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Abstract

Serine proteases (SPs) and serine protease homologs (SPHSs) play essential roles in insect
physiological processes including digestion, defense and development. Studies of insect genomes,
transcriptomes and proteomes have generated a vast amount of information on these proteins,
dwarfing the biological data acquired from a few model species. The large number and high
diversity of homologous sequences makes it a challenge to use the limited functional information
for making predictions across a broad taxonomic group of insects. In this work, we have
extensively updated the framework of knowledge on the SP-related proteins in Drosophila
melanogaster by identifying 52 new SPs/SPHs, classifying the 257 proteins into four groups
(CLIP, gut, single- and multi-domain SPs/SPHSs), and detecting inherent connections among
phylogenetic relationships, genomic locations and expression profiles for 99 of the genes.
Information on the existence of specific proteins in eggs, larvae, pupae and adults is presented to
facilitate future research. More importantly, we have developed an approach to reveal close
homologous or orthologous relationships among SPs/SPHs from D. melanogaster, Anopheles
gambiae, Apis mellifera, Manduca sexta, and Tribolium castaneum thus inspiring functional
studies in these and other holometabolous insects. This approach is useful for tackling similar
problems on large and diverse protein families in other groups of organisms.
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1. Introduction

Serine proteases (SPs) of the S1A subfamily play important roles, ranging from digestion of
dietary proteins to blood coagulation, complement activation, fertilization, and tumor
metastasis in mammals (Foley and Conway, 2016; Wojtukiewicz et al., 2016). In arthropods,
some SPs also form cascade pathways to establish dorsoventral polarity of embryos, mediate
immune responses in various life stages, and cause hemolymph coagulation in horseshoe
crabs (Kanost and Jiang, 2015; Kawabata and Muta, 2010). SPs digest foods and process
protoxins in the midgut of most insects, including agricultural pests and human disease
vectors (Rukmini et al., 2000; Zhu-Salzman and Zeng, 2015). Due to their crucial roles in
various physiological processes, SPs and their non-catalytic homologs (SPHs) have been
actively investigated in several species that are research models and/or agricultural pests
(e.g. Drosophila melanogaster, Tribolium castaneum, Manduca sexta, Helicoverpa armigera,
Tenebrio molitor), and insects of medical relevance (e.g. Anopheles gambiae, Aedes
aeqypti). SPHs are enzymatically inactive due to the lack of catalytic residue(s) but some of
them (e.g. Masquerade) have known regulatory functions, including somatic muscle
attachment, axonal guidance, post-mating responses, and prophenoloxidase (proPO)
activation by proPO activating proteases (PAPs) (Kwon et al., 2000; Murugasu-Oei et al.,
1996; Yu et al., 2003). POs catalyze the formation of reactive compounds and melanin that
kill and sequester pathogens and parasites (Zhao et al., 2011). Upon infection, SPs also
generate active cytokines such as Spatzle and stress responsive peptides that bind receptors
(e.g. Tolls) to trigger intracellular signal transduction (Cao et al., 2015a; Schrag et al., 2017).
Many members of the SP cascades in insects contain a disulfide-stabilized structure named
clip domain and these SPs and SPHSs are abbreviated as CLIPs and classified in subgroups
A-E (Kanost and Jiang, 2015; Veillard et al., 2016).

In the past two decades, technological advances have greatly facilitated the acquisition of
massive amounts of sequence data from living organisms, which led to the discovery of
many genes homologous to those with known functions. For instance, there are 176 SP-
related genes in the human genome (Puente et al., 2003) and, despite all the efforts to
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understand their physiological roles, only a small portion of them have been characterized at
the functional level. Similarly, the holometabolous insects D. melanogaster (Ross et al.,
2003), A. gambiae (Cao et al., 2017; Christophides et al., 2004), Apis mellifera (Zou et al.,
2006), 7. castaneum (Zou et al., 2007), and M. sexta (Cao et al., 2015b) possess 204, 337,
58, 168, and 193 SP-related genes in their genomes, respectively. Investigators routinely
construct neighbor-joining trees to study evolutionary relationships among all members of
the protein family in a single insect, since it takes a short time for the computation. Analyses
of sequences from multiple species based on neighbor joining are not that trustworthy even
if comparisons are limited to a subgroup of these proteins, such as CLIPs (Waterhouse et al.,
2007). Thus, systematic classification and comparison of SP-like proteins across different
orders of insects, which demand hundreds of highly reliable sequences and serial
phylogenetic analyses, have not yet been reported. Another difficulty in such phylogenetic
studies stems from the deeply rooted evolution of SP and SPH genes. Branching near roots
of the trees is particularly problematic, as often indicated by low bootstrap values. The large
numbers of SP-like genes and their high degrees of sequence variations in insects suggest
that multiple series of gene duplication and sequence divergence occurred at different rates
in some lineages of insects or subgroups of SP-related proteins. These complications
interfere with the correct assignment of orthologous relationships among homologs in
insects, the largest group of animals. Orthology is crucial for reliable extension of functional
information from model species (e.g. D. melanogaster, M. sexta) to other insects of practical
importance. This problem also exists for discovering such relationships in other large,
diverse protein families (e.g. zinc finger proteins, Leu-rich repeat proteins, serine esterases)
from various groups of living organisms.

To address these issues, we selected five species of holometabolous insects with broad
biological significance, extensively updated the information on SP-related proteins in three
of the five, and classified the resulting protein sequences into three to four large groups on
the basis of domain structures, expression patterns and initial phylogenetic analyses. After
that, the protein sequences from the five species were subjected in individual groups to
sequential Bayesian analyses to reveal phylogenetic relationships. To better understand the
functional data from Drosophila, we uncovered close correlations among chromosomal
locations, phylogenetic tree positions, and expression profiles of the SPs and SPHs. Their
mRNA levels and protein abundance in different tissues or life stages were extracted from
published datasets to further assist the selection of genes for targeted reverse genetic
analyses in the future. Functional data from M. sexta and the other species were integrated
through hypothetical orthology to identify candidate genes for research in not only
Drosophila but also mosquitoes (e.9. A. gambiae, A. aegypti), bees (e.g. A. mellifera), wasps
(e.g. Nasonia vitripennis), moths (e.g. H. armigera), beetles (e.g. T. castaneurm), and other
insects. In summary, these explorations represent our newest efforts to organize and utilize a
sizable body of information to expedite the functional elucidation of SP-related proteins
based on their evolutionary relationships.

Insect Biochem Mol Biol. Author manuscript; available in PMC 2019 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page 4

Materials and methods

Identification and annotation improvement of the SP-related proteins in D.
melanogaster, T. castaneum, and A. mellifera

OPS Dmel-r6.09 was downloaded from FlyBase (https://flybase.org/). Domains in the Dmel-
r6.09 sequences were identified on a local supercomputer using InterProScan5 v5.17 (Jones
et al., 2014). Proteins containing a chymotrypsin-like (7.e. S1A subfamily) SP-related
domain were extracted and combined. 376 RNA-seq files from the modENCODE project
(Brown et al., 2014), 1.7 billion reads representing 30 different cDNA samples of whole
insects at different life stages (Table S4), were downloaded from NCBI Sequence Read
Archive (SRA). The reads were trimmed by Trimmomatic (Bolger et al., 2014) with the
setting “SLIDINGWINDOW:4:20 LEADING:20 TRAILING:20 MINLEN:50” to remove
low-quality bases and assembled by Trinity-2.3.2 (Haas et al., 2013), with the k-mer length
of 25. SP-like sequences in Dmel-r6.09 were crosschecked and improved with the Trinity
models. After removal of alternatively spliced and severely incomplete genes, the sequences
were manually examined according to characteristic features of the S1A SPs, such as signal
peptide and conserved regions. The SPs were compared with the newer OPS, Dmel-r6.14, to
ensure all SPs were included. Similarly, 7. castaneumand A. mellifera protein sequences
were downloaded from NCBI RefSeq using accession numbers GCF_000002335 (Tcas5.2)
and GCF_000002195 (Amel4.5). Domain(s) in the beetle and bee SP-like proteins were
found using InterProScan5. To improve the SP/SPH gene models in Tcas5.2 and Amel4.5,
all the RNA-seq data deposited before 6-1-2017 (6 projects of 7. castaneum. PRINA247821,
PRINA376868, PRINA315762, PRINA305354, PRINA275195 and PRINA266839; 5
projects of A. mellifera: PRINA268450, PRINA386067, PRINA325930, PRINA322249 and
PRINA275154) (Dippel et al., 2014; Greenwood et al., 2017; Kim et al., 2018; Manfredini
etal., 2015; Mao et al., 2017; Stappert et al., 2016) were downloaded from NCBI SRA for
read trimming and assembling with Trinity. The final outputs contained limited numbers of
transcripts, possibly due to SNPs in the cDNA samples. As such, the intermediate files (data
not shown) generated by Inchworm, a part of Trinity, were compared with the corresponding
official gene models prior to manual improvement of the protein sequences. BLASTP
searches against NR database of NCBI were also performed to improve the sequences, as
some newly verified proteins were not updated in the RefSeq models.

Properties of the SPs and SPHs in D. melanogaster, T. castaneum, and A. mellifera

The SP-related sequences in each species were divided into SPs or SPHs based on the
presence or absence of the His-Asp-Ser catalytic triad as described before (Cao et al.,
2015b). Signal peptide was predicted using SignalP 4.1 (http://www.chs.dtu.dk/services/
SignalP/) (Petersen et al., 2011) and Signal-3L (http://www.csbio.sjtu.edu.cn/bioinf/
Signal-3L/) (Shen and Chou, 2007). Some clip domains (as well as other structural modules)
were identified by InterProScan5 while other clip domains were found through manual
inspection of the sequences for a Cys doublet in the region close to the protease or protease-
like domain (PD or PLD). SPs and SPHs with four additional Cys residues upstream of the
doublet were designated CLIPs to indicate the presence of a clip domain (Kanost and Jiang,
2015). Residues 190, 216 and 226 (chymotrypsin numbering) (Perona and Craik, 1995) that
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form the primary substrate-binding pocket of each PD were identified in the aligned
sequences for protease specificity prediction (Cao et al., 2015b).

2.3. Classification, multiple sequence alighment, and phylogenetic analyses of the SP-
like proteins in D. melanogaster, A. mellifera, and T. castaneum

The SP-related proteins in the three species were first classified into C (for CLIP), M (for
multi-domain), and G-S (for gut and other single domain) groups based on the presence/
absence of clip domain(s) and then two or more non-clip domains. While the G-S groups
remained intact in A. melliferaand T. castaneum, single domain SPs/SPHs in D.
melanogaster were further separated into G and S groups based on their expression profiles
and positions in the phylogenetic tree of G-S. Members of the G group tend to associate with
feeding, high-level expression, a typical size of about 270 residues, some gene clusters on
chromosomes, and certain positions in the phylogenetic tree (Cao et al., 2017; Cao et al.,
2015b). Multiple sequence alignments of the entire proteins in the C, G and S-M groups
from D. melanogasterwere performed using MUSCLE (Edgar, 2004), a module of MEGA
7.0 (Kumar et al., 2016), under the default settings with maximum iterations changed to
1,000. Alignments of the individual groups were converted to NEXUS format by MEGA,
and phylogenetic analyses were conducted using MrBayes v3.2.6 (Ronquist et al., 2012)
under the default model with the setting “nchains=12". MCMC (Markov chain Monte Carlo)
analyses were terminated after the standard deviations of two independent analyses was
<0.01 or after 10 million generations (SD < 0.05). FigTree 1.4.3 (http://tree.bio.ed.ac.uk/
software/figtree/) was used to display the trees. To identify orthologous or close homologous
relationships among CLIPs, S-group SP(H)s, Gd-domain SPs/SPH, and CUB-domain SPs
from the five species, the sequences in each group were analyzed using MUSCLE and
MrBayes. Based on the initial analysis of the 247 CLIPs, sequences of CLIPAs, CLIPBs,
CLIPCs, and CLIPDs from the five species were separately examined by the Bayesian
method.

2.4. Chromosomal locations and expression profiling of the SP and SPH genes in D.
melanogaster

For most of the SP-related genes, their genomic locations were available in the information
lists of the Dmel-r6.09 models. Retrieved position data were plotted using ArkMAP 2.0
(http://www.bioinformatics.roslin.ed.ac.uk/arkmap/) and improved using Adobe Illustrator.
After excluding data from cell lines or challenged insects (Brown et al., 2014), the
remaining 30 and 26 additional datasets (Table S4) were downloaded from NCBI SRA,
representing whole bodies or tissues of healthy D. melanogaster under 52 conditions. Reads
were trimmed with Trimmomatic to remove adaptors and low quality bases with the setting
“SLIDINGWINDOW:4:30 LEADING:20 TRAILING:20 MINLEN:50". Transcript
sequences of the SP-related proteins in Dmel-r6.09 were replaced with the improved ones
(Section 2.1). FPKM (fragments per kilobase of transcript per million mapped reads) values
for genes in different libraries were calculated using Bowtie2 2.2.3 (Langmead and Salzberg,
2012) and RSEM 1.2.15 (Li and Dewey, 2011). FPKM values in libraries from biological
replicates were averaged to represent gene expression in those types of samples.
Hierarchically clustered gradient heat maps of log,(FPKM+1) values were plotted using the
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clustermap function of Seaborn (https://seaborn.pydata.org/), a Python data visualization
library, with the average linkage method and Euclidean matrix.

2.5. Abundances of the SP-related proteins in D. melanogaster eggs, larvae, pupae, and

adults

Label-free quantification (LFQ) values of the SPs/SPHSs in whole insects at 14 life stages,
each with four biological replicates (Table S5), were extracted from the published data
(Casas-Vila et al., 2017). Proteins identified in at least 3 out of the 68 samples were kept.
After normalization with 5x108, which is close to 5,103,000 or the lowest non-zero LFQ,
relative protein abundances, as represented by logo(LFQ/5x10° + 1) values, were subjected
to hierarchical cluster analysis and plotted as a gradient heat map.

3. Results and discussion

3.1. Current status of the research area and outlines of our approach

Genome-wide investigations of insect SPs and SPHSs have facilitated functional studies of
this family of proteins after the genome sequence of D. melanogaster was first published in
2000. We described and analyzed sequences of about 200 SP-related proteins in the fruit fly
(Ross et al., 2003), and these were further annotated by functional residue clustering (Shah
et al., 2008). Similar studies yielded overviews of the S1A protease subfamily in the yellow
fever and African malaria mosquitoes (Cao et al., 2017; Waterhouse et al., 2007), honeybee
(Zou et al., 2006), red flour beetle (Zou et al., 2007), silkworm (Zhao et al., 2010), diamond
back moth (Lin et al., 2015), and tobacco hornworm (Cao et al., 2015b). However, due to the
large family sizes, most of the investigations focused on CLIPs (clip-domain SPs and SPHs)
but it has been quite difficult to define orthologous relationships, for example, among the A.
gambiae and D. melanogaster CLIPBs. Incorrect gene models and incomplete genome
coverage also compromised the quality of those studies, leading to weak support for
functional predictions. When the role of an SP is known in species A but no clear ortholog
stands out in species B, the amount of experimental work required to validate the assumed
function increases proportionally with the number of candidates. To deal with these
problems, we first improved the gene models in D. melanogaster, T. castaneumand A.
mellifera, separated the family into 3—4 groups with similarities in sequence and domain
structure, performed serial phylogenetic analyses at the group and subgroup levels along
with the homologs in A. gambiae and M. sexta, and predicted functions mainly based on the
literature and closest possible homolog.

3.2. Overview of the SP-related protein family in the five insect species with known

genomes

To provide a summary of the family, we have selected five species from four different orders
of holometabolous insects: D. melanogaster (Diptera) for its wide-ranging genetic data
(\eillard et al., 2016), A. gambiae (Diptera) for its medical implications and available results
on CLIPs (Cao et al., 2017), A. mellifera(Hymenoptera) for its agricultural importance and
a small set of the core SPs and SPHs (Zou et al., 2006), 7. castaneum (Coleoptera) for its
unique phylogenetic position, amenability to RNAI assays, and representation of the largest
order of animals (Zou et al., 2007), and M. sexta (Lepidoptera) for its extensive biochemical
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data on SP-related proteins and closeness to agricultural pests (Kanost and Jiang, 2015).
Since the M. sextaand A. gambiae SPs and SPHs were recently examined (Cao et al., 2017;
Cao et al., 2015b), we only updated the information on SP-like proteins in the fly, bee, and
beetle.

3.2.1. The fruit fly D. melanogaster—In contrast to AgamP4.5, in which 117 of the
337 gene models were improved using the MCOT method (Cao and Jiang, 2015), the same
approach only resulted in six corrections in the Drosophila sequences, reflecting the high
quality of the genome assembly and gene annotation. Compared with results of the initial
analysis (Ross et al., 2003) of D. melanogaster SP/SPH genes, major improvements are
made in four areas (Table S1): 1) we identified 52 new SP or SPH genes in the genome,
making 257 the total count of SP-like genes, 2) all CLIPs but four have a signal peptide, an
entire clip domain, and a full-length protease or protease-like domain (PD/PLD). cSP44 and
cSP56 have a predicted transmembrane region rather than a signal peptide, whereas cSP54
and cSP229 lack both, 3) we compiled a complete set of information including the group-
chromosome-tree-expression (G-C-T-E) characterization for easily locating the genes on the
chromosomes, phylogenetic trees, and expression profiles, and 4) we separated SPs and
SPHs into four groups related to their domain structure and putative functions: C (for CLIP),
M (for other multi-domain), G (for gut) and S (for other single domain) groups of SP-related
proteins. Among the 190 SP and 67 SPH genes (Table 1) in the fly genome, 52 encode
CLIPs (34 SPs and 18 SPHSs with at least one clip domain), 21 are in the “M” group of non-
CLIP, multi-domain SPs (17) and SPHs (4), 65 gut and 119 other single-domain SPs/SPHs.

Of the 257 proteins, 190 are predicted to be activated by cleavage after Arg(161)/Lys(29) by
SPs with trypsin-like specificity, 26 after Phe(8)/Tyr(3)/Leu(15) by chymotrypsin-like SPs,
and 11 after Ala(1)/Gly(2)/Val(1)/lle(2)/Met(2)/Ser(3) by elastase-like SPs, and 5 after His
by SPs with special features. Regarding catalytic specificity, 114, 61 and 15 of the 190 SPs
have trypsin-, chymotrypsin-, and elastase-like properties, respectively. The dominance of
trypsin-like SPs is also clear in the other insects (Cao et al., 2015b and 2017; Tables S2 and
S3).

3.2.2. The honeybee A. mellifera—Compared with the initial analysis (Zou et al.,
2006), there are major improvements in the honeybee SP/SPH sequences: 44 of the 57 SP-
related gene models had been updated by BeeBase personnel; 31 of the updated and 2 newly
identified genes were fully confirmed using the assembled RNA-seq data; 13 of the
previously updated gene annotations were further improved in this work (Table S2). The
genome contains 46 SP and 13 SPH genes encoding 14 SPs and 7 SPHs with at least one
clip domain (C), 10 SPs and 3 SPHs with other domains (M), and 22 SPs and 3 SPHs with
only a PD or PLD (G-S). In the third group, the shorter ones are more likely related to
digestion whereas the longer ones may participate in processes that need regulatory region(s)
for proper functioning.

3.2.3. Thered flour beetle T. castaneum—The repertoire of 98 SP and 70 SPH
genes in the beetle (Zou et al., 2007) is larger than that in the bee. After we improved the
gene models using the RNA-seq data, the genome encodes 55 CLIPs (36 SPs and 19 SPHs),
20 SP-related proteins with other domains (M, 18 SPs and 2 SPHs), and 102 with one
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PD/PLD (G and S unseparated, 28 SPs and 39 SPHs with 231-270 residues; 24 SPs and 11
SPHs with 271-387 residues). With nine newly identified SP/SPH genes, a total of 177 SP-
related genes (Table S3) are further examined below.

3.3. General structural features and classification of the SP-related proteins in D.
melanogaster

Among the 52 CLIPs most have a single clip domain. The exceptions are cSP14, cSP18,
cSPH58, cSPH121, cSPH142, and cSPH79, which contain 4, 2, 2, 2, 3, and 5 clip domains,
respectively (Table 1). InterProScan5 only recognized 25 of the 64 clip domains in these
CLIPs but it successfully identified 21 non-CLIP multi-domain SP-like proteins, including
SP89/Ndl, SP186/Gd, SP53/ModSP, SP72/Tequila, and SP75/Corin (Fig. 1). There are 12
different types of regulatory domains (e.g. LDL, Sushi) in these proteins. SP55, SP60,
SPH144, SP186/Gd, and SP212 have a similar domain structure of 1-2 Gd-PD/PLD; SP80a,
SP80b, and SP120 have a CUB domain followed by a PD; SP49, SP77, SP222, SP248, and
SP251 contain a PD and a PLD; SPH241 and SPH247 have two tandem PLDs. Functions of
the CLIPs and other multi-domain SPs/SPHs are worth exploring in the future. The
classification of gut (G) and single-domain (S) SPs/SPHs is not as clear-cut as CLIPs or
multi-domain SPs/SPHs. Therefore, we took a combined approach (Section 2.3) and
separated them into 57 gut SPs, 8 gut SPHSs, 82 single-domain SPs, and 37 single-domain
SPHs (Table 1).

3.4. Phylogenetic relationships, chromosomal locations, and expression patterns of the
D. melanogaster SP-related genes

The phylogenetic trees exhibit complex relationships among the CLIPs, gut, and single- and
multi-domain SPs/SPHs (Fig. 2). In panel A, all 18 CLIPBs (cSP38 to cSP12, cSP1/Grass,
cSP8) reside in branch A; all 7 CLIPCs (cSP42, 48, 115, 33, 26, 31, 28) constitute the entire
B branch; 11 CLIPDs (cSP36, 232-18, 67-54, 34-19, and 44-32-59-56) are located in
branches a, A, b, ¢ and C, respectively; 16 CLIPAs (cSPH142/Scaf to cSPH125) are in
branches d, D—F, and e. Note that the CLIP A-D classification system was developed on the
basis of sequence alignments (Fig. S1) (Kanost and Jiang, 2015) and amended to include
CLIPEs (Cao et al., 2017). In panel B, 26 gut SPs and 1 gut SPH are analyzed: 16 Jonahs
(Jon25Bi_jji, Jon44E, Jon65A;_j,, Jon66C;, i, Jon74E, 99Ci_iii, Jon99F;, ;) on branch G and
11 trypsins (a—, A, and «/SPH109) on branch I. In panel C, two groups of multi-domain
SP-like proteins are discovered: branch R has three CUB-domain SPs (80a, 80b and 120);
branch V consists of Gd-domain SP55, SP60, SP186/Gd, SP212 and SPH144 (Fig. 1). Other
close relationships occur in groups G, S and M, with large branches (e.g. G, I, L, N) formed
as a result of extensive putative gene duplications.

Locations of SP-like genes on chromosomes also reflect the history of family expansion
(Fig. 3). There are 32 clusters (A-Z, 1-6) containing 3 to 13 genes in each. For example, all
thirteen genes (trypsins a, B, v, 6, &, G, m, 8, 1, x/SPH109, A, SP6, and SP215) in cluster |
belong to the G group and are responsible for digestion of dietary proteins (Davis et al.,
1985). Likewise, clusters C, P and #4 contain 3, 4, and 3 Jonah genes that also participate in
food digestion (Akam and Carlson, 1985; Carlson and Hogness, 1985). Except for
SP186/Gd, all the Gd-domain SPs/SPH are in cluster V. Other gene clusters include H and Z
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for CLIPs, F for multi-domain, W and #6 for gut, and B, J, K and N for single-domain
SP(H)s (Fig. 3). Interestingly, SPs/SPHs involved in development or immunity (e.g. Ndl, Gd,
Snk, Ea, Mas, Sh, Tequila, ModSP, Grass, Psh, SPE, MP1) are often encoded by genes that
are not members of clusters. Maintenance of the solitary state and, hence, proper dosage
could be crucial for the conserved functions. A simpler explanation is that mutation in one
member of a gene cluster with overlapping function may not produce a phenotype and, in
other words, finding these mutants may be the result of a bias toward genes with unique
function (e.g. defense).

Gene expression patterns associate with functions. Thus, we extracted and analyzed the
publicly available RNA-seq data on D. melanogaster SPs and SPHs. The highest transcript
levels occur in the gut group (Fig. 4B). Except for SP50, SP107, SP141 and SPH1964, all
the SP-related transcripts in the G group are detected at high levels [logo(FPKM+1): 8-16]
in larval and adult gut tissues. The mRNA levels are so high in most cases that they are
easily detected in the whole body samples at the feeding stages. The low expression in late
embryo (16-24 h) may allow the 15t instar to digest food right after hatching. In contrast, the
production of digestive proteases ceases completely in the pupal stage until right before
adult emergence (Carlson and Hogness, 1985). In comparison, SPs and SPHs in the S and M
groups are expressed at low levels [logo(FPKM+1): 1-7] (Fig. 4C). A group of genes with
similar expression profiles is defined as an assembly here. Single-domain SP63/Send1 and
SP190/Send2 are in assembly I; SPH255/Agrs, SPH194a/Spx1, SPH194b/Spx2, SPH202/
Intr and SP168/Sems are in assembly M. Sphinx1/2 are required for Toll activation (Kambris
et al., 2006). Send1, Send2, Aquarius, Intrepid, Seminase, and others form a protein network
required for sperm storage in mated females (Findlay et al., 2014; Schnakenberg et al.,
2011). Multi-domain SP75/Corin and SP89/NdI belong to assembly L; SP72/Tequila and
SP53/ModSP to N. Detailed expression patterns of these and other related genes in the 52
datasets are shown (Fig. 4C). Among the CLIPs, cSP3, ¢SP61, cSPH93, and cSPH156 have
unique expression patterns, whereas expression profiles of the other genes fall into
assemblies A-D (Fig. 4A).

Gene duplication is a major mechanism for forming gene clusters. In this process, regulatory
elements are often duplicated with the coding region, leading to similar profiles of
expression of the gene copies unless mutations occur in these elements. We thus predicted
and later observed a considerable correlation among phylogenetic relationships (T),
chromosomal locations (C), and expression patterns (E) (Fig. 5). Of the 257 genes, 216, 147,
and 249 form branches, clusters, and assemblies in the T, C and E groups, respectively, and
99 genes in 33 groups have T-C-E three-way consistency (Fig. 5, B and C). Such
relationships are vital for future research on these genes by taking into account possible
functional redundancy and coordinated regulation of gene expression. For instance, we may
not observe any phenotype if we only knock out 1 or 2 of cSP32, cSP44 and cSP59.

3.5. Orthologous relationships and function prediction of SP-related proteins from
insects

Orthology disclosed by multiple sequence comparison and phylogenetic analysis is critical
for inferring equivalence of function. To identify such relationships, we performed an initial
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phylogenetic analysis of all CLIPs from the fly, mosquito, bee, moth and beetle, and found
that A. gambiae subgroup E differs drastically from subgroups A-D (Cao et al., 2017). After
removing the CLIPEs, we generated a MrBayes tree of 247 CLIPs (Fig. S1), which exhibits
a clear separation of clades A-D (probabilities or p: 0.95 to 0.99). We then aligned the
sequences in each subgroup and constructed five trees using MrBayes v3.2.6 (Fig. 6). Three
CLIPA branches and one CLIPB branch display 1:1:1:0:1 or 1:1:1:1:1 (Dm:Ag:Am:Ms:Tc,
same species order below) orthologous relationships (p: 1.00). Lineage-specific expansions
are common in subgroups A-C and E, suggesting that, in each cohort of descendants, at
least one member is functional in that species to play their ancestor’s role. In comparison,
seven 1:1:1:1:1, one 1:1:1:2:1, one 1:1:0:1:1, and one 2:3:1:2:2 orthologous sets (p: 1.00)
constitute the entire subgroup D. We assume ancestors of this subgroup existed long before
the radiation of holometabolous insects but do not understand why gene duplication seldom
occurred. In spite of the complexity in parts of the trees (Fig. 6, A—C), our stepwise analysis
of CLIPs yielded insights into their evolutionary relationships useful for guiding focused
functional studies.

Comparison of protein domain structures is another way to uncover hypothetical
orthologous relationships among non-CLIP multi-domain SPs/SPHSs, since their regulatory
modules are likely associated with unique functions of the entire proteins. As shown in Table
2, nine orthologous groups (é.g. Nudel, Tequila, Corin, ModSP, Masquerade, Gd) are
identified in these five insects with 1:1:1:1:1, 1:1:1:0:1 or a:b:c:d:e, where a—e are any
integers from 1 to 6. While no functional data is available for any member of the SEA, TSP
and CUB sets, future research should cast light on roles of these proteins with the conserved
domain structures.

We have used the known SP-SPH pathways in D. melanogaster and M., sexta as templates to
overlay their putative orthologs or orthologous groups and hypothesize the presence of
similar systems in the other species, which likely stemmed from their last common ancestors
existing before the radiation of holometabolous insects (Fig. 7). By inspiring research to test
the overarching hypothesis, the current knowledge on these systems will be expanded and
enriched. Panel A surmises that the Drosgphila embryonic SP pathway for establishing
dorsoventral polarity (Moussian and Roth, 2005) may be conserved in the five insects of
complete metamorphosis. The detection of M. sexta SP50, SP45, HP28/SP30 and HP8
transcripts in adult ovaries and early embryos (Cao et al., 2015b) provided initial
experimental support for the proposed SP cascade in the moth. Besides, if silencing of 7.
castaneum mSP19, mSP11/12, cSP44, or cSP136-138 gene expression in ovaries impairs
embryo ventralization, the pathway may be functional in the beetle as well.

The immune SP-SPH systems for proPO and proSpétzle activation in hemolymph have been
understood to different degrees in several insects (Fig. 7B) (Kanost and Jiang, 2015; Park et
al., 2010; Veillard et al., 2016). PO produces reactive compounds to kill and sequester
pathogens; Spatzle elicits the Toll pathway to induce antimicrobial peptide synthesis. We
propose that the putative protease orthologs may play similar roles: M. sexta HP14a/b
corresponds to DmModSP, AgSP217, TcmSP3/13 and AmSP49; MsHP1a/b is closely
related to DmcSP34, AgCLIPD1, TccSP52 and AmcSP8. While these initiation steps often
involve one ortholog per species, subsequent steps of the pathways contain 1 to 9 SP/SPH
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paralogs, depending on the extent of lineage-specific gene expansion. For instance, M. sexta
HP2, HP13, HP18a/b. HP21, HP22, SP33, and SP144 form one orthologous set. MsHP14a
activates proHP2 in wandering larvae and pupae, and HP2 activates proPAP2 (He et al.,
2018). HP21, activated by MsHP14a and activating both proPAP2 and 3 (Gorman et al.,
2007; Wang and Jiang, 2007), has a functional overlap with HP2, but it acts mainly in
hemolymph of the feeding larvae. In another example, Drosophila cSP24/Easter and
cSP4/SPE activate Spétzle in embryos and adults (Jang et al., 2006; Mulinari et al., 2006),
respectively, and so does their ortholog MsHP8 in larval hemolymph (An et al., 2010). It is
possible that DmcSP3 and the other six CLIPBs in the same orthologous set (Fig. 7B)
activate DmSpétzle1-6 in the same or different tissues or life stages. Likewise, functional
redundancy may be extensive in the group of M. sexta SPH1 and the eleven A. gambiae
CLIPA/E’s. While MsPAP1-3 all need the presence of a high M, complex of SPH1 and
SPH2 to generate highly active PO (Wang and Jiang, 2004), it is unclear if AgCLIPB9 also
needs one or more of CLIPA4-7, 12-14, 26, 31, 32, E6, and E7 to generate active POs.
MsPAP1 or AgCLIPB9 alone cleaved M. sexta proPOs at the correct peptide bond but
yielded POs with a low specific activity (An et al., 2011; Gupta et al., 2005) and so did
DmMP2 to DmPPO1 (An et al., 2013).

Genetic research on Drosophilaimmunity provided support for the hypothetical immune SP-
SPH system (Fig. 7B). ModSP integrates signals from pattern recognition receptors and
indirectly activates Grass and then cSP4/SPE (Buchon et al., 2009). Microbial proteases can
activate cSP28/Psh that induces the Toll pathway via SPE and Spatzle (Issa et al., 2018). A
wound in the integument induces cSP31/Hayan activation and melanization (Nam et al.,
2012). The functions of Psh and Hayan are consistent with the central role of M. sexta HP6
in proSpatzle-1 and proPO activation (An et al., 2009 and 2010). The roles of cSP25/MP1
and cSP7/MP2 appear controversial: /n vitrotest indicates that MP2 is a PAP (An et al.,
2013) but /n vivo data suggest that MP2 activates proMP1 and MP1 activates proPO (Tang et
al., 2006). This situation may reflect the limitation of our approach or, in contrast, the
limitation of a genetic study in discerning the position or order of pathway members.

3.6. Levels of SP-related proteins in Drosophila whole body samples at different life

stages

Protein abundances are useful information for functional studies, simply because the
concerned proteins must exist at certain levels to act properly in a specific tissue or stage.
This is particularly important if a large set of orthologs (¢.g. DmcSP3, 4/SPE, 14, 16, 24/
Easter, 25/MP1, 38, 61, 229) is in question. MRNA levels are informative and easier to get,
but may not be well correlated with protein abundances. For instance, levels of 571
transcripts in M. sexta fat body corresponded with concentrations of their proteins in
hemolymph with correlation coefficients of 0.41 (naive larvae) and 0.43 (immune
challenged) (He et al., 2016). Therefore, we extracted LFQ values of SPs/SPHs from the
published work (Casas-Vila et al., 2017) in whole insects at various life stages (Table S5)
and displayed their relative abundances in the labeled heat map (Fig. 8). Among the 110
proteins identified, 44 are GPs/GPHSs, 29 are other single domain SPs/SPHSs, 30 are CLIPs,
and 7 are non-CLIP, multi-domain SPs/SPHs. They account for 68%, 24%, 58%, and 41% of
the G (65), S (119), C (52), and M (17) groups, respectively. Overrepresentation of the G

Insect Biochem Mol Biol. Author manuscript; available in PMC 2019 December 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Cao and Jiang Page 12

and C groups indicates gut SPs/SPHs and CLIPs are present at higher levels than the average
to be detected in whole insects by mass spectrometry. In contrast, lower abundances of the
single-domain SP(H)s lead to the S group underrepresentation, which is in general consistent
with the transcriptome data (Fig. 4). When we compared the mRNA and protein levels of
specific genes, discrepancies were noticed. For instance, SP89/Ndl mRNA levels
[logo(FPKM+1): 1-4] are low and scattered (Fig. 4C) but its protein levels [log,(LFQ/5x108
+ 1): 6-9] in adult females and eggs are among the highest (Fig. 8). Np/cSP59 mRNA (level:
1-5, Fig. 4A) is present in embryo, larva, pupa, but its protein (level: 6-8) is mainly found in
pupa to affect bristle and wing development (Bridges et al., 1936). While the expression
profiles of Np/cSP59, Sb/cSP56, and Masquerade/cSPH79 mRNA (levels: 1-6, Fig. 4A)
closely resemble, the levels of Sbh and Mas are below the detection limit in the whole insect.
Fine dissection of tissue samples at various life stages and more sensitive proteomics
analyses in the future should provide data on relative abundances of the SP-related proteins
in this important model species.

3.7. Conclusions

Serine proteases (SPs) and their catalytically inactive homologs participate in food digestion,
reproduction, embryo development, innate immunity, and other insect physiological
processes. We have verified a total of 191 SP and 66 SPH genes in the Drosophila genome,
52 more than previously reported. These include 52 CLIPs, 21 multi-domain, 65 gut, and
119 other single-domain SPs/SPHSs. Revelation of the links among phylogenetic
relationships, genomic locations, and expression patterns for 99 SP-related genes in 33
groups accounts for a substantial portion of the evolutionary history of this gene family in
the model organism. mRNA and protein levels in different tissues or stages are presented as
background information to help with predictions of potential function. In addition, we have
elucidated hypothetical orthologous relationships of SPs/SPHs from D. melanogaster, A.
gambiae, A. mellifera, M. sexta, and T. castaneum to inspire functional studies and
information exchange among researchers studying these holometabolous insects and beyond.
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PLD protease-like domain in SPH

CLIP clip-domain SP or SPH

GP and GPH gut serine protease and gut serine protease homolog

CuB a domain in complement 1r/s, uegf and bmp1l

FPKM fragments per kilobase of transcript per million mapped
reads

G-C-T-E group-chromosome-tree-expression

Gd a domain in Drosophila gastrulation defective

LDL low-density lipoprotein receptor class A repeat

LFQ label-free quantification

PO and proPO phenoloxidase and its proenzyme

PAP proPO activating protease

SEA a domain in sperm protein, enterokinase and agrin

SRA sequence read archive

TSP thrombospondin
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Highlights:

. Extensively updated knowledge on serine protease-related proteins in the fruit
fly, honey bee, and flour beetle;

. Inner links detected among phylogenetic relationships, genomic locations and
expression profiles for 99 of the Drosophila genes;

. Putative orthologous relationships revealed among S1A members from the
five holometabolous insects;

. Physiological roles predicted on the basis of orthologous relationships and
functional data.
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Domain organization of 66 multi-domain SPs and SPHSs in D. melanogaster. Signal peptide
and other structural elements (see symbols in inset) were predicted. The schematic diagrams
are not drawn to scale.
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Phylogenetic relationships of the 52 CLIPs (A), 65 GP(H)s (B), and other 140 SP(H)s
(including 21 multi-domain proteins lacking clip domain) (C) in D. melanogaster. Complete
sequences of the proteins in each group were aligned and a phylogenetic tree was
constructed using MrBayes v3.2.6. Probability values for branches are indicated near the
branching points, with “*” representing 100%. Those on red background with the capital
letters (A-Y) represent branches (probability >55%) on the tree, and other branches with
lower probabilities are assigned with lower case letters (a—q) on blue background. Group
name (C for clip, G for gut, M for other multi-domain, S for other single domain SP(H)),
chromosomal location (A-Z, 1-6, and a-z in Fig. 3), tree position (A=Y and a—q in this
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figure), and expression profile (A-N and a-D in Fig. 4) are used to generate G-C-T-E
identification code for each SP-related gene. These IDs, in various colors depending on their
categories, are listed before the corresponding systemic names.
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T-E IDs (see definition in the legend to Fig. 2). Briefly, in the first position, C (in red) for
CLIPs, G (in green) for gut SPs/SPHSs, M (in pink) for other multi-domain SP-like proteins,
and S (in blue) for other single domain SP(H)s. In the 2" to 4t positions, chromosomal
location (Fig. 3), tree position (Fig. 2), and expression assembly (Fig. 4) are shown in
various colors as defined in the corresponding figures. The libraries names are abbreviated
using: W, whole insect; E, embryo; L, larval; preP, prepupal; P, pupal; A, adult; M, male; F,
female; h, hour; D, day; G, gut; FB, fat body; ID, imaginal discs, SG, salivary glands; C,
carcass; AG-AmM, accessary glands of adult mated male; T, testes; O, ovaries of adult
mated female; AvF, adult virgin female; MT, Malpighian tubules.
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Fig. 5.

Correlations of the D. melanogaster SP-related genes in clusters on chromosome (C),
branches of phylogenetic tree (T), and assemblies of expression (E). (A) Venn diagram of
numbers the genes located in clusters, branches, and assemblies of the entire SIA SP/SPH
family. (B) Two- and three-way matches of the genes in the C(LIP), G(ut), M(ulti-domain),
and S(ingle domain) groups. For each CTE triangle, numbers of 2- (C-T, T-E, or E-C) and 3-
(C-T-E) way matched genes are indicated on the sides and center. Each match has at least
two genes. For instance, in the G group, 42 C-T, 53 T-E, 37 E-C, and 37 C-T-E matches are
found, involving a total of 65 SPs/SPHs. (C) A list of SP/SPH names with C-T-E matches in
the C, G, M and S groups. Among the 52 CLIPs, 7 belong to three 3-way matches:
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CcSPH69-231, cSP32-44-59, and cSP26-115. For the G group, there are ten C-T-E matches
with 2-6 members in each and 37 proteins in total.
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Fig. 6.
Phylogenetic trees of the CLIPAs (A), CLIPBs (B), CLIPCs (C), CLIPDs (D), and CLIPEs

(E) in the five insects. Based on the initial analysis of 247 CLIPA-D’s (Fig. S1), entire
protein sequences in each subgroup were aligned for building a phylogenetic tree using
MrBayes v3.2.6. Probability values are indicated near the branching points, with “*”
representing 100 and colored branches representing various sets of potential orthologous
genes (probability >80, 3-5 species). The bold branches represent 1:1:1, 1:1:1:1 or 1:1:1:1:1
orthology, except for the set containing closely linked MsHP1a and MsHP1b. As shown in
the inset, the protein names are in different colors.
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Fig. 7.

Predicted functions of the CLIPs and other multi-domain SPs and SPHs in the insect SP-
SPH pathways. (A) The SP cascade that establishes the dorsal-ventral axis of D.
melanogasterembryo is used as a template to identify ortholog sets for proposing similar
pathways in the other insects. When an ortholog is not identified in the phylogenetic
analysis, its closest homolog(s) are listed to assist functional exploration: for example, A.
mellifera cSP9/10/14 under cSP26/Snk and 7. castanusm cSP136-8 under cSP24/Ea. (B)
Members of the SP-SPH network that mediates proPO and proSpétzle-1 activation in M.
sexta are presented along with their orthologs or close homologs, as revealed by the serial
phylogenetic analyses and domain structure comparison (Fig. 6, Table 2). The protein names
are in blue (Dm), red (Ag), black (Ms), green (Tc), and brown (Am) fonts. Circles with a
“+” sign represent positive feedback mechanisms, one being auto-activation of proPAP3 by
PAP3 (Wang et al., 2014) and the other being indirect activation proHP6 by PAP1 (dashed
arrow) and direct activation of proPAP1 by HP6 (Wang and Jiang, 2008). “?” indicates that
the step (/.e. cleavage activation of proHP6 by uncut but active proHP1) is partially
established (He et al., 2017).
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Fig. 8.

Agundances of the 110 SP-related proteins in D. melanogaster at various developmental
stages. Relative protein levels in the 16 egg, 16 larval, 20 pupal, 8 female adult, and 8 male
adult samples at different time points, as represented by log,(LFQ/5x10° + 1) values, are
shown in the hierarchically clustered gradient heat map from blue (0) to maroon (=10). The
values of 0-0.49, 0.50-1.49, 1.50-2.49, ... 8.50-9.49, 9.50-10.49, 10.50-11.49, and 11.50-
12.49 are labeled in the color blocks as 0, 1, 2 ... 9, A, B, and C, respectively. Proteins
identified in two or less of the 68 samples are eliminated. Due to high sequence identity, no
distinction can be made in SP51-117, SP122-143, SPH195-196b, cSP7-10, cSP4-229, and
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CSPH69-231 pairs. The datasets or library names are abbreviated using: E, embryo; L,
larval; P, pupal; M, male; F, female; L3c, crawling third instar larva; h, hour; D, day.
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Table 2.

Domain organization of the non-clip, multi-domain serine proteases and their homologs in the five model
insects
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Name/feature Domain structure Dm Ms Ag Am Tc
Nudel TM-3LDL-SP-2-4LDL-SPH-3/4LDL Ndl/SP89 SP50 SP212 SP20 mSP19
Tequila S-2/15CBD-LDL-SR-LDL-SR-SP Tequila/SP72 - SP213 sp23”™ msP7 ¥
Corin TM-Fz-2LDL-SR-SP Corin/SP75 SP56 SP214 SP30 mSP15
ISEA TM-SEA-Fz-2LDL-SPH SPH198 SPH145 SPH216 SPH56 mSPH6
ModSP S-4/5LDL-Sushi-Wonton-SP ModSP/SP53 HP14a, HP14b Sp217 SP4g mSP3, 13
TSP S-2TSP-SP SP30 SP55 SP218 SP38 mSP2
Masquerade S-5/4Clip-SPH Mas/cSPH79 SPH53 CLIPA15  cSPH41, 39 cSPH51
/cCuB S-CUB-SP SP120, SP80a-b HP27 SP201-6  SP28,34 mSP9, 10
/Gd S-1/2Gd-SP szlfg’ gghiifo' SP45,138 HP19  SP207-10  SP46 msfl%*l“z' 5
GRAAL TM-SEA-EGF-5LDL-SR-SPH SP220 SPH54 mSPH16
ISEA TM-SEA-3LDL-Coil-SP SP45
ISEA TM-SEA-3LDL-SP-LDL mSP8
ILamG S-SP-Ig-2LamG SP219
/Sushi S-1/2/3Sushi-SP(H) SP25, 112, SPH33
/2Sushi S-2Sushi-SP-2Sushi-SP-2Sushi-SP mSP14

CBD, type-2 chitin binding domain; CTL, C-type lectin domain; Coil, coiled coil region; CUB, a domain identified in complement 1r/s, uegf, and

bmpl; EGF, a Ca2+—binding domain in epidermal growth factor; Gd, a conserved region first identified in DmSP186/Gd; Fz, frizzled domain; Ig,
immunoglobulin domain; LamG, a domain in laminin -y-subunit; LDL, low-density lipoprotein receptor class A repeat; S, signal peptide; SEA, a
domain identified in a sperm protein, enterokinase and agrin; SP, serine protease catalytic domain; SPH, non-catalytic serine protease homolog
domain; SR, scavenger receptor Cys-rich domain; Sushi, Sushi domain, also known as CCP or SCR; TM, transmembrane region; TSP, type-1
repeat in thrombospondin-1; Wonton, a Sushi-like module first identified in M. sexta HP14 with six instead of four Cys residues.

*
"AmSP23 and TcmSP7 are more complex in domain organization than AgSP213 or DmSP72/Tequila. In between the last CBD and the first LDL
of Tequila, AmSP23 has SR-CTL-Kringle-LDL-Apple domains whereas TcmSP7 has only LDL-Apple domains.
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