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Genomic prediction for crossbred performance using metafounders1

Elizabeth M. van Grevenhof, Jérémie Vandenplas , Mario P. L. Calus2,

Wageningen University & Research Animal Breeding and Genomics, P.O. Box 338, 6700 AH, Wageningen, The 
Netherlands

ABSTRACT:  Future genomic evaluation mod-
els to be used routinely in breeding programs for 
pigs and poultry need to be able to optimally use 
information of  crossbred (CB) animals to predict 
breeding values for CB performance of  purebred 
(PB) selection candidates. Important challenges 
in the commonly used single-step genomic best 
linear unbiased prediction (ssGBLUP) model are 
the definition of  relationships between the differ-
ent line compositions and the definition of  the 
base generation per line. The use of  metafounders 
(MFs) in ssGBLUP has been proposed to over-
come these issues. When relationships between 
lines are known to be different from 0, the use of 
MFs generalizes the concept of  genetic groups 
relying on the genotype data. Our objective was 
to investigate the effect of  using MFs in genomic 
prediction for CB performance on estimated 

variance components, and accuracy and bias of 
GEBV. This was studied using stochastic simu-
lation to generate data representing a three-way 
crossbreeding scheme in pigs, with the parental 
lines being either closely related or unrelated. 
Results show that using MFs, the variance com-
ponents should be scaled appropriately, espe-
cially when basing them on estimates obtained 
with, for example a pedigree-based model. The 
accuracies of  GEBV that were obtained using 
MFs were similar to accuracies without using 
MFs, regardless whether the lines involved in 
the CB were closely related or unrelated. The use 
of  MFs resulted in a model that had similar or 
somewhat better convergence properties com-
pared to other models. We recommend the use 
of  MFs in ssGBLUP for genomic evaluations in 
crossbreeding schemes.
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INTRODUCTION

In pig and poultry breeding, crossbreeding 
programs are generally used. The breeding objec-
tive is therefore to improve crossbred (CB) perfor-
mance. Traits expressed in purebred (PB) and CB 
individuals are genetically not the same (Wei and 
Van der Werf, 1995; Wientjes and Calus, 2017). 
Therefore, it seems reasonable to use performance 

and genotypic data on CB individuals for genomic 
prediction of CB performance. However, col-
lecting CB information might be difficult and 
expensive.

In breeding programs using genomic selec-
tion, single-step genomic best linear unbiased 
prediction (ssGBLUP) is the model of choice, 
as it enables to use phenotypes of both animals 
with and without genotypes (Aguilar et al., 2010; 
Christensen and Lund, 2010). In the implementa-
tion of ssGBLUP, ensuring compatibility between 
the pedigree-based relationship matrix and the 
genomic relationship matrix is one of the main 
issues (Christensen, 2012; Legarra et  al., 2014, 
2015). In crossbreeding, genomic prediction 
enables to accurately link CB phenotypes to PB 
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animals, and considers multiple breed composi-
tions simultaneously. Important challenges are the 
definition of relationships between different line 
compositions and to appropriately define the differ-
ent base generations. A proposed solution to both 
make the pedigree based and the genomic relation-
ship matrix compatible and to appropriately deal 
with multiple base generations is the use of meta-
founders (MFs), which are pseudo-individuals that 
are included in the pedigree as founders without 
known parents (Legarra et al., 2015). These MFs are 
arbitrarily grouped based on, for example line, sex, 
and age, similar to genetic groups. Genetic groups 
are considered unrelated, while MFs are considered 
to be related, and their relationships are computed 
by genotypes of their descendants. Xiang et  al. 
(2017) showed that single-step genomic evaluation 
with MFs performs at least as good as the breed-
of-origin-based ssGBLUP in genomic prediction 
for crossbreeding breeding programs. Our objec-
tive was to investigate the effect of using MFs in 
genomic prediction for CB performance, depending 
on the relatedness of lines involved in the cross, on 
the accuracy and bias of GEBVs. In addition, the 
impact of the use of MFs on estimated variances 
was evaluated. To address these questions, we used 
simulated data for a three-way cross reflecting a pig 
breeding scheme.

MATERIAL AND METHODS

Data Simulation

To investigate the effect of using MFs in 
genomic prediction on the accuracy and bias 
of GEBV, data for the historical, PB, and CB 
lines were simulated using the software QMSim 
(Sargolzaei and Schenkel, 2009). Phenotypes and 
genotypes of the individuals were simulated using a 
crossbreeding scheme. We simulated five correlated 
traits; one trait for each line composition, respec-
tively, the three PB lines 1, 2, and 3, and the CB 
animals 23 and 123. Phenotypes and true breeding 
values (TBVs) for the line composition to which 
they belonged were simulated under additive gene 
action using a custom Fortran program.

The traits were correlated, by assuming the same 
correlations among QTL effects as the genetic corre-
lations between traits. Genetic correlations between 
traits were randomly sampled in the range of 0.2 
to 0.8 from a uniform distribution (Table  1), and 
heritabilities were randomly sampled in the range 
of 0.2 to 0.4 from a uniform distribution. Within 

a line composition, 4,500 QTLs that explained 
95% of the total additive genetic variance, and a 
residual polygenic effect that explained 5% of the 
total additive genetic variance, were underlying the 
associated simulated trait. TBVs were computed 
as the sum of the products of the simulated allele 
substitution effects with the genotypes of the 4,500 
QTLs coded as 0, 1, and 2, and a polygenic effect. 
Allele substitution effects of QTLs were sampled 
from a multinormal distribution with means of 0 
and variances of 1. Within each line composition 
to which a trait belongs, the variance explained by 
all QTLs was computed as the sum of the variances 
across all QTLs, assuming no correlation between 
the QTLs. The variance of each jth QTL was calcu-
lated as σ αj j j jp p2 22 1= −( ) , where pj  is the allele 
frequency and α j  is the allele substitution effect of 
jth QTL. Within each line composition, the allele 
substitution effects of the associated trait were 
rescaled to obtain a variance explained by all the 
QTLs equal to 1. Finally, the phenotypes for each 
animal for the trait associated with its line compo-
sition were generated by summing the TBVs and a 
residual error sampled from a normal distribution 
with a mean 0 and a variance computed such that 
the heritability within a line composition was equal 
to the simulated heritability. Marker and QTL 
mutation rates of 2.5 × 10–5 were assumed. In total, 
52,908 markers were available with a minor allele 
frequency (MAF) > 0.05, spread across 18 chromo-
somes representing the pig genome.

The simulation process was started with the 
simulation of a historical population with 100 gen-
erations. The size of the historical generations was 
set to 18,840, with equal numbers of males and 
females, for the first 70 generations. In the next 10 
generations, the population gradually decreased to 
390 individuals to mimic a bottleneck. During the 
last 20 generations (81 to 100) the population size 
increased up to 18,840 again. The number of males 
in the last generation was 90.

After formation of the historical generations, 
breeding of lines 1, 2, and 3 started. Each line used 
30 founder males and 1,000 founder females. A lit-
ter size of 2 was assumed with one male and one 

Table  1. Genetic correlations used for simulated 
true breeding values for related and unrelated lines

Line PB-1 PB-2 PB-3 CB-23

PB-2 0.46

PB-3 0.27 0.80

CB-23 0.33 0.58 0.30

CB-1(23) 0.55 0.31 0.26 0.69
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female progeny, such that each generation consisted 
of 2,000 individuals. All animals were replaced each 
generation. Matings were done at random between 
30 males (randomly selected) and the 1,000 females. 
This scheme of line breeding was continued for 10 
generations to represent a scenario with closely 
related lines and 100 generations to represent a sce-
nario with unrelated lines, before starting the three-
way crossbreeding program. Hereafter, these will be 
referred to as the related and unrelated scenarios, 
respectively.

Starting from the last of those 10 or 100 genera-
tions, a three-way crossbreeding program with nine 
generations of random selection was simulated (see 
Figure 1 for a schematic overview). Random selec-
tion was used for simplicity, as selection would espe-
cially complicate the interpretation of estimated 
variances. In generations 1 to 3 of line breeding 
only pedigree was recorded, no genotypes or phe-
notypes. From generation 6 onwards crossbreeding 
started by crossing lines 2 and 3, after which this 
two-way cross was crossed with line 1, creating a 
three-way cross representing a pig breeding scheme. 
This crossbreeding was performed in generations 
6 to 8.  To mimic a practical situation where not 
all animals are phenotyped, and to limit the total 
number of phenotypes to enable computations 
within reasonable time, about 15,000 PB pheno-
types were randomly recorded for generations 4 to 
8, and about 3,500 CB phenotypes were randomly 
recorded for generations 6 to 8.  About 5,250 PB 
genotypes were randomly recorded for generations 

6 to 8, and about 925 CB genotypes were randomly 
recorded for generations 7 and 8. Random mating 
was applied in generations 1 to 8.

In total, about 2,125 individuals had both a 
phenotype and a genotype. Finally, the 9th gener-
ation consisted of selection candidates for which 
only genotypes were available. The 9th generation 
contained 6,000 individuals, i.e., 2,000 for each of 
the PB lines 1, 2, and 3.

Additionally, the same simulations were run 
with 500 individuals genotyped for each line com-
position within each genotyped generation, with 
the aim to test the influence of the number of 
genotypes on the estimation of MF relationships, 
variance components, and GEBV. Results were, 
however, very similar and therefore only the results 
for the initial scenarios are presented in this paper. 
The complete simulation was replicated 10 times.

Statistical Analysis

A five-trait ssGBLUP model (Aguilar et  al., 
2010; Christensen and Lund, 2010; Legarra et al., 
2014) was used where the five traits modeled the PB 
performance of lines 1, 2, and 3 and the CB per-
formance of crosses 23 and 1(23). The ssGBLUP 
model uses the inverse of a matrix with combined 
pedigree and genomic relationships. Inverses of 
the different combined pedigree genomic rela-
tionship matrices�were computed using calc_grm 
(Calus and Vandenplas, 2016), considering MFs 
or not. The different inverses are described below. 

Pop 1 (=100 gen)         Pop 2                   Pop 3

0    Genera�on   0                             0

Line 1 Line 2                   Line 3

1     Gen               1                             1
:                            :                              :
3                           3                             3 

4                           4                             4

8                           8                             8

9                           9                             99   9  9

Historical popula�on
(100 genera�ons including bo�leneck)

 4                44   

Line 23Line 123

1   Gen       1             1
:             :             :
3               3                3 

0   Genera�on  0            0

Line 1 Line 2 Line 3

Pop 1 (=100 gen) Pop 2 Pop 3

Genotyped 
None phenotyped

CB in 
gen 4-8

Genotyped 
Not phenotyped

Per genera
on:
Genera�on # Phenotyped # Genotyped

PB CB PB CB

1 - - - -

2 - - - -

3 - - - -

4 3,000 - - -

5 3,000 - - -

6 3,000 1,167 1,750 -

7 3,000 1,167 1,750 462

8 3,000 1,167 1,750 462

9 6,000 - - -

Unrelated 10 genera
ons

Related 100 genera
ons

Figure 1. Schematic overview of the simulation for the unrelated scenario, indicating which animals were genotyped or phenotyped, and the 
average numbers across replicates.
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The variance components were estimated using 
Gibbs2f90 (Misztal et  al., 2002) for which 50,000 
samples were used, a burn-in of 3,500 and each 
10th sample being stored. To limit the computa-
tional burden for the variance components esti-
mation, all the genotyped animals of generation 9 
were discarded from the datasets. The GEBV were 
computed using MiXBLUP (ten Napel et al., 2017). 
When the MFs were not considered, a genomic 
relationship matrix G required for the computation 
of the inverse of the combined pedigree-genomic 
relationship matrix H −1  was computed with-
out line-specific adjustments. The matrix G was 
equal to:

	 G G A= +0 95 0 05 22. .a

where A22  stores the pedigree relationships 
among genotyped animals, and the adjusted 
genomic relationship matrix Ga  is computed as 
follows:
	

G G Ja f f= −





+
− −

1 2p
*

p

where G*  is a raw genomic relationship matrix 
computed following the first method of VanRaden 
(2018) using current allele frequencies computed 
from all genotyped animals, J is a matrix of ones, 
and fp

−
 is the average pedigree inbreeding coeffi-

cient across genotyped animals, according to the FST 
method (Powell et al., 2010; Vitezica et al., 2011).

When the MFs were considered in the ssG-
BLUP model (ssGBLUP_MF), one MF was 
assigned to each PB line, making a total of three 
MFs. Self-relationships and relationships between 
MFs were estimated based on genotypes of their 
descendants, and pedigree information, following 
the generalized least squares (GLS) method for 
multiple populations as shown by Garcia-Baccino 
et al. (2017), and implemented in the software cre-
ateHmf (Legarra, 2016b). Briefly, the MF (self-)
relationships are computed as twice the (co)var-
iances of the estimated allele frequencies for the 
base generation of the pedigree. These base pop-
ulation allele frequencies were computed using 
the GLS method and all PB and CB genotypes 
(Garcia-Baccino et  al., 2017). The computation 
of the inverse of the combined pedigree-genomic 
relationship matrix including MFs, H γ( )−1 , was 
performed using the software calc_grm (Calus and 
Vandenplas, 2016), following Legarra et al. (2015) 
and assuming a residual polygenic effect of 5%, by 
giving a weight of 0.05 to A22  as explained above, 
while in this case G '

a n= MM / ( / )1 2 , where n is the 

number of SNPs and M stores the genotypes coded 
as −{ }1 0 1, , . Note that this Ga  can be obtained using 
the first method of VanRaden (2018) assuming that 
all allele frequencies are equal to 0.5. Finally, for 
reasons of comparison, the same model was also 
applied using the ordinary inverse of the pedigree 
based relationship matrix A−1 . This model is here-
after referred to as PBLUP.

Evaluation of Model Performance

Several aspects of the results were evaluated, 
between analyses with and without MFs. Estimated 
genetic variances were compared against true vari-
ances. True variances were empirically calculated as 
the variances of TBV of all the PB 2,000 animals 
in generation 1, and of all the 2,000 CB animals 
in generation 4.  Similarly, true residual variances 
were empirically calculated as the variances of 
errors of all the 2,000  PB animals in generation 
1, and of all the 2,000 CB animals in generation 
4. Genetic variances estimated with the ssGBLUP_
MF model were rescaled to get them on the same 
scale as the estimates of the other models where 
the genetic parameters relate to a base generation 
of supposedly unrelated animals (Legarra et  al., 
2015; Xiang et  al., 2017). This scaling involved 
multiplying the genetic variances for the PB traits 
with 1 2−( )( / )γ PB , where γ PB  is the self-relation-
ship in the corresponding PB line. For the CB 
traits, this transformation should be done for each 
breed-of-origin-specific genetic variance compo-
nent, and then summing across breed of origins. We 
did not consider breed of origin in the model, how-
ever, computed a weighted average of the scaling 
factor 1 2−( )( )/γ PB  across the PB lines involved in 
the CB animals, where weights were based on the 
breed composition of the cross. This approach is 
valid under the assumption that the genetic vari-
ance for CB performance is the same for each PB 
line. Finally, estimated genetic correlations were 
compared to simulated values. For ssGBLUP_MF, 
the estimates were computed from the unscaled esti-
mated (co-)variances following Xiang et al. (2017).

The accuracy of GEBV for both PB and CB 
performance was computed as the correlation 
between the TBV and the GEBV for the PB selec-
tion candidates in generation 9.  The bias of the 
level of the GEBV and the bias of the scale of the 
GEBV were evaluated, respectively, as the inter-
cept and slope of the regression of the TBV on 
the GEBV. Accuracies and bias were computed for 
each PB line separately. Finally, the convergence of 
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ssGBLUP was compared in both situations with 
and without MFs.

RESULTS

Genetic Differentiation Between Lines

For the two scenarios, i.e. related and unre-
lated scenarios, the level of genetic differentiation 
between the three PB lines was measured using the 
global Wright’s FST statistic, as implemented in the 
software Genepop (4.2) (Raymond and Rousset, 
1995; Rousset, 2008). Using the genotypes of all 
PB animals in generation 6, the estimated global 
Wright’s FST statistics were on average equal to 0.06 
for the related scenario, and to 0.36 for the unre-
lated scenario, across the five replicates.

Relationships Among MFs and Estimated Variance 
Components

The estimated self-relationships of the MFs 
were around 0.17 for the related and around 0.74 
for the unrelated scenario (Table 2). The relation-
ships among MFs showed to be very similar in the 
scenarios with related or unrelated lines, ranging 
from 0.045 to 0.049.

The average variance component estimates (and 
SD) for the related and unrelated scenarios are pre-
sented for PBLUP, ssGBLUP and ssGBLUP_MF 
(Tables 3 and 4). For comparison, presented genetic 
variances estimated with the ssGBLUP_MF model 
were rescaled as described in a previous section. 
The estimated variances were compared against 
the empirically calculated true values outlined in 
Table  5. For both the related and unrelated sce-
narios, estimated residual variances were close to 
the empirically calculated true values for all three 
models, with deviations from the simulated values 
ranging from −5.3% to 2.6%. Estimated genetic 
variances differed for the related and unrelated sce-
narios. In the related scenario, the genetic variances 
were in all cases overestimated, with deviations from 
the simulated values ranging from 1.7% to 32.4%. 
Genetic variances were on average overestimated 

by 12.9, 14.9, and 11.5%, respectively, with the 
models PBLUP, ssGBLUP, and ssGBLUP_MF. In 
the unrelated scenario, the most extreme estimates 
across the models underestimated the genetic var-
iance by 4.1% or overestimated it by 27.3%. The 
genetic variance was on average underestimated 
by 3.8% and 0.3% by PBLUP and ssGBLUP_MF, 
respectively, while it was overestimated by 16.8% for 
ssGBLUP. For both scenarios, not performing the 
scaling of the estimates for ssGBLUP_MF yielded 
genetic variances that were overestimated by 22.0% 
and 58.7% for the related and unrelated scenarios, 
respectively (Supplementary Table 3).

Estimates of the genetic correlations among PB 
lines showed large deviations from the simulated 
values, and were on average underestimated, both 
for the unrelated and related scenarios. Estimated 
genetic correlations between the PB lines 1, 2, and 
3 and the CB 23 and 1(23) animals were generally 
close to the simulated values. Across models, esti-
mated genetic correlations were similar, both within 
the related and the unrelated scenario. The largest 
differences were observed for the related scenario, 
where the estimated genetic correlations of the 
PBLUP and ssGBLUP model were on average 0.06 
to 0.07 lower than those of ssGBLUP_MF, whose 
estimates were closer to the simulated values.

Accuracy and Bias

A total of 2,000 genotyped selection candi-
dates per line were used for computing accuracy 
and bias. Across the related and unrelated scenar-
ios, for PB performance the accuracies ranged from 
0.37 to 0.47 with PBLUP (Supplementary Table 4), 
and from 0.47 to 0.59 for ssGBLUP (Figure  2; 
Supplementary Table 4). For CB performance the 
accuracies ranged from 0.13 to 0.27 with PBLUP, 
and from 0.27 to 0.40 with ssGBLUP. Accuracies 
of ssGBLUP and ssGBLUP_MF within the same 
scenario were very similar, with any differences 
being smaller than the standard errors (Figure  2; 
Supplementary Table  4). Accuracies of PBLUP 
were very similar between the related and unre-
lated scenario, because effectively no information 

Table 2. Relationships among metafounders for related and unrelated scenarios (average of 10 replicates; 
SE within brackets)

Related scenario Unrelated scenario

Line 1 Line 2 Line 3 Line 1 Line 2 Line 3

Line 1 0.171 (0.005) 0.049 (0.002) 0.047 (0.002) 0.746 (0.020) 0.046 (0.005) 0.045 (0.006)

Line 2 0.049 (0.002) 0.171 (0.007) 0.046 (0.002) 0.046 (0.005) 0.741 (0.016) 0.046 (0.005)

Line 3 0.047 (0.002) 0.046 (0.002) 0.171 (0.006) 0.045 (0.006) 0.046 (0.005) 0.743 (0.020)

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
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was used across lines due to lack of pedigree links 
between the lines, leading to very similar amounts 
of information being available in both scenarios. 

Accuracies of ssGBLUP were comparable across 
the related and unrelated scenarios, except for PB 
performance of lines 1 and 3, where the accuracies 

Figure 2. Accuracies of GEBV for purebred selection candidates in generation 9, either for purebred or crossbred performance, using ssGBLUP 
models with or without metafounders, for lines with related and unrelated pedigrees in purebred and crossbred performances. Red (blue) bars rep-
resent models with (without) metafounders.

Table 3. Estimated variance components for the related scenario for three different models: PBLUP, ssG-
BLUP, and ssGBLUP using metafounders. Residual and genetic variances estimates are presented for pure-
bred traits 1, 2, and 3 and crossbred traits 23 and 1(23)

Genetic variances and correlations1

Model Trait Residual 1 2 3 23 1(23)

PBLUP 1 2.672 1.141 0.614 0.236 0.534 0.505

2 1.659 0.614 1.063 0.291 0.466 0.212

3 3.699 0.236 0.291 1.182 0.308 0.195

23 1.907 0.534 0.466 0.308 1.092 0.512

1(23) 3.456 0.505 0.212 0.195 0.512 1.286

ssGBLUP 1 2.656 1.173 0.653 0.096 0.576 0.506

2 1.651 0.653 1.079 0.186 0.528 0.249

3 3.690 0.096 0.186 1.202 0.288 0.183

23 1.862 0.576 0.528 0.288 1.155 0.517

1(23) 3.497 0.506 0.249 0.183 0.517 1.256

ssGBLUP-MF2 1 2.689 1.110 0.754 0.035 0.550 0.474

2 1.652 0.754 1.071 0.095 0.521 0.376

3 3.687 0.035 0.095 1.196 0.253 0.215

23 1.846 0.550 0.521 0.253 1.159 0.530

1(23) 3.539 0.474 0.376 0.215 0.530 1.160

1Variances are on the diagonal, correlations are on the off-diagonal. Standard errors of the variances ranged 0.031 to 0.062, and from 0.023 to 
0.130 for the genetic correlations. Standard errors for each estimate are presented in Supplementary Table 1.

2Genetic variances after scaling are presented.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
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were higher for the related scenario (Figure  2; 
Supplementary Table 4).

The mean values of  all sets of  (G)EBV were 
unbiased, as the intercepts of  the regression of 
TBV on EBV were in most cases not significantly 
different from 0 (Supplementary Table  5). The 
coefficients of  the regression of  TBV on EBV 
were in all cases close to 1 for PB performance 
(Figure 3; Supplementary Table 6). The regression 
coefficients for CB performance were in most cases 
smaller than 1, indicating that the variance of  the 
GEBV tended to be somewhat inflated. Intercepts 
and regression coefficients for ssGBLUP and ssG-
BLUP_MF were very similar within the same 
scenario.

Convergence of ssGBLUP

In the closely related scenario, ssGBLUP and 
ssGBLUP_MF required a similar number of iter-
ations to reach convergence. In the unrelated 
scenario ssGBLUP needed substantially more iter-
ations compared to ssGBLUP_MF, resulting in 
~30% additional computation time (Figure 4).

DISCUSSION

The models ssGBLUP and ssGBLUP_MF 
have been compared in terms of estimated variance 
components, accuracy, bias, and computational 

Figure 3. Bias, defined as the regression slope of the true on the GEBV for purebred selection candidates in generation 9, either for purebred or 
crossbred performance, using obtained for ssGBLUP models with and without using metafounders for lines with related and unrelated scenarios in 
purebred and crossbred performances. Red (blue) bars represent models with (without) metafounders.

Figure  4. Convergences of ssGBLUP models with and without 
using metafounders (MFs) for related and unrelated scenarios. Red 
bars represent models with MF.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
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efficiency in order to evaluate the possible benefit 
of MFs in genomic evaluations for a crossbreed-
ing program. Our results showed that using MF 
in genomic prediction for CB performance does 
not affect the prediction accuracies, while it may 
speed up convergence in specific cases. At the same 
time, estimated variances for ssGBLUP_MF, after 
appropriate scaling, were in closer agreement with 
the empirical true values than ssGBLUP.

Relationships Among MFs

Models used in breeding value estimation 
commonly assume that parents with unknown 
ancestors are sampled from an infinite base pop-
ulation with common genetic variance, and that 
these base animals are unrelated. In practice, due 
to pedigree incompleteness, in addition to ani-
mals from the oldest generation in the pedigree, 

in later generations there usually are also animals 
with unknown ancestors. In this case, animals from 
the same generation may in fact be more closely 
related to each other. This is commonly solved by 
allocating genetic groups to animals with unknown 
parents that can be grouped based on line, gener-
ation, birth date, sex or a combination of these or 
other factors (Westell et  al., 1988). All base ani-
mals within the same genetic group are assumed to 
come from ancestors with similar breeding values, 
while the animals between genetic groups all have 
a considered relationship of zero. By using MFs 
instead of genetic groups, relationships between the 
pseudo individuals representing genetic groups are 
computed based on the genotypes of the descend-
ants (Legarra et al., 2015), and used in the model. 
Because MFs are considered to represent a finite-
size pool of gametes, the MFs also have a self-rela-
tionship (Legarra et al., 2015).

Table 4. Estimated variance components for the unrelated scenario for three different models: PBLUP, 
ssGBLUP, and ssGBLUP using metafounders in the model

Genetic variances and correlations1

Model Trait Residual 1 2 3 23 1(23)

PBLUP 1 2.673 1.112 0.604 0.115 0.352 0.410

2 1.670 0.604 1.039 0.187 0.516 0.300

3 3.720 0.115 0.187 1.099 0.269 0.106

23 1.856 0.352 0.516 0.269 0.904 0.510

1(23) 3.581 0.410 0.300 0.106 0.510 0.900

ssGBLUP 1 2.615 1.244 0.597 0.069 0.341 0.517

2 1.640 0.597 1.126 0.151 0.490 0.332

3 3.651 0.069 0.151 1.245 0.245 0.158

23 1.827 0.341 0.490 0.245 1.041 0.533

1(23) 3.544 0.517 0.332 0.158 0.533 1.018

ssGBLUP-MF2 1 2.688 1.080 0.729 0.183 0.468 0.506

2 1.680 0.729 1.026 0.292 0.475 0.469

3 3.714 0.183 0.292 1.100 0.297 0.094

23 1.903 0.468 0.475 0.297 0.826 0.554

1(23) 3.518 0.506 0.469 0.094 0.554 0.835

Residual and genetic variance estimates are presented for purebred traits 1, 2, and 3 and crossbred traits 23 and 123.
1Variances are on the diagonal, correlations are on the off-diagonal. Standard errors of the variances ranged from 0.035 to 0.074, and from 0.040 

to 0.130 for the genetic correlations. Standard errors for each estimate are presented in Supplementary Table 2.
2Genetic variances after scaling are presented.

Table 5. Empirically calculated true variance components for the related and unrelated scenarios

Trait

Related scenario Unrelated scenario

Residual variancea Additive genetic variancea Heritabilityb Residual variancea Additive genetic variancea Heritabilityb

1 2.720 1.040 0.28 2.670 1.060 0.28

2 1.635 1.045 0.39 1.645 1.061 0.39

3 3.697 1.074 0.22 3.857 1.070 0.22

23 1.859 0.985 0.35 1.873 0.817 0.30

1(23) 3.580 0.971 0.21 3.554 0.871 0.20

aAll standard errors were <0.045.
bAll standard errors were <0.01.

http://academic.oup.com/jas/article-lookup/doi/10.1093/jas/sky433#supplementary-data
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We obtained a self-relationship of the MFs of 
~0.17 for the related and ~0.74 for the unrelated 
scenario. This suggests that the base generation 
of the related scenario is much more diverse than 
the base generation of the unrelated scenario. In 
fact, the base generation of the unrelated scenario 
had its base generation after 90 generations more 
of line breeding than the related scenario, and was 
therefore subject to considerably more accumulated 
inbreeding. This was reflected in the higher self-re-
lationship of the MF for the unrelated compared 
to the related scenario. The self-relationship of the 
MFs in the unrelated scenario is very similar to the 
values found for pigs (Xiang et al., 2017), and close 
to the expected value of 2/3 when assuming that 
base generation allele frequencies are uniformly 
distributed. Other reported values in literature 
varied from values of 0.55 for Holstein and 0.77 
for Jersey cattle (Legarra et al., 2015), and 0.30 to 
0.47 for dairy goat and sheep (Legarra et al., 2015; 
Colleau et al., 2017). The latter values are closer to 
the level of the self-relationship of the MFs in our 
related scenario, suggesting higher diversity in the 
base generations of those populations. It should be 
noted that in all those cases, including our study, 
a 50k type of chip was used, where the SNPs were 
selected based on MAF, which is expected to have 
some impact on the estimated MF relationships. If  
the relationships among MF would be computed 
using whole-genome sequence instead, considering 
that this would have a U-shaped rather than a uni-
form distribution of allele frequencies, it is expected 
that higher values would have been obtained in all 
those cases.

Estimated Variance Components

The estimated residual variances were similar 
across the different models and not significantly dif-
ferent from the empirical true values. However, this 
was not the case for all the estimated genetic vari-
ances of the three models. Estimates of the mod-
els PBLUP and ssGBLUP should be expressed in 
an unrelated base population. While the estimated 
genetic variances for the PBLUP models were sim-
ilar to the empirical true values, genetic variance 
estimates for the ssGBLUP model overestimated the 
empirical true variances. This could be explained 
by the fact that across-breed allele frequencies and 
across-breed adjustments of the genomic relation-
ship matrix were used to make it compatible with 
the pedigree relationship matrix. While such across-
breed adjustments may not affect the accuracy 

(Makgahlela et  al., 2014; Lourenco et  al., 2016), 
they may affect the compatibility between the two 
types of relationships and the estimates of genetic 
(co)variances (Legarra, 2016a; Wientjes et  al., 
2017). For the ssGBLUP_MF model, estimated 
genetic variances were similar to the empirical true 
genetic variances, after rescaling. Rescaling for the 
ssGBLUP_MF model was needed because the esti-
mated genetic variance components from the ssG-
BLUP_MF model are expressed in a hypothetical 
related base population with allele frequency of 0.5 
for all SNPs (Legarra et al., 2015; Garcia-Baccino 
et al., 2017).

Estimated genetic correlations were similar 
across the three models, even if  some deviations 
were observed from the simulated values. For 
example, the estimated genetic correlation among 
the PB lines 2 and 3 especially deviated from the 
simulated value, most likely because of the weak 
link between the lines, and because of the limited 
amount of information available for this particular 
genetic correlation. On the other hand, estimated 
genetic correlations between PB and CB perfor-
mances, for which more information was avail-
able, were generally close to the simulated values. 
For the unrelated scenario, overall ssGBLUP_MF 
in fact yielded estimated genetic correlations that 
were closest to the simulated values. This superior-
ity for the unrelated scenario compared to PBLUP 
may be due to the higher importance of having 
genomic information to provide stronger links 
between the different categories of animals, while 
ssGBLUP_MF additionally profits from making 
pedigree and genomic relationships better compat-
ible, and therefore may have more correct estimated 
variance components compared to ssGBLUP. This 
could be explained by the fact that across-breed 
allele frequencies and across-breed adjustments of 
the genomic relationship matrix were used to make 
it compatible with the pedigree relationship matrix.

Based on these results, further studies are 
required to develop and validate an approach to 
estimate easily (co)variance components for ssG-
BLUP_MF in the context of crossbreeding and mul-
tivariate evaluations, when switching from PBLUP 
(or ssGBLUP) routine evaluations to ssGBLUP_
MF evaluations. A  straightforward approach 
would be to re-estimate variance components, how-
ever, such an approach may be time-consuming. 
Legarra et al. (2015) proposed an approach to com-
pute variance components for ssGBLUP_MF by 
scaling the ones from PBLUP (or ssGBLUP) with 

the following factor: k = + ( ) −
−

1 2diag ΓΓ / Γ , where 
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the matrix Γ  describes the relationships among 
MFs. According to Legarra et al. (2015), the scal-
ing factor k  should be <1, meaning that the genetic 
variances assuming related founders are larger in 
comparison to the ones assuming unrelated found-
ers. This is also what we observed for our estimated 
genetic variances, especially for the unrelated sce-
nario. However, scaling the estimated genetic var-
iances for PBLUP or ssGBLUP as proposed by 
Legarra et al. (2015) for the related and unrelated 
scenarios did not result in estimated genetic vari-
ances of ssGBLUP_MF that were in agreement 
with the empirical true values. The scaling factor 
for the related scenarios was close to 1 (i.e., 0.996), 
and the one for the unrelated scenario was larger 
than 1 (i.e., 1.09), meaning that the estimates for 
the unrelated scenario only deviated more from the 
empirical true values (results not shown). Based on 
our results, a third approach could be to compute 
variance components expressed in a related base 
population from variance components obtained 
with PBLUP (or ssGBLUP) and MFs’ relation-
ships. Covariance components could be computed 
from genetic correlations estimated with PBLUP 
(or ssGBLUP) and variance components expressed 
on a related base population.

Effect of MFs on Performance of Genomic 
Evaluations

Adding the MF in ssGBLUP did not affect 
the prediction accuracy. It did reduce the number 
of iterations until convergence by ~27% for the 
unrelated scenario. For the unrelated lines, the G 
and A matrix may be less compatible, because the 
considered base generation falls after 100th gener-
ations of line breeding, compared to only 10 for the 
related lines. Poor compatibility of G and A may 
have affected the convergence of ssGBLUP. The 
use of MFs likely results in a more consistent rela-
tionship matrix in ssGBLUP_MF, as it adjusts the 
base of the pedigree relationships to have the same 
base as the genomic relationships (Garcia-Baccino 
et al., 2017). This is the likely explanation for the 
observation that the use of MFs for the unrelated 
scenario resulted in improved convergence and esti-
mated genetic variances and genetic correlations 
that were closer to the simulated values compared 
with ssGBLUP.

Results from Xiang et al., (2017) show that in 
terms of model-based reliabilities and predictive 
abilities, ssGBLUP_MF performs at least as well as 
ssGBLUP using the breed of origin of alleles in the 

CB animals which requires a step of phasing geno-
types and of assigning breed of origin of alleles in 
CB animals. These additional steps are computa-
tionally time-consuming. Use of MFs only requires 
to compute the relationships among MFs, which 
can be done using the general least squares estima-
tor of base generation allele frequencies (McPeek 
et  al., 2004; Garcia-Baccino et  al., 2017), whose 
computing time using sparse matrices (Strandén 
et  al., 2017) is trivial relative to all computations 
needed for ssGBLUP (Aldridge et  al., 2018). The 
ssGBLUP_MF model is therefore more convenient 
while achieving similar accuracies and biases. Also, 
while this issue was not considered in this study, fit-
ting genetic groups in ssGBLUP is not as straight-
forward as for PBLUP, and requires additional 
computations for the contributions of genotyped 
animals to genetic groups (Misztal et  al., 2013). 
Using MFs instead only influences the computa-
tion of the inverse of pedigree-based relationship 
matrix. Finally, in genomic evaluations with mul-
tiple lines or breeds it is not easy to scale G and A 
properly (Legarra et al., 2015), unless relationships 
are dissected by breed of origin (Christensen et al., 
2014, 2015), but this is straightforward with the use 
of MF. Therefore, there are several advantages and 
no clear obstructions to use MFs in genomic evalu-
ations, and especially in crossbreeding schemes.

CONCLUSIONS

Based on the results in our study, the ssG-
BLUP model using MFs is the preferred model 
for implementation of genomic prediction for CB 
performance in practical breeding programs. The 
MFs can easily accommodate for differences in 
base populations for different lines involved, as the 
genomic and pedigree relationships are compat-
ible by construction. In comparison to ssGBLUP, 
this leads, potentially, to improved convergence 
behavior of the iterative solver, without affecting 
the prediction accuracies. Our results also suggest 
that rescaled variance components estimated with 
ssGBLUP_MF may be more accurate than those 
of ssGBLUP. Further studies are needed for devel-
oping and validating approaches to easily compute 
or approximate variance component estimates for 
ssGBLUP_MF.

SUPPLEMENTARY DATA

Supplementary data are available at Journal of 
Animal Science online. 
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