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large family of 10 different enzymes in the human ge-
nome (referred to as oculocerebrorenal syndrome of Lowe 
[OCRL]/INPP5F, INPP5B, SHIP1/2, synaptojanins (SYNJs) 
1 and 2, INPP5E, INPP5J, INPP5K, and INPP5A) (4) (Fig. 1). 
They all share an inositol 5-phosphatase domain with a se-
ries of conserved amino acids and a general comparable 
structural organization (5). As seen for INPP5B, conserved 
sequence motifs support a common interaction mode with 
the PI in most PI 5-phosphatases (5). A similar part of these 
active enzyme sites are involved in membrane interactions, 
consistent with a model in which the catalytic domain inserts 
slightly into the membrane. Except for INPP5A, which recog-
nizes only soluble inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) 
and inositol 1,3,4,5-tetrakisphosphate (Ins(1,3,4,5)P4) as 
substrates (6), they all catalyze the dephosphorylation of 
essentially PI(3,4,5)P3, and PI(4,5)P2 (7, 8) at the 5-phos-
phate position of the inositol ring (Table 1). They there-
fore display a negative control on PI(3,4,5)P3, acting as 
potential tumor suppressors in tumor cells (9), as well as a 
positive control on PI(3,4)P2 formation (Fig. 2). Actually, 
PI(3,4)P2 can be rapidly dephosphorylated by the active PI 
4-phosphatases INPP4A/B or PI 3-phosphatase PTEN 
(phosphatase and tensin homolog) (10). Both INPP4B and 
PTEN are important tumor suppressors, particularly in breast 
cancer cells, and can be absent in some tumors (11). The 
relative flux of 3- versus 5-dephosphorylation of PI(3,4,5)P3 
is cell context dependent. There is indeed a large variabil-
ity in the expression of PTEN or INPP4B in different tissues 
and cell types, as shown, for example, in triple-negative 
breast cancer cells (12).
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Phosphoinositides (PIs) can be dephosphorylated by mul-
tiple mechanisms involving the participation of 3-, 4-, and 
5-phosphatase activities (1–3). Inositol polyphosphate or 
phosphoinositide 5-phosphatases (INPP5Ps) represent a 
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PI(4,5)P2 is the second major substrate of the PI 5-phos-
phatases to produce phosphatidylinositol 4-phosphate (13). 
PI(4,5)P2 can act as a signaling molecule in many biological 
mechanisms (e.g., endocytosis, exocytosis, migration, adhe-
sion, ion channel control), and its content can be controlled 
by various members of the PI 5-phosphatase family. SHIP2, 
for example, can use PI(4,5)P2 in some glioblastoma cell 
lines, but in others it acts mainly on PI(3,4,5)P3 (14). The 
PI(4,5)P2 dephosphorylation pathway is tremendously 

important in some human genetic diseases such as Lowe 
syndrome, which results from OCRL mutations (15), or 
Joubert and MORM syndromes, which result from INPP5E 
mutations (16).

Moreover, PI 5-phosphatases interact with a very large 
number of proteins, thereby mediating noncatalytic 
properties or effectively targeting subcellular locations 
(i.e., plasma membrane, endosomes, lamellipodia, cilia, 
nucleus, etc.). Identifying these interactors has been very 

Fig.  1.  Domain and motive organization of the mammalian PI 5-phosphatases. OCRL and INPP5B are very similar in terms of internal 
domain organization. Both present a PH domain at the N terminus and an ASH domain followed by an RhoGAP domain at the C terminus. 
OCRL also has two CB domains. INPP5B lacks the CB domains and has a CAAX domain at the C terminus (57, 88–90). SHIP1 and SHIP2 
are also very similar in terms of organization; both contain an SH2 domain at the N terminus; a PH-R domain and C2 domain, upstream and 
downstream of the 5-phosphatase domain, respectively; and a PR domain with two NPxY sequence motifs for SHIP1 and one for SHIP2. 
SHIP2 also has a SAM domain in the C terminus, but this SAM domain is absent in SHIP1 (91, 92). The SHIP2 ubiquitin-interacting motif 
at amino acids 1117–1134 has also been reported for SHIP2 (17). SYNJ1 and SYNJ2 show the presence of a SAC at the N terminus, an RRM 
domain next to the PI 5-phosphatase domain; and a PR domain at the C terminus (93). INPP5E or pharbin is composed of a PR domain at 
the N terminus and a CAAX sequence at the C terminus (94). PIPP and SKIP have in a common a SKICH domain downstream of the 5-phos-
phatase domain. PIPP also has a PR domain at the N terminus and an SRD at the C terminus (95, 96). INPP5A or type I 5-phosphatase is the 
smallest from the family and is constituted, in addition to the 5-phosphatase domain, by a CAAX sequence at the C terminus (6). Figure 
is adapted from (1, 62). ASH, ASPM-SPD2-hydin; CB, clathrin binding; PH-R, PH-related; PIPP, proline-rich inositol polyphosphate 5-phospha-
tase; PR, proline-rich; RhoGAP, Rho GTPase-activating protein; RRM, RNA recognition motif; SAC, SAC1-like phosphatase domain; SH2, Src 
homology 2; SKICH, SKIP COOH terminal homology; SRD, serine-rich domain.



278 Journal of Lipid Research  Volume 60, 2019

helpful in understanding the function of the different PI 
5-phosphatases in cells (17). Focal adhesion intrinsic and 
associated proteins represent 232 human proteins (18): 
among the 10 different PI 5-phosphatases, only SHIP1 and 
SHIP2 have been reported as part of the focal adhesion 
intrinsic proteins or adhesome (see http://www.adhesome.
org). Interestingly, most of the SHIP1/2 interactors such 
as filamin, Abl, Src, Cbl, or RhoA are also part of focal 
adhesion intrinsic proteins and participate in the control 
of cell migration, adhesion, and invasion (19–21).

SHIP1, which is very much expressed in immune cells, 
also influences downstream signaling via both phosphatase-
dependent and -independent mechanisms (22). For ex-
ample, in B cells, SHIP1 catalyzes an important production 
of PI(3,4)P2. Evidence has been provided that PI(3,4)P2-
dependent processes may contribute to the therapeutic ef-
ficacy of PI 3-kinase inhibitors in B-cell malignancies (23). 
The role of SHIP1 is different in T cells, where it can have 
multiple functions [reviewed in (24)]. In the context of 
apoptosis, SHIP1 inhibits CD95/APO-1/Fas-induced apop-
tosis in primary T lymphocytes and T leukemic cells by pro-
moting CD95 glycosylation (25). This activity of SHIP1 
requires the SHIP1 Src homology 2 domain and probably 

occurs in the endoplasmic reticulum independently of its 
phosphatase activity. In this particular cell context, the in-
hibitory function for SHIP1 underscores the role of glyco-
sylation in the regulation of CD95 signaling in T cells (25).

THE CONTROL OF PI(3,4,5)P3 BY PI 3- AND 
5-PHOSPHATASES: THE IMPORTANCE AND IMPACT 

OF PTEN AND INPP4B

PI(3,4,5)P3 can be dephosphorylated in two very distinct 
pathways, PI 3-phosphatase PTEN and PI 5-phosphatases, 
to produce the very different signaling lipids PI(4,5)P2 and 
PI(3,4)P2, respectively (Fig. 2). Several PI 5-phosphatases 
can take PI(3,4,5)P3 as a substrate in an acellular assay of 
activity. This is the case for SHIP1/2, INPP5K, INPP5E, 
INPP5J, or SYNJ2 (Table 1). In intact cells, the flux of 5-de-
phosphorylation of PI(3,4,5)P3 is more complex and very 
much depends on precise enzyme localization and interac-
tion with the membrane. This was very much studied for 
SHIP1/2. SHIP1 is a major phosphatase that controls the 
content of PI(3,4,5)P3 and PI(3,4)P2 in thrombin-stimulated 
platelets (26). In zebrafish, SHIP1 limits the motility of 

TABLE  1.  Substrate specificities of the PI 5-phosphatase

PI 5-Phosphatase Substrate(s) Identified on Isolated Enzyme Intact Cell Substrate(s) References

OCRL, INPP5F PI(3,4,5)P3, PI(4,5)P2, PI(3,5)P2, 
Ins(1,3,4,5)P4, Ins(1,4,5)P3

PI(4,5)P2 (99)

INPP5B, type II PI(3,4,5)P3, PI(4,5)P2, Ins(1,3,4,5)P4, 
Ins(1,4,5)P3

PI(4,5)P2 (100, 101)

SHIP1, INPP5D PI(3,4,5)P3, Ins(1,3,4,5)P4 PI(3,4,5)P3 (26, 91)
SHIP2, INPPL1 PI(3,4,5)P3, PI(4,5)P2, Ins(1,3,4,5)P4 PI(3,4,5)P3, PI(4,5)P2 (28, 31, 98, 102)
SYNJ1 PI(4,5)P2, PI(3,4,5)P3 PI(4,5)P2, PI(3,4,5)P3, (93)
SYNJ2 PI(4,5)P2, PI(3,4,5)P3 PI(4,5)P2, PI(3,4,5)P3 (103)
INPP5E, type IV, pharbin PI(4,5)P2, PI(3,5)P2, PI(3,4,5)P3 PI(4,5)P2, PI(3,4,5)P3 (16, 94, 104, 105)
PIPP, INPP5J PI(3,4,5)P3, PI(4,5)P2, Ins(1,3,4,5)P4, 

Ins(1,4,5)P3

PI(3,4,5)P3 (96, 106)

SKIP, INPP5K PI(3,4,5)P3, PI(4,5)P2, Ins(1,3,4,5)P4, 
Ins(1,4,5)P3

PI(3,4,5)P3, PI(4,5)P2 (107–109)

INPP5A, type I Ins(1,4,5)P3, Ins(1,3,4,5)P4 Ins(1,4,5)P3, Ins(1,3,4,5)P4 (28, 56, 91, 110)

Substrates of the PI 5-phosphatases are indicated both on the isolated enzyme and in intact cells. It is possible 
that the intact cell substrate could vary depending on the cell context, particularly in cancer cells (48). In addition 
to a PI 5-phosphatase reaction, both SYNJs show the presence of a SAC domain that hydrolyzes phosphatidylinositol 
3-phosphate, phosphatidylinositol 4-phosphate, and PI(3,5)P2 to PI (1). PIPP, proline-rich inositol polyphosphate 
5-phosphatase.

Fig.  2.  The control of PI(3,4,5)P3 by PI 3- and 
5-phosphatases. Although not indicated in this figure, 
the metabolism of PI(3,4)P2 can also occur by PTEN 
3-phosphatase activity (10). Major effectors of the PIs 
and their impact are indicated. ER, estrogen receptor; 
FAK, focal adhesion kinase; GRP1, general receptor 
for phosphoinositide 1-associated scaffold protein; 
PI3P, phosphatidylinositol 3-phosphate; PI4P, phos-
phatidylinositol 4-phosphate; SCC, squamous cell car-
cinoma; Tks5, tyrosine kinase substrate with five Src 
homology 3 domains.
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neutrophils and their recruitment to wounds. The effect 
appears to be mediated by PI(3,4,5)P3, which is located at 
the leading edge (27). By the use of a model of mouse em-
bryonic fibroblasts (MEFs) deficient or not for SHIP2, 
PI(3,4,5)P3 was upregulated in SHIP2/ cells compared 
with SHIP2+/+ cells (Fig. 3). This was shown in response to 
serum (10%) added for 5 or 10 min to the cells but not in 
starved cells (28). The data were obtained by labeling the 
PIs with phosphorus-32, lipid isolation, and deacylation. It 
is important to note that the PI(3,4)P2 measured in parallel 
in the same HPLC run was present but unchanged between 
+/+ and / cells at the same time points for serum stimu-
lation (Fig. 3). This suggested that PI(3,4)P2 was rapidly 
dephosphorylated by PI 4-phosphatase INPP4A/B or PI 

3-phosphatase PTEN. The only treatments that provided a 
significant increase of PI(3,4)P2 in MEFs were the addition 
of either platelet-derived growth factor (PDGF), epider-
mal growth factor (EGF), or H2O2 for 5–15 min to the cells 
(28, 29). This was due to the inactivation of both PTEN and 
INPP4A/B after the oxidation of the enzyme(s) at critical 
cysteine residues (30).

Through an siRNA approach directed against all PI phos-
phatases (INPP5B, INPP5E, INPP5J, INPP5K, SHIP1/2, 
SYNJ1/2, OCRL, and PTEN) expressed in Mcf10a cells, it 
appears that the only genetic manipulations that altered 
the PI(3,4,5)P3 response to EGF were knockdown or dele-
tion of the PI phosphatases PTEN or SHIP2 (10). This was 
unexpected based on enzymatic activities determined on 

Fig.  3.  PI(3,4,5)P3 and PI(3,4)P2 levels in SHIP2+/+ and SHIP2/ MEF cells. MEFs were stimulated for 5 min with 10% serum, 50 ng/ml 
EGF, 15 ng/ml HGF, 100 ng/ml -FGF, 1 and 10 nM IGF-1, and 30 ng/ml PDGF. Data taken with permission from (28). HGF, hepatocyte 
growth factor; IGF-1, interleukin-like growth factor 1.
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purified catalytic domains where SHIP2 had lower activity 
compared with INPP5B, OCRL, and SHIP2 (5). This sug-
gests that the N- or C-terminal part of SHIP2, or both, are 
required for optimal activity. Again, the differences in 
PI(3,4,5)P3 content (measured by mass spectrometry) be-
tween siRNA-treated and wild-type cells were at best seen at 
short times of stimulation with EGF (1–5 min). This sug-
gests that SHIP2 is a very potent PI(3,4,5)P3 5-phosphatase 
in this model either in being recruited to the EGF receptor 
(31) and/or displaying a very high Vmax/low Km compared 
with other PI 5-phosphatases. The effect is transient, sug-
gesting that SHIP2 is only active at the plasma membrane 
for a short time, probably due to its localization upon stim-
ulation to a fraction of the cell where PI(3,4,5)P3 is also 
present. This could be secondary to SHIP2 interaction with 
cytoskeletal proteins [actin-binding proteins such as fila-
min (19) or myosin 1c (32)] in plasma membrane-associated 
platforms and scaffold proteins (33). Furthermore, the 
stimulation of PI(3,4,5)P3 in response to EGF was very 
much amplified in cells in which both PTEN and SHIP2 
were deleted (10). PI(3,4)P2 was also not very much differ-
ent between wild-type and SHIP2/PTEN-deleted cells in 
response to EGF treatment. A minor and nonsignificant 
increase of PI(3,4)P2 was observed in SHIP2 knockdown 
cells compared with control cells. In contrast, PI(3,4)P2 was 
very much potentiated in response to EGF in both PTEN- 
and INPP4B-deleted cells compared with wild-type cells. 
The effect is synergistic between the two PI phosphatases 
and underscores the role of both enzymes in the control of 
PI(3,4)P2 when mutated together, particularly in cancer 
cells (10).

PI 5-PHOSPHATASES AND PI(3,4)P2, A NEW SIGNAL 
MOLECULE

PI(3,4)P2 can be produced by PI 5-phosphatases such 
as SYNJ2, INPP5J, or SHIP1/2 (1–3). There is debate 
concerning whether PI(3,4)P2 contributes to protein ki-
nase B (Akt) and downstream effector activation together 
with PI(3,4,5)P3. PI(3,4)P2 is able to interact with the 
pleckstrin homology (PH) domain of Akt as well as PI(3,4,5)
P3 (34). Some proteins do interact specifically with PI(3,4)P2, 
such as tandem-PH-domain-containing proteins (TAPPs) 
1 and 2 (35); PI(3,4)P2 also recruits lamellipodin (Ras 
association and PH domains 1) (36), tyrosine kinase sub-
strate with five Src homology 3 domains at the invadopo-
dium (37), or the sorting nexin 9 at late-stage endocytic 
intermediates (38). Based on evidence obtained in vivo, 
it has been proposed that the binding of TAPP1 and 
TAPP2 to PI(3,4)P2 provides a mechanism to downregu-
late the insulin-signaling and PI 3-kinase pathway (39). 
Interestingly, SHIP2 and lamellipodin partially colocalize 
in glioblastoma 1321 N1 cells, suggesting that both pro-
teins could cooperate in PI(3,4)P2 signaling (C. Erneux, 
unpublished observations; Fig. 4). Moreover, diC8-PI(3,4)
P2 addition to breast cancer MDA-MB-231 cells potenti-
ated cell migration velocity and lamellipodia formation. 
This was not observed with its isomer diC8-PI(3,5)P2 (40). 

This attributes a signaling function to PI(3,4)P2 in cell 
migration.

In the developing cerebral cortex, PI(3,4)P2, lamellipodin, 
and Ena/vasodilator-stimulated phosphoprotein regulate 

Fig.  4.  SHIP2 and lamellipodin (LPD) colocalization in glioblas-
toma 1321 N1 cells. 1321 N1 cells were plated on coverslips and 
kept in culture in the presence of 10% serum for 24 h. The cells 
were fixed and stained with anti-lamellipodin in green (Alexa Fluor 
488) and anti-SHIP2 (Novus) in red (Alexa Fluor 594). Images were 
obtained on Axioimager (Zeiss) at 100× 1.45 NA oil after deconvo-
lution. Scale bar = 10 µm.
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the dynamic morphology of multipolar migrating cells 
(41). In another study of neurite initiation, a positive role 
of PI(3,4)P2 in regulating actin aggregation and neurito-
genesis has been proposed (42). Two enzymes, SHIP2 and 
class II PI 3-kinase , are complementarily required for 
the production of PI(3,4)P2. Moreover, recently, novel 
second messenger functions of PI(3,4)P2 have been iden-
tified in the control of invadopodium precursor stabiliza-
tion (43), feedback control of PI(3,4,5)P3 generation 
(44) in breast cancer cells, and basal mammalian target of 
rapamycin complex 1 activity in many different cells (45). 
Therefore, PI(3,4)P2 must be considered as a second mes-
senger on its own not only in B cells and breast cancer 
cells but also in many other cells (11, 40). Its role could 
be particularly relevant in cancer cells in which INPP4B 
is mutated or absent, a situation that frequently occurs 
in aggressive hormone receptor-negative basal-like breast 
carcinomas (12).

CONSEQUENCES IN SIGNALING PATHWAYS: 
PI(3,4,5)P3 AND PI(4,5)P2 CONTENT, Akt AND Erk 

ACTIVITY, AND CELL SURVIVAL

PI(3,4,5)P3 and PI(4,5)P2 are major PI 5-phosphatase 
substrates that show signaling properties (Table 1, Fig. 2). 
Their content in membranes could be affected by PI phos-
phatase activities. OCRL is described as a PI(4,5)P2 5-phos-
phatase (Table 1), and PI(4,5)P2 levels have been shown to 
be very much increased in cell lines from kidney proximal 
tubules of a patient with Lowe syndrome compared with 
controls (46). OCRL localizes to the primary cilium and 
cilia from Lowe-patient fibroblasts, where it exhibits in-
creased levels of PI(4,5)P2 (47). SHIP2 also controls plasma 
membrane PI(4,5)P2, thereby participating in the control 
of cell migration in 1321 N1 glioblastoma cells (48). 
PI(3,4,5)P3 is a positive effector of Akt activity (Fig. 2). In 
experiments performed in MEFs, Akt phosphorylation and 
activity were always upregulated in SHIP2-depleted cells 
compared with control cells when stimulated for a short 
period of time by serum (5–10 min; Fig. 5) (28, 49). This 
follows an upregulation of PI(3,4,5)P3 in MEFs at the same 

time points. Similar results on pAkt were also reported in 
human embryonic kidney cells in response to insulin-like 
growth factor 1 added for 5 min (50). pAkt upregulation in 
SHIP2-depleted cells is thus transient; it is not observed 
when cells are maintained in serum. In colorectal cancer 
cells, pAkt was rather decreased in SHIP2-depleted cells 
(51). This was observed as well in MDA-MB-231 breast can-
cer cells grown in serum alone (40).

Actually, many factors may influence the pAkt response 
and possible influence of both PI 5-phosphatases and PTEN 
activities. The existence of separate pools of PI 3-kinase-
produced lipids in differentiating 3T3-L6 myoblasts has been 
proposed (52): a pool of nascent PI(3,4,5)P3 that is mainly 
dephosphorylated by PTEN and is able to activate Akt and 
a more stable pool that is dephosphorylated by SHIP2 that 
is unable to activate Akt. Knockdown of SHIP2 in this 
model did not affect pAkt but increased apoptotic cell 
death. The time course of stimulation by an agonist as dis-
cussed previously (e.g., in MEFs) may also play a role. In 
platelets, a striking correlation was observed between 
PI(3,4)P2 production and the tyrosine phosphorylation of 
SHIP1 upon thrombin stimulation (53). The data sug-
gested that SHIP1 is only active for a short amount of time. 
The nature of stimuli added to cells and possible syner-
gism between SHIP2 and PTEN or INPP4B that will in-
crease PI(3,4,5)P3 and PI(3,4)P2 and pAkt as shown in 
Mcf10a cells may also be involved (10). In addition to Akt, 
pErk levels could also be modified in PI 5-phosphatase-
deficient cells, e.g., for SHIP2 in 1321 N1 glioblastoma 
cells (49) or recently in a model of rat chondrosarcoma 
chondrocytes in fibroblast growth factor (FGF)-FGF recep-
tor signaling (54). SHIP2 inhibition by the use of a specific 
competitive inhibitor diminishes the activation of both 
Akt- and Erk-signaling pathways in CD2-associated protein-
deficient podocytes (55). This leads to an increase in 
apoptosis in podocytes with reduced expression of the 
CD2-associated protein (55). The depletion of SHIP2 in 
MDA-MB-231 cells or addition of a SHIP2 inhibitor in the 
same model resulted in a decrease in living cells (40). 
Therefore, changes in expression or activity of PI 5-phos-
phatases could affect cell survival in cells incubated in vi-
tro or in xenograft mice in vivo (40).

Fig.  5.  pAkt/PKB S473 level in SHIP2+/+ and SHIP2/ 
MEF cells. MEF cells were stimulated in the presence 
of 10% serum for 5 min in the presence and absence 
of PI 3-kinase inhibitor LY-294002 (25 µM). Data were 
taken with permission from (28). PKB, protein kinase B.
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INTERACTION BETWEEN PTEN OR PI 
5-PHOSPHATASES AND THE PLASMA MEMBRANE

How do PI 5-phosphatases interact with their lipid sub-
strate? None of the PI 5-phosphatases interact with the 
plasma membrane with only a PI substrate binding site. 
Some members of the family are attached to membranes by 
prenylation (INPP5B, INPP5E, or INPP5A; Fig. 1), a mech-
anism required to support activity (56). For other isoforms, 
the interaction also involves specific domains or sequences 
of the PI phosphatases. For OCRL and INPP5B (Fig. 1), a 
C-terminal Rho GTPase-activating protein-like domain par-
ticipates with the 5-phosphatase catalytic domain in the in-
teraction to form an arc below the membrane monolayer 
(57). For SHIP2, both the PI catalytic domain and a C2 
domain interact with phosphatidylserine to facilitate the 
recognition of the substrate PI(3,4,5)P3 (58). The C2 do-
main also acts as an allosteric activator of PI phosphatase 
activity emanating from hydrophobic or polar interdomain 
interactions (58). Therefore, lipids at the plasma mem-
brane could act as allosteric activators, a situation that also 
occurs for PI(4,5)P2 and the PI 3-phosphatase PTEN (59). 
In SHIP2, the addition of phosphatidylserine enhances 
catalytic activity, as measured with diC8-PI(3,4,5)P3 as a 
substrate (60). A similar effect has been reported for PTEN 
(61). Furthermore, the direct or indirect interaction of 
SHIP1/2 with immune or growth factor receptors (EphA2, 

FcRIIb, EGF, or PDGF) has been reported and may also 
facilitate PI substrate recognition and phosphatase reac-
tion (4, 17).

PI 5-PHOSPHATASE MUTATIONS ARGUE IN FAVOR 
OF SPECIFICITY OF PI 5-PHOSPHATASE ISOFORMS 

IN HUMANS

Could the distinct PI 5-phosphatase cooperate in metab-
olizing PIs, i.e., PI(4,5)P2 and PI(3,4,5)P3, or act separately 
in a given genetic or cellular context? Mutations of the PI 
5-phosphatases have been reported in rare but very specific 
human genetic diseases (62). The INPPL1 gene that en-
codes SHIP2 has been found to be mutated in opsismodys-
plasia (MIM 258480), a rare autosomal-recessive disease 
characterized by growth-plate defects and delayed bone 
maturation (63, 64). Most of the mutations in INPPL1 lead 
to a premature stop codon at the N-terminal end or occur 
in the catalytic domain at positions that are crucial for the 
catalytic activity and therefore impair activity (65). One 
mutation was found in the C2 domain that controls activity 
(58). No mutations were found in the C-terminal proline-
rich sequences and sterile  motif (SAM) domain (Fig. 6). 
Therefore, genetic evidence suggests that impaired SHIP2 
catalytic activity, i.e., lack of dephosphorylation of PI(3,4,5)
P3, plays a role in the phenotype. In humans, the loss of 

Fig.  6.  INPPL1 (gene that encodes SHIP2) mutated in OPS (MIM 258480). The INPPL1 sequence is accessible as NCBI reference se-
quence NM_001567.3. SHIP2 domains in the human sequence (1258 amino acids) are shown in Fig. 1. Homozygous or compound hetero-
zygous mutations have been reported in p.E654del(Ho) (97); p.R691W(Ho), p.P659L(Ho), p.T563Gfs*(He), and p.E258Afs*45(Ho) (63); 
p.F722I(He), p.W688K(He), p.P659S(He), p.T443Ifs*23(He), and p.I616Yfs*14(Ho) (64); and p.Y777*(He) and p.R372Lfs*40(He) (98). 
So far, most mutations have been shown in the N-terminal and catalytic domain. No mutations have yet to be found in the C-terminal PR and 
SAM domain. He, heterozygous; Ho, homozygous; OPS, opsismodysplasia; PH-R, PH-related; PR, proline-rich; SH2, Src homology 2.
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OCRL function results in the X-linked oculocerebrorenal 
syndrome of Lowe and type 2 Dent disease (MIM 309000) 
(66, 67). Mutations occurred in the catalytic domain of 
the protein. The same phenomenon occurs for skeletal 
muscle- and kidney-enriched inositol phosphatase (SKIP; 
also referred to as INPP5K) (Fig. 1): recessive mutations 
in INPP5K (MIM 607875) have been reported in a syn-
drome overlapping both the dystroglycanopathy and the 
Marinesco-Sjögren spectrum (68). Those rare mutations 
also impair catalytic activity. Moreover, in the case of the 
worm orthologue of INPP5K, the same mutations could 
also affect the fine control of the endoplasmic reticulum 
network organization (69). Thus, genetic evidence of very 
specific human diseases argues against the redundancy 
between PI 5-phosphatases and suggests that in a genetic 
context PI 5-phosphatase could have very specific and in-
dividual functions.

COMPENSATION BETWEEN DIFFERENT PI 
5-PHOSPHATASES IN CELLS DEPENDS ON THE 

CELL CONTEXT

OCRL encodes a very active PI(4,5)P2 5-phosphatase 
(Table 1). In terms of structure, INPP5B is very close to 
OCRL, with approximately 45% sequence identity (62). 
Mice deficient for OCRL do not have the characteristics of 
a Lowe syndrome, but double-knockout mice for OCRL 
and INPP5B are embryonic lethal (70). Thus, in mice, 
OCRL and INPP5B must cooperate in function. In hu-
mans, this appears not to be the case. Recent studies have 
shown that PI 5-phosphatase compensation may occur in 
Mcf10a cells deficient for PTEN and SHIP2. The content of 
PI(3,4,5)P3 was particularly high in the absence of both 
PTEN and SHIP2 compared with wild-type, PTEN-knock-
out, or SHIP2-knockdown cells (10). Evidence of PI(3,4)P2 
formation has been presented to suggest that another 
phosphatase (or phosphatases) must compensate for the 
loss of SHIP2 and PTEN in this particular model and de-
phosphorylate PI(3,4,5)P3 in EGF-stimulated cells (10). 
Whether this is applicable to other cells or depends only on 
some growth factors, or both, remain open questions. The 
data underscore the difference between measuring PI 
phosphatase activity on purified enzymes and its activity in 
intact cells in agonist-stimulated cells.

PI 5-PHOSPHATASES: TUMOR PROMOTORS OR 
TUMOR SUPPRESSORS?

A tumor promotor or suppressor role of the different PI 
5-phosphatases in different cancer cells have been reported. 
For example, in breast cancer MDA-MB-231 cells as a model, 
SYNJ2 has been presented as an oncogene (71). The overex-
pression of SYNJ2 correlated with a shorter survival of breast 
cancer patients. In xenograft mice, the catalytic activity of 
SYNJ2 promotes both tumorigenic growth and metastatic 
spread. It was proposed that SYNJ2’s oncogenic activity re-
lates to its ability to dephosphorylate PI(3,4,5)P3, produc-
ing PI(3,4)P2, which acts at key steps of both invadopodia 

and lamellipodia formation (71). In U87-MG glioblastoma 
cells, siRNA depletion of SYNJ2 also inhibits invasion with 
the involvement of Rac1 (72). In contrast to the data ob-
tained with SYNJ2, the depletion of INPP5J in MDA-MB-231 
cells increases breast cancer cell transformation (suggest-
ing tumor-suppressive activity) but reduces cell migration, 
invasion, and metastasis by a mechanism that is driven by 
Akt1 (73).

In blood cancer cells expressing SHIP1, the addition of 
a SHIP1-specific inhibitor, 3AC, decreases pAkt and pro-
motes apoptosis (74). When added to the cells pretreated 
with 3AC, PI(3,4)P2 increases cell survival, raising the pos-
sibility that the SHIP1 reaction product is part of a survival 
mechanism in this model. Altogether, the data suggest that 
SHIP1 inhibition and its impact on pAkt could be seen as a 
strategy to decrease the survival of hematologic malignancies. 
In esophageal squamous cell carcinoma, miR-508 suppresses 
multiple PI phosphatases, in particular INPP5J, leading to 
constitutive activation of PI 3-kinase/Akt and inducing an 
aggressive phenotype of those tumor cells (75). SHIP2 has 
both oncogenic and tumor-suppressive effects depending 
on the cell context. In glioblastoma and squamous cell car-
cinoma, it shows tumor-suppressive functions that are also 
mediated at least in part by Akt and the control of survival 
(76), whereas in some breast cancer cells it shows tumor-
promoting activity (40, 77). Because high expression of 
SHIP2 was found in very aggressive human breast cancer 
samples such as triple-negative breast cancer or colorectal 
cancer, SHIP2 was proposed as oncogenic in these models 
(77–79). SHIP2 also played an essential oncogenic role for 
the maintenance of a subpopulation of breast cancer stem 
cells and tumorigenicity in vivo through c-Jun N-terminal 
kinase 1/vimentin activation (80).

INHIBITORS OF PI 5-PHOSPHATASES

PI 5-phosphatase inhibitors SYNJ1, OCRL, and SHIP1/2 
have been identified by multiple screening strategies 
(81–83). They represent valuable tools for probing PI 
phosphatase function in cell models but also in vivo. SHIP1 
inhibitors have been proven to be effective in treating hu-
man multiple myeloma and acute lymphoblastic leukemia 
in vivo using severe combined immunodeficiency xenoge-
neic cancer models (84). More recently, the use of a SHIP1-
selective inhibitor in mice and in vivo, referred to as 3AC, 
increased both natural killer and T-cell responsiveness and 
reduced the growth of hematological and solid tumors 
(85). Because the effect is lost when the T-cell compart-
ment lacks SHIP1, the effect appears to be SHIP1-specific 
or requires at least the in vivo interaction between SHIP1 
and the drug. A SHIP2 inhibitor injected in mice was not 
efficient in providing the same protection, suggesting non-
redundancy between SHIP1 and SHIP2 in the T cells of 
these mice and that selective SHIP1 inhibitors have to be 
used to promote antitumor properties. It is equally possible 
that SHIP1 is much more expressed or active in T cells 
compared with SHIP2 or other PI 5-phosphatases, as pro-
posed in platelets (26). SHIP2 modulators could also be 
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useful in the treatment of some cancers, e.g., in breast can-
cer and colorectal cancer in PTEN/INPP4B-deficient cells. 
Considering the role of SHIP2 in migration and invasion 
particularly, in some breast cancer cell types (86), or colorec-
tal cancer (51), inhibitors of SHIP2 could be useful as an 
additional therapy in preventing or controlling cell migra-
tion and metastasis by inhibiting PI(3,4)P2 signaling (40). 
This could be particularly important in estrogen receptor-
negative breast cancers, in which SHIP2 phosphatase activ-
ity has been suggested to modulate tumorigenicity in vivo 
(80). The same approach could be of interest in the treat-
ment of other diseases. For example, recent studies have 
provided evidence that potent SHIP2 inhibitors would pro-
vide effective treatment options for Alzheimer’s disease 
(87). The substrate lipid binding site may thus provide 
alternatives for the synthesis of effective drugs targeting the 
PI 5-phosphatases.

The authors thank Matthias Krause for providing the anti-
lamellipodin antibody.
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