-MCP 3.4(1.1) 14.7(4.5) 4.9(2.1) 52.7(6.5) 4.89(0.60) 0.75(0.05)

LAD-Lasso 6.1(1.2) 7.2(5.0) 3.4(2.0) 17.8(11.8) 3.88(0.31) 0.77(0.04)

RLARS 7.0(0.8) 11.9(3.6) 2.6(1.4) 21.5(4.5) 4.37(0.36) 0.77(0.04)

LTS-MCP 5.5(1.3) 17.0(4.0) 5.2(1.8) 61.4(6.0) 3.77(0.42) 0.81(0.04)

LS-MCP-Hier 6.4(1.0) 42.4(24.3) 4.6(2.5) 2.9(2.1) 4.08(0.66) 0.78(0.05)

D5: 0.9N(0,1) + 0.1Cauchy(0,5) and with leverage 
points

LTS-MCP-Hier 7.1(1.1) 12.9(14.1) 9.3(3.9) 1.5(1.4) 3.08(0.81) 0.85(0.07)

LS-MCP 1.1(1.1) 12.6(7.8) 1.3(1.3) 56.3(9.8) 35.96(69.84) 0.56(0.06)

LAD-Lasso 5.7(1.5) 4.3(2.3) 2.0(1.5) 12.2(3.4) 4.12(0.36) 0.74(0.06)

RLARS 6.5(1.4) 8.8(4.6) 2.2(1.5) 21.6(6.4) 4.79(1.30) 0.74(0.06)

LTS-MCP 5.7(1.1) 16.1(4.2) 5.1(2.0) 60.4(4.6) 3.77(0.37) 0.81(0.04)

LS-MCP-Hier 5.1(1.6) 174.4(158.2) 2.4(2.6) 67.4(229.7) 54.36(131.61) 0.57(0.07)
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Table 3.

Analysis of SKCM data using the proposed approach: coefficients of identified main effects and interactions

Main:G Age Stage Gender Clark level

Main:E −0.0100 1.2197 −0.0587 0.3307

AADACL3 0.0004

AMBN 0.0005

ATP1A2 −0.0011

BCAR4 0.0004

BPIFA2 0.0001

C7ORF69 0.0038 0.0046

C8ORF34 0.0056 0.0101

CALCA 0.0029 0.0010 0.0008

CLNS1A 0.0066 0.0118 0.0020

CNBD2 0.0011

CYP1A2 0.0008

CYP7A1 0.0031 0.0025

DEFA5 0.0056 0.0100

DEFB4A 0.0023 0.0016

DGKB −0.0029 0.0027

DGKK 0.0029 0.0018

DPRX 0.0018 0.0004

FAM131B −0.0025 −0.0014

FAM9B 0.0028 0.0020

FGF4 0.0006

FGFR3 0.0026 0.0015

FMR1NB 0.0038 0.0042

GLYATL3 −0.0006

IFNA14 −0.0004

IL17A 0.0012

KRT16 0.0065 0.0124

LAMP1 0.0010

LCE3C 0.0002

LPO 0.0001

MEP1A 0.0029 0.0019

NPS −0.0006

OR2V2 −0.0002

OR5M8 0.0011

PHOX2B −0.0026 −0.0018

RETNLB −0.0028 −0.0004

RIIAD1 0.0079 0.0103 0.0111

S100A7 −0.0006

S100A7A −0.0003
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Main:G Age Stage Gender Clark level

SEMG2 0.0002

SPINK9 −0.0049 −0.0046

SPRR1A −0.0026 −0.0003

SPRR2G 0.0011 0.0003

TRIM55 −0.0019 −0.0010
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Table 4.

Analysis of BRCA data using the proposed approach: coefficients of identified main effects and interactions

Main:G Age Stage ER status Weight

Main:E −0.1594 −0.1089 0.2705 −0.1219

AASDHPPT 0.0885 0.0347 −0.0069

ASH2L 0.0006

ATAD1 0.1274 0.0058 0.0016 −0.0078

AXDND1 −0.1061 −0.0094

BRD1 0.0293

CCT6A −0.0701 −0.0076

CD5L −0.0776

FGF4 0.0292

ITLN2 −0.1221 −0.0113 0.0069

KAT6A 0.0123

MAEA 0.0453

MED1 −0.0649 −0.0226 −0.0254 −0.0013 −0.0058

MRPL45 0.0512 −0.0013

MTBP 0.0127

NARS2 0.0197

NSD3 0.0112

NUFIP2 −0.0297

PHB 0.0984 0.0015 0.0008 0.0005

PHB2 0.0832 −0.0032 0.0025

PMVK 0.1227 0.0064 −0.0016 −0.0216 −0.0564

RAD21 −0.0555 −0.0311

SEZ6 −0.1450 −0.0320 −0.0017

SMIM19 0.0950 0.0379 0.0127 0.0022 −0.0136

SUPT4H1 −0.1278 0.0127 0.0027

SUPT5H −0.0240

TBC1D21 −0.0571

TBC1D23 −0.0526

TRIM11 −0.1352 −0.0314 0.0071

UBE2Z 0.0895 −0.0003 −0.0031 0.0002

UBE4A −0.0055

ZNF572 0.0053

ZNF597 0.0932 0.0065 0.0205
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