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As we learn more about the unique ways phosphoinosit-
ide signaling works in the nucleus (1), we can connect 
these basic science observations with unexplained mecha-
nisms of human pathologies that could lead to new di-
agnostics, biomarkers, or therapies (2). From a clinical 
perspective, it is easy to wonder why phosphoinositide sig-
naling in the nucleus has not realized the meteoric rise in 
therapeutic development that plasma membrane phos-
phoinositide, phosphatidylinositol 3-kinase (PI3-kinase), 
pharmacology has enjoyed over the last 20 years (3–7). In-
deed, at the time this article was written, clinicaltrials.gov 
contained well over 200 ongoing trials assessing PI3-kinase 
inhibitors at various stages of development. The lag in clini-
cal translation of nuclear phosphoinositide signaling stems 
from a lag in our basic understanding of how these signal-
ing processes operate at the molecular level (8). This un-
certainty is centered around one specific mystery that has 
clouded nuclear phosphoinositide biology for the last  
40 years: that nuclear phosphoinositides exist outside mem-
branes (9, 10).

The biophysical basis for this phenomenon had been 
speculated on for decades (11, 12), but only recently has 
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X-ray crystallography provided concrete data to reveal the 
structural format of non-membrane nuclear phosphoinosit-
ides (13, 14). These studies showed that certain non- 
membrane nuclear proteins can bury the acyl chains of 
phosphoinositides deep in the hydrophobic core of the 
protein (Fig. 1A), while the phosphoinositide headgroups 
remain solvent-exposed on the surface of the protein (Fig. 
1B). This structural format “presents” the phosphoinosit-
ide headgroup as a unique signaling platform, granting 
extraordinary signaling capacity to the limited number of 
these complexes that have been characterized (1). Even 
with just this handful of validated examples, the mechanism 
represents a fundamentally new way that phosphoinositide 
signaling can work outside membranes.

The clinical significance of these basic science discover-
ies is only now being explored, remaining quite hypotheti-
cal and, thus, completely untapped by the pharmaceutical 
industry. The infancy of the field is perhaps reflected in the 
fact that non-membrane phosphoinositide signaling has 
only been confirmed to be mediated by inositol polyphos-
phate multikinase (IPMK; ipk2) and the classic phosphati-
dylinositol (3,4,5) trisphosphate [PI(3,4,5)P3] phosphatase  
and tensin homolog (PTEN; MMAC). However, several 
other candidate mediators can be readily identified in 
the literature that might operate similarly, such as StAR-
PAP (15), SHIP and B53/nucleophosmin (16), PI3K 
(17), TAF3 (18), ING2 (19), PPAR (20, 21), and PPAR 
(22–25). These proteins and enzymes have accumulated 

circumstantial evidence over the past two decades suggesting 
that they too could participate in similar non-membrane 
phosphoinositide signaling mechanisms, consistent with non- 
membrane pathways being as ubiquitous as classic mem-
brane pathways, and potentially far more penetrant (1, 13, 
14, 26, 27). While many of these candidates have demon-
strated pathological impact in the clinic that suggest con-
nections between nuclear phosphoinositide signaling and 
human disease, a more honest assessment would be that we 
have yet to scratch the surface of the clinical repercussions 
these signaling mechanisms may have. Still, it is hard to ig-
nore the potential opportunities for new diagnostics, 
biomarkers, and therapeutics that non-membrane nuclear 
phosphoinositide signaling could provide (28), linking basic 
science to better clinical outcomes for patients suffering from 
several pathologies, including endometriosis, obesity, non-
alcoholic fatty liver disease (NAFLD), nonalcoholic steato-
hepatitis (NASH), and several varieties of PTEN-dependent 
cancers. This review presents the evidence linking these 
diseases to nuclear phosphoinositides, at the infancy of our 
understanding of these basic signaling mechanisms.

NON-MEMBRANE NUCLEAR PHOSPHOINOSITIDES

History
Many biochemical studies in the 1950s, 1960s, and 1970s 

were consistent with the presence of non-membrane phos-
pholipids bound to chromatin and other non-membrane 
bound nuclear substructures (29–36). These results were 
rightfully critiqued as potential biochemical artifacts due 
to the tendency of phospholipids to interact nonspecifi-
cally with almost every biomolecule, as well laboratory 
glass- and plasticware. However, breakthroughs at the dawn 
of phosphoinositide signaling in the 1980s and 1990s spear-
headed by Robin Irvine, Nullin Divecha, and Lucio Cocco 
showed clear differences in membrane versus non-mem-
brane nuclear phosphoinositide metabolism by multiple 
approaches (12, 33, 37–41), which have been extensively 
reviewed elsewhere (8–10, 39, 42, 43). These studies  
collectively showed functional differences in cytoplasmic 
versus nuclear phosphoinositide metabolism and signal-
ing, presumably due to the non-membrane nature of nu-
clear phosphoinositides. Later work by Peter Downes (44) 
showed further convincing functional evidence that nu-
clear pools of PI(3,4,5)P3 are metabolically distinct from 
membrane PI(3,4,5)P3 in certain human cell lines, but still 
provided very little mechanistic information about how 
membrane and non-membrane pathways could be different. 
Later seminal studies by Nullin Divecha (37, 45–47), Richard 
Andersen (15, 48), Or Gozani (19), Pascale Zimmerman 
(49, 50), Aurelia Lewis (51), and several others (18, 52, 53) 
produced data that were clearly consistent with the exis-
tence of non-membrane nuclear phosphoinositides and 
provided functional connections to basic cellular pro-
cesses, but again provided little data explaining how nu-
clear phosphoinositides could operate outside membranes 
and even less information on the physicochemical structural 

Fig.  1.  Nuclear receptor SF-1 binds PI(3,4,5)P3 (PIP3) with acyl 
chains buried in a deep hydrophobic pocket, with the PIP3 head-
group on the surface of the SF-1 protein. A: Surface representation 
of the 2.4 Å crystal structure of the ligand binding domain of SF-1 
(colored pink) bound by dipalmitoyl (di-C16) PIP3 (represented as 
atom colored sticks) (13). The lower right contains the integrated 
surface representation of the cocrystallized nuclear receptor coacti-
vator LXXLL peptide, PGC1 (colored gold), which functions to 
regulate SF-1 transcriptional activity in chromatin. This helical bun-
dle architecture is conserved throughout the ligand binding do-
mains of the nuclear receptor superfamily of transcription factors, 
most of which bind hydrophobic cholesterol-, fatty acid- or phos-
pholipid-based ligands (54, 195). Note the absence of the DNA-
binding domain from this structure; the full-length structures of 
SF-1 and LRH-1 are currently unknown. B: Cartoon representation 
of A, with identical coloring scheme,  helices represented as cylin-
ders, highlighting the positioning of the dipalmitoyl acyl chains 
deep in the hydrophobic core of the SF-1 helical bundle. These 
structures exemplify how non-membrane nuclear phosphoinositi-
des can exist outside membrane systems (8).
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format of the endonuclear phosphoinositides (8). Thus by 
2010, it remained possible that all non-membrane nuclear 
phosphoinositides were simply just biochemical artifacts 
(9). What was needed to address the question was concrete 
structural biology that could definitively explain how nu-
clear phosphoinositides existed outside membranes, per-
haps providing clues as to how they executed functions in 
the nucleus (8). That structural biology came from studies 
examining the nuclear receptor, steroidogenic factor-1 
(SF-1: NR5A1), and the enzyme action of IPMK (ipk2, 
Arg82p, ArgR) and PTEN on phosphoinositides bound to 
this nuclear receptor (1, 13, 54). These studies provided 
the first structural and mechanistic enzymology required 
to prove that non-membrane nuclear phosphoinositides 
must exist, at least in the handful of human cell lines used 
in these studies, and explained how and why non-mem-
brane nuclear phosphoinositide signaling was inherently 
different from membrane signaling (1, 26, 55–59).

Nuclear receptor mammalian physiology
Before delving into the interesting signaling properties 

of these nuclear receptors, it is worthwhile to introduce the 
mammalian physiology controlled by this class of transcrip-
tion factors. SF-1 (NR5A1) and the highly homologous 
liver receptor homolog-1 (LRH-1; NR5A2) are both mem-
bers of the exclusively metazoan nuclear hormone recep-
tor superfamily of ligand-regulated transcription factors 
(54, 60, 61), each encoded by separate genes. SF-1 and 
LRH-1 activate very similar subsets of genes in human cell 
lines and bind almost identical response elements in vitro 
and in cells (62) to generally activate expression of genes 
encoding steroidogenic enzymes (63–66); however, the tis-
sue expression patterns of these nuclear receptors are very 
distinct in humans (67). SF-1 expression is highly restricted 
to the gonads, adrenals, and a small portion of the hypo-
thalamus (the ventral medial) (60, 67), while LRH-1 is 
found in liver, pancreas, gut, and brain (68). SF-1 and 
LRH-1 share orthologs in all animals with various expres-
sion patterns, including nhr-25 in worms (26), Ftz-F1/
HR39 in flies (69, 70), and lrh-1/Ftz-F1/nr5a1a (sf-1a) in 
fish (71).

Global Sf-1 knockout mice die quickly after birth from a 
lack of steroids, due to complete developmental agenesis 
of the adrenals (64). Postpartum rescue of Sf-1 knockout 
mice with appropriate steroids allows these sterile animals 
to attain normal lifespan (72). Global Lrh-1 knockout mice 
are embryonic lethal with defects in gastrulation (73, 74). 
Recent studies using viruses to acutely rescue Lrh-1 in liver-
specific knockout mice have physiologically linked Lrh-1 
with arachidonic acid metabolism and several other aspects 
of lipid homeostasis in the liver (75). Both Sf-1 and Lrh-1 
are downregulated by posttranslational modification with 
the small ubiquitin-like modifier (SUMO), and several ele-
gant knock-in studies, which generated “SUMO-less” Sf-1 
and Lrh-1 mice, have shown that SUMO physiologically 
regulates the activities of both Sf-1 (76) and Lrh-1 (77–80). 
It remains unclear how SUMO regulates SF-1 and LRH-1 at 
the molecular level, because it is unknown whether SUMO 

allosterically regulates NR5A structure or acts as a docking 
site to alter recruitment of transcriptional regulatory pro-
teins. Both SF-1 (13) and LRH-1 (55) bind the signaling 
phosphoinositides, PI(4,5)P2 and PI(3,4,5)P3, with nano-
molar affinity (14, 57).

Nuclear receptors hide phosphoinositide acyl chains
Perhaps the most obvious mechanistic breakthrough 

came with the first crystal structures that definitively showed 
how phosphoinositides exist outside of membranes in the 
nucleus. High resolution X-ray crystal structures of PI(4,5)
P2 and PI(3,4,5)P3 phosphoinositide species bound to the 
phospholipid-binding domain of human SF-1 revealed that 
the acyl chains are buried deep within the hydrophobic 
core of the globular SF-1 protein (Fig. 2A), while the phos-
phoinositide headgroups remain highly exposed to solvent 
(Fig. 2B) (13). The PI(3,4,5)P3 headgroup also partici-
pates in an extensive water-mediated hydrogen bonding 
network with the SF-1 protein (Fig. 2C, D). These struc-
tures revealed a definitive physicochemical format for 
non-membrane nuclear phosphoinositides by providing  
a conclusive structural explanation for how hydrophobic 
phosphoinositides can exist outside membranes, with stoi-
chiometry and biological ramifications consistent with  
a highly specific signaling function for non-membrane  
nuclear phosphoinositides. The crystal structure of LRH-1 
bound to PI(3,4,5)P3 confirmed the same type of format 
(55) and also raised questions as to whether structural ge-
nomics could be used to identify novel nuclear proteins 
that bind the phosphoinositide acyl chains through a simi-
lar mechanism (55). The current state of structural genom-
ics (81–83) is not yet capable of predicting whether the 
hydrophobic core of a protein can accommodate the acyl 
chains of a phospholipid with the level of detail and confi-
dence required to be predictively useful. However, with some 
a priori structural information, a candidate protein could 
be computationally modeled around a phosphoinositide 
using ROSETTA, integrated with biophysically derived ex-
perimental restraints from nuclear magnetic resonance 
spectroscopy (84), small angle X-ray scattering (85), or dou-
ble electron-electron paramagnetic resonance spectroscopy 
(86). These types of integrated structural analyses repre-
sent one of the few feasible paths forward that could iden-
tify how nuclear phosphoinositides interact with nuclear 
binding proteins, short of full-scale crystallographic or 
other biochemical efforts. Several crystal structures were 
able to show how bacterial lipids (87) and phosphatidyl-
cholines (88) can exist outside membranes, however the 
structures of SF-1 and LRH-1 bound by signaling phos-
phoinositides (13, 14) permitted the generation of new 
signaling hypotheses that this structural platform makes 
possible.

Nuclear phosphoinositide signaling and catalysis
We showed that the complex of SF-1 bound by phos-

phoinositides is a direct substrate for the phosphoinositide 
signaling enzymes, PTEN and IPMK (Fig. 3) (1). The tu-
mor suppressor and PI(3,4,5)P3-phosphatase PTEN have 
been extensively reviewed elsewhere (89), but IPMK is a far 
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less well-studied inositol kinase that localizes to the nucleus 
and bears membrane PI3-kinase activity (90) along with 
the ability to phosphorylate several soluble inositol species 
(91). IPMK is ubiquitously expressed in all eukaryotes from 
yeast (92, 93) to human (94), including plants (95, 96), 
protists (97), and fungi (43), although the plant IPMK 
lacks any detectable PI3-kinase activity (1, 96). Recent hu-
man IPMK crystal structures of the core catalytic domain of  
IPMK (C. D. Seacrist and R. D. Blind, unpublished observa-
tions) revealed the atomic-resolution mechanism IPMK uses 
to interact with several ligands, including ATP and small 
molecule enzyme substrates of IPMK (Fig. 4) (99). These 
high-resolution crystal structures showed how IPMK coor-
dinates each ligand, giving insight into how IPMK discrimi-
nates between its many substrates (99). IPMK kinase activity 
activates SF-1 gene expression programs in human cells, 
while PTEN activity inhibits SF-1 transcriptional activity in 
human cells (1). These signaling activities are dependent 
on the ability of SF-1 to bind phosphoinositides, as mutants 
of SF-1 that do not bind any phospholipids become decou-
pled from any regulation by IPMK and PTEN (1). Further 
in vitro studies (described below) conclusively demon-
strated that the complex of SF-1 bound to phosphoinositi-
des is a bona fide direct substrate of IPMK and PTEN.

Catalytically, IPMK directly phosphorylates PI(4,5)P2 
while PI(4,5)P2 is bound to SF-1, with the best catalytic ef-
ficiency (kcat/KM) of any IPMK kinase substrate ever tested 
(1, 100). Further, PTEN dephosphorylates PI(3,4,5)P3 
while PI(3,4,5)P3 is bound to SF-1, again with better cata-
lytic efficiency than any other reported substrate for PTEN 
(1, 101). The better catalytic efficiency is driven by lower 
KM numbers for these enzymes when the phosphoinositide 
substrate is bound to SF-1, suggesting that there are direct 

protein-protein contacts between SF-1 and the enzymes, 
which has also been observed in cells and in vitro (1). The 
enzymology providing these catalytic details is crucial for 
our understanding of how non-membrane signaling differs 
from membrane signaling. What the numbers show in this 
regard is that IPMK and PTEN enzymatically prefer to act 
on phosphoinositides bound to SF-1, providing in vitro evi-
dence that these important enzymes could be more active 
in the nucleus than the same enzymes at the plasma mem-
brane (102). It is important to note that membrane signal-
ing also relies on protein-protein interactions, which are 
usually not accounted for in enzyme kinetic experiments. 
Further, it is currently unknown if any enhanced catalysis 
in non-membrane phosphoinositide signaling is also true 
in living cells, or in any physiologically relevant animal tis-
sue (103). It was shown that IPMK has PIP2-kinase activity 
on pure SF-1 immunoprecipitated from HEK cells (1), sug-
gesting that SF-1 is bound by PIP2 in human cell lines. It is 
also clear that PTEN functionally downregulates SF-1 tran-
scriptional activity while IPMK functionally upregulates 
SF-1 activity in human cell lines, and that both IPMK and 
PTEN activity are dependent on the ability of SF-1 to bind 
to phosphoinositides (1). These studies revealed a new way 
nuclear phosphoinositides directly control transcriptional 
activation of a phosphoinositide-binding nuclear receptor 
(42).

Nuclear phosphoinositide effector mechanisms
The X-ray crystal structures of SF-1 bound to PI(3,4,5)P3 

and PI(4,5)P2 showed how these phosphoinositides are 
solubilized by SF-1 (Fig. 1B), revealing how SF-1 coordi-
nates the PI(3,4,5)P3 and PI(4,5)P2 headgroups (Fig. 3C, 
D). These studies also suggested that PI(3,4,5)P3 can act as 

Fig.  2.  Solvent accessibility of the SF-1 bound PI(3,4,5)
P3 headgroup is high and participates in an extensive 
water-mediated hydrogen bonding network. A: Car-
toon representation of the crystal structure of SF-1 
bound to dipalmitoyl PI(3,4,5)P3 (13) colored as a 
spectrum to solvent accessibility, where the least sol-
vent accessible is blue<green<yellow<orange<red is 
most solvent accessible. Note the very high solvent ac-
cessibility of the PI(3,4,5)P3 headgoup phosphoryla-
tions on the indicated 3, 4, and 5 positions, and the 
low solvent accessibility of the di-C16 palmitoyl acyl 
chains. B: Surface representation and orthogonal view 
of A with identical coloring scheme, again showing 
high solvent accessibility of the PI(3,4,5)P3 phosphor-
ylations even relative to hydrophilic surface residues 
on the SF-1 protein. C, D: Orthogonal ligand-sites 
surface cutaway views of the crystal structure of SF-1 
bound to dipalmitoyl PI(3,4,5)P3, showing the exten-
sive water-mediated hydrogen bonding network the 3, 
4, and 5 phosphorylations participate in. Water mole-
cules are shown as small red spheres. The crystal struc-
ture of SF-1 bound to PI(4,5)P2 is very similar in terms 
of the solvent accessibility of the phosphoinositide 
headgroup [Protein Data Bank (PDB): 4QK4]. The 
high solvent accessibility of PIP3 bound to SF-1 high-
lights that the headgroup in nuclear phosphoinositide 
signaling complexes can be readily accessible for ca-
talysis and other signaling events.
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“molecular glue” between SF-1 and potential coregulator 
proteins (55, 57), used as the basis for studies by Michael 
Sheetz’s group (104). Together, these basic science stud-
ies provided a structural model explaining how non- 
membrane phosphoinositides exist (Fig. 1A) and identified 
transcription as a cellular function regulated by non-
membrane nuclear phosphoinositides (Fig. 3), while de-
termining a structural mechanism explaining how nuclear 
phosphoinositides regulate their cognate receptor. How-
ever, because SF-1 is restricted only to very limited meta-
zoan tissues, SF-1 cannot be the only factor responsible for 
all eukaryotic non-membrane phosphoinositides, as non-
membrane nuclear phosphoinositides have been observed 
in many mammalian cell lines and tissues that do not ex-
press detectable levels of either SF-1 or LRH-1. Thus, the 
identity of the other nuclear phosphoinositide binding 
proteins that solubilize these phosphoinositides awaits dis-
covery. The potential clinical ramifications of these nuclear 
phosphoinositide signaling pathways in specific patholo-
gies are highlighted below.

ENDOMETRIOSIS

Endometriosis is a very painful endocrine disorder af-
flicting six million women in the United States alone (105, 
106), with some studies estimating that 1 in 10 women will 
be afflicted with this disease (105, 107), making the impact 
in the hundreds of millions of women worldwide. Endome-
triosis is defined as the ectopic presence of steroidogenic 
uterine endometrial tissue in either the pelvic peritoneum 
or on the ovaries (108), which can cause severe pain, dam-
age to surrounding organs, sterility, and can threaten life 
in severe cases (109). Endometriotic tissue often overex-
presses SF-1 (110, 111), which through the activation of 
genes encoding steroidogenic enzymes, such as CYP11A1, 
CYP17A1, CYP19A1, and 17BHSD, drives estradiol produc-
tion that is required to maintain the endometriotic tissue 
in the ectopic locations (61, 112). The current standard of 
care for endometriosis is analgesics, birth control hormone 
contraceptives (113), and the androgen nuclear receptor 
antagonist, Danazol (114), which carries some significant 
side effects (115). Aromatase inhibitors, such as aminoglu-
tethimide, can be effective in postmenopausal women 
(116, 117) by decreasing the global production of estra-
diol, effectively decreasing endometriotic tissue growth 
(112, 117). However, aromatase inhibitors also inhibit nor-
mal physiological hormone production from the adrenals, 
thyroid (118), and gonads (119–121). Global aromatase 
inhibitors thus have serious side effects on bone metabolism 

Fig.  3.  Model of PTEN- and IPMK-mediated nuclear phosphoinosit-
ide signaling through SF-1. A: IPMK is a nuclear protein conserved 
in all eukaryotes (144) that was first characterized functionally as  
a transcriptional coregulator (196, 197) before the inositol kinase 
enzyme activity was discovered (92). B: Shortly thereafter, Adam 
Resnick in Solomon Synder’s laboratory discovered that IPMK also 
has a PI3-kinase enzyme activity, with the ability to phosphorylate 
PI(4,5)P2 in membrane systems (90), confirmed to occur in vivo  
in mouse models (103). IPMK is a close structural homolog to the 
IP3-kinase superfamily and protein kinase A (99), but is structurally 
unrelated to the class 1 PI3-kinases. C: IPMK was then shown to bind 
and directly phosphorylate PI(4,5,)P2 bound to the nuclear recep-
tor SF-1, generating PI(3,4,5)P3 bound to SF-1 resulting in robust 
activation of SF-1 transcriptional programs in human cell lines (1). 
Nuclear PTEN opposes this function of IPMK, dephosphorylating 
PIP3 bound to SF-1 and downregulating SF-1 transcriptional activity 
(1). This nuclear phosphoinositide signaling pathway is the first de-
scribed in which the structural biology and mechanistic enzymology 
fully describe the mechanism of the signal transduction, which is 
extremely important in drug design efforts that could impact the 
clinic.

Fig.  4.  Superposition of two recently solved crystal structures of 
IPMK, a nuclear PI(4,5)P2 kinase. Cartoon views of recently pub-
lished human IPMK catalytic core PDB 6C8A (apo) and PDB 5W2I 
(bound to ADP and di-C4 PI(4,5,)P2) (99, C. D. Seacrist and R. D. 
Blind, unpublished observations). These extensive crystallographic 
and kinetic studies revealed novel kinetic properties of IPMK and 
how IPMK interacts with ligands, ATP and PI(4,5)P2. However, be-
cause crystallization requires removal of the disordered domains of 
IPMK, the structure of these domains (one disordered domain on 
the N terminus and one which interrupts the core kinase domain) 
remains undescribed. Note that the PI(4,5)P2 glycerol backbone 
and the di-C4 acyl chains were not ordered (99).
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(122), adrenal insufficiency (123), and kidney failure 
(121). For these reasons, a more targeted therapy specifically 
inhibiting autocrine production of steroids by endometri-
otic tissue has been oft-predicted as a potentially efficacious 
route for therapy (124). The role of SF-1 in steroidogenesis, 
when taken with its prominent overexpression, makes SF-1 a 
viable therapeutic target for endometriosis (61), but spe-
cifically targeting SF-1 in the endometriotic tissue, while 
leaving adrenal and gonadal SF-1 unperturbed to execute 
normal adrenal and gonadal physiology, has prevented de-
velopment of a targeted therapy for endometriosis.

Prior to elucidation of the details of SF-1 regulation by 
nuclear phosphoinositides, we were able to show that estra-
diol activates steroidogenic gene expression programs in pri-
mary human endometriotic H38 cells by increasing levels of 
PI(3,4,5)P3 (Fig. 5) (112). The PI(3,4,5)P3 produced by this 
pathway is regulated by activation of the G protein-coupled 

receptor 30 (GPR30, GPER1). GPR30 activation by es-
tradiol stimulates PI(3,4,5)P3 production, activating SF-1 
and initiating an autocrine feed-forward loop in endome-
triotic cells. Continuous SF-1 activation of steroidogenic 
gene programs results in overproduction of estradiol, per-
petuating endometriotic steroidogenesis (112), which 
maintains the endometriotic tissue in the ectopic location, 
preventing atrophy and clearance. In terms of therapeutic 
targeting possibilities, GPR30 remains high on the list of 
hopefuls for endometriosis (112). Although it is unknown 
if GPR30 can specifically stimulate accumulation of nuclear 
PI(3,4,5)P3, GPR30 is often observed on the nuclear mem-
brane, where its signaling role remains unexplored (125). 
Regardless, inhibitors targeting GPR30 would be predicted 
to block nuclear SF-1 activation by decreasing PI(3,4,5)P3, 
effectively interfering with the feed-forward autocrine 
stimulation of ectopic endometriotic tissue (112). Global 
GPR30 developmental knockout animals have no differ-
ences in fertility, body weight, estrous cycle, or breeding 
rates when compared with wild-type (126), suggesting that 
compounds inhibiting GPR30 might have minimal adverse 
side effects (127, 128). Further, because SF-1-regulated 
gene expression is only sensitive to IPMK activity, and not 
class I PI3-kinases (1), one might predict that IPMK is the 
source of the PI(3,4,5)P3 that stimulates SF-1 in endome-
triosis. Indeed, SF-1 target RNAs that are important in ste-
roidogenesis are downregulated in HEK cells when IPMK 
is knocked down using small interfering RNAs (1). Taken 
together, these data suggest that an antagonist of IPMK ki-
nase activity, combined with a GPR30 antagonist, could 
pharmacologically converge on SF-1 in endometriotic tis-
sue (112). A better understanding of how nuclear phos-
phoinositides are regulated by GPR30 and IPMK would 
greatly enhance any effort attempting to develop treatment 
options for women suffering from endometriosis.

NEUROENDOCRINOLGY OF OBESITY

In addition to being expressed in the gonads and adre-
nals (129), SF-1 defines neurons located in the ventral me-
dial hypothalamus (VMH) (63), a portion of the human 
brain well-known to control satiety, sexual activity, and fear 
(130). Genetic studies in mice indicate that an SF-1 agonist 
targeting the VMH would be predicted to have high thera-
peutic value in obesity (131) and in enhancing metabolic 
responses to exercise (132). Well-executed tissue-specific 
knockout studies have shown that SF-1 VMH neurons con-
trol insulin-mediated protection from diet-induced leptin 
resistance, weight gain, adiposity, and impaired glucose tol-
erance (133–136); and SF-1 neurons are well-known to be 
critical in mediating diet-induced obesity (72). Tissue-specific 
knockout studies of SF-1 in the VMH have demonstrated 
SF-1 as an anorexigenic factor regulated by nutritional status 
(137), and have shown that SF-1 is required for the devel-
opment of the complete functional hypothalamic-pituitary-
gonadal axis, as well as the hypothalamic-pituitary-adrenal 
axis (64, 134, 138). These studies are very important clini-
cally because nuclear receptors like SF-1 are some of the 

Fig.  5.  GRP30 could be a good drug target in nuclear phos-
phoinositide signaling and endometriosis. Endometriotic uterine 
endometrial cells growing in the pelvic peritoneum or on the ova-
ries require estradiol to maintain growth in these ectopic locations. 
Ectopic endometriotic tissue itself is often steroidogenic, overex-
pressing SF-1. Estradiol or synthetic agonists can activate the G pro-
tein-coupled receptor, GPR30 (GPER1), present on the plasma 
membrane and nuclear envelope of endometriotic cells, resulting 
in accumulation of global cell levels of PIP3 (112). The mechanism 
GPR30 uses to increase PIP3 is unknown and it is further unknown 
whether IPMK might play a role in endometriosis. GPR30-mediated 
increases in PIP3 correlate with activation of SF-1, leading to increased 
gene expression of steroidogenic genes involved in biosynthesis of 
estradiol, such as aromatase (CYP19A1). Increased expression of 
these genes leads to increased production of steroids, which can 
then reactivate membrane-bound GPR30, resulting in a feed-forward 
activation loop that perpetuates ectopic growth of the endometrial 
tissue (112). For these reasons, GPR30 could be an excellent candi-
date for drug development efforts targeting endometriosis.
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best targets for agonist drug design, if molecular details on 
how the receptor is activated are known (139–141). The 
molecular and structural detail describing the SF-1/IPMK 
nuclear phosphoinositide signaling axis represents an ideal 
candidate for such an effort. Although global IPMK knock-
out mice die at embryonic day 9.5 (92), data generated 
from Ipmkflx/flx mice link IPMK to obesity, type 2 diabetes, 
and metformin action (142). Mice with viral-CRE-mediated 
knockout of IPMK in the hypothalamic region have altered  
glucose-mediated AMPK regulation (143). Murine em-
bryonic fibroblasts with viral-CRE-mediated knockout of 
IPMK from Ipmkflx/flx mice cannot induce AMPK activation 
in response to metformin (142), indicating that IPMK  
is required for full response to metformin. These data are 
consistent with a model where IPMK inhibitors have ther-
apeutic value in type 2 diabetic insulin resistance (142). 
Identifying biomarkers that will indicate sensitivity to IPMK 
inhibitors will help any sort of clinically relevant IPMK-
drug design effort, and thus should begin to have higher 
priority within the nuclear phosphoinositide signaling field 
(144). It is certainly worth mentioning that several ge-
netic knockout studies of PIK3CA class 1 PI3-kinase p110 
in SF-1 neurons of the VMH have been executed (132, 133, 
136, 145), showing that these animals have increased sen-
sitivity to high-fat diet-induced obesity due to decreased 
energy expenditure (133). More recent studies have shown 
an estrogen-dependent sexually dimorphic effect of PIK3CA 
in decreasing energy expenditure (146), which, when cou-
pled with recent SF-1 studies (147), shows that phos-
phoinositides within the VMH could be an important aspect 
of sexually dimorphic phenotypes in mammals. While 
these PIK3CA genetic studies have shown that all aspects 
of phosphoinositide signaling are clearly important in the 
VMH (148), it remains unclear what fraction, if any, of 
the phenotypes from the PIK3CA knockout studies could 
be attributed to nuclear pathways.

NAFLD AND NASH

The American Liver Foundation estimates that 100 mil-
lion Americans today have NAFLD (149). Pten liver-specific 
knockout mice driven by albumin CRE develop fatty liver 
(150), which progresses to NASH (151) though a mecha-
nism that is incompletely understood (152). What is clear 
is that this phenotype is very different from liver-specific 
knockout of the tyrosine phosphatase, Ptp-1 (150), despite 
both Pten and Ptp-1 acting as common negative down-
stream regulators of insulin membrane signaling, suggest-
ing that either PTEN or Ptp-1 is acting through nonclassical 
roles (150). Data suggesting nonclassical roles for PTEN in 
the liver come from studies showing that high-fat diet in 
Pten liver-specific knockout mice elicits liver damage, but 
independently of AKT (153), and that loss of specifically 
nuclear PTEN associates with hepatitis C virus-infected liver 
inflammation in primary hepatocytes from human patients 
(154). These data suggest that nuclear PTEN may have a 
role in NAFLD and NASH progression, but the mechanism 
PTEN could use to mediate these effects remains unclear.

The nuclear receptor, LRH-1 (68), is a close structural 
and functional homolog of SF-1, and is highly expressed in 
liver where it controls lipid homeostasis (68, 155, 156). Be-
cause LRH-1 can bind PI(3,4,5)P3 in a structural format 
very similar to SF-1 (Fig. 6A) (55), it is worth mentioning 
that LRH-1 could be regulated similarly to SF-1, where 
PTEN might remodel PI(3,4,5)P3 bound to LRH-1 to regu-
late LRH-1 activity in lipid metabolism (157). This is cer-
tainly possible from a structural biology perspective (Fig. 6B) 
(55, 57). Several liver-specific knock-in studies that gener-
ated SUMO-less LRH-1 mutants in the mouse liver lead  
to hyper-activation of LRH-1 (80), with phenotypes that 
closely phenocopy PTEN loss in the mouse liver (150). 
These data are consistent with PTEN negatively regulating 
a potential mouse liver signaling pathway that is also con-
trolled by LRH-1. Another study showed that the plant 
phospholipid, dilauryl phosphatidylcholine (DLPC), acti-
vates LRH-1 physiologically in the mouse liver leading to 
complete resolution of diet-induced fatty liver (155, 158), 
again demonstrating that activation of LRH-1 phenocopies 
PTEN inactivation in the mouse liver. These circumstantial 
data still require a great deal of experimental work to de-
termine how or if nuclear PTEN and LRH-1 might act in 
the same nuclear phosphoinositide signaling pathway in the  
mammalian liver, but are consistent with a model in which 
PTEN downregulates nuclear LRH-1 transcriptional activ-
ity in a pathway capable of generating NAFLD and NASH 
in the mouse liver. Given that IPMK counteracts the effects 
of PTEN in the nucleus of HEK cells (1), and that IPMK  
is highly expressed in the human liver (94), it stands to 
reason that an inhibitor of IPMK could impact liver physi-
ology (142, 143, 159). Understanding which targets are  

Fig.  6.  Human LRH-1 and SF-1 both bind nuclear PIP3 in very 
similar ways. A: Superposition of the 1.8 Å crystal structure of hu-
man LRH-1 ligand binding domain (14) (represented as purple 
cartoon) and the crystal structure of human SF-1 ligand binding 
domain (13) (represented as pink cartoon), each bound individu-
ally to one dipalmitoyl PI(3,4,5)P3 molecule. The two superposed 
structures have a root mean square deviation of less than 1 Å (0.898 Å) 
that, while totally identical, shows the high degree of homology  
between SF-1 and LRH-1. B: Close-up of A showing similar solvent 
accessibility of PI(3,4,5)P3 headgroups when the phosphoinositide 
is bound to either human SF-1 or human LRH-1. This structural 
comparison suggests that the same structural format of PI(3,4,5)P3 
that grants special signaling capacity to SF-1 is conserved within 
LRH-1. It remains to be determined whether IPMK or PTEN can 
directly remodel phosphoinositides bound to LRH-1.
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important in NAFLD and NASH, and how those targets  
operate at the molecular level, can lead to more clinically 
favorable outcomes by funneling efforts toward new lower- 
hanging pharmacological targets. Indeed, nuclear phos-
phoinositide signaling pathways have yet to be targeted in 
NAFLD or NASH by any effort from the pharmaceutical 
industry.

GLIOBLASTOMA AND HEPATOCELLULAR 
CARCINOMA

Glioblastoma multiforme is a devastating tumor, with 
one of the worst 5 year survival rates of any human cancer 
(160) and no targeted therapies that have been approved 
(161–163). Resected glioblastoma tumors (164) and glio-
blastoma cell lines often have reduced or null expression 
of the PTEN tumor suppressor (165). The loss of PTEN is 
part of the rationale for current efforts in class 1 PI3-kinase 
inhibitor trials determining efficacy against glioblastoma 
(166), as these inhibitors in part counteract loss of PTEN to 
decrease PI(3,4,5)P3 levels in tumors (167). Although sev-
eral studies over the past decade have revealed important 
enzyme-independent functions for nuclear PTEN (164, 
168–172), these discoveries are difficult to act on in the clinic 
pharmacologically, as protein-protein interactions are dif-
ficult to interfere with using small molecules (173, 174). 
Kinases and other enzymes are far easier drug targets, with 
a very druggable ligand-binding pocket for ATP, which can 
be relatively easily screened using large compound libraries 
(7, 174–178). Further, high-resolution structural studies can 
provide information to rationally improve lead compounds 
(179), further inspiring investment of resources from the 
pharmaceutical industry. Indeed, the discovery that IPMK 
counteracts the phosphatase activity of nuclear PTEN in-
stantly raised interest in IPMK as a potential new drug tar-
get in any tumor that has lost PTEN (1, 180). Still, PTEN 
action on SF-1/PI(3,4,5)P3 remains the only known phos-
phatase-dependent function of PTEN in the nucleus where 
the mechanistic details have been well-characterized by 
structural biology and enzymology. Those types of details 
remain unknown for all other phosphatase-dependent 
studies of nuclear PTEN (164, 168–172), leaving open the 
possibility that nuclear PTEN action on non-membrane 
phosphoinositide/nuclear protein complexes may penetrate 
beyond SF-1. Still, what role the PI(3,4,5)P3-phosphatase 
enzyme activity of PTEN has in the nucleus remains a se-
verely understudied area of PTEN tumor biology (181).

One study that revealed specific functions for nuclear 
PTEN phosphatase activity came from Alfred Yung’s group, 
which has studied glioblastoma for almost 40 years. This 
work used the PTEN-null human U251MG glioblastoma 
cell line to show that PTEN functionally regulates cell pro-
liferation and growth in soft agar (165). These growth phe-
notypes could only be rescued by complementation with 
exclusively nuclear phosphatase-active PTEN, whereas com
plementation with cytoplasmic or phosphatase-dead PTEN 
had no effect on any aspect of the growth of these human 
glioblastoma cells (165, 171). Neither cytoplasmic nor nuclear  

PTEN had any effect on cell migration or invasiveness in 
this cell line, suggesting that PTEN regulation is limited to 
growth phenotypes in this cell line (165). These data sug-
gested that nuclear PTEN phosphatase has specific func-
tions in the nucleus that are distinct from the cytoplasm, 
which can control human glioblastoma cell growth. Several 
studies have also linked IPMK to growth control of glioblas-
toma cell lines (90, 103), suggesting that PTEN and IPMK 
could functionally oppose each other in the nucleus of 
glioblastoma cells. However, many, if not most, glioblasto-
mas and PTEN-null glioblastoma cell lines are sensitive to 
both cytoplasmic and nuclear PTEN, suggesting that nu-
clear PTEN action does not solely drive growth in all glio-
blastoma tumors (165). Still, the potential to use nuclear 
PTEN staining as a biomarker in glioblastoma clinical trials 
(3, 28), coupled with the new links to IPMK as the counter-
acting kinase in the nucleus (1), could provide enough 
incentive for pharmaceutical development of an IPMK  
inhibitor designed to counteract loss of nuclear PTEN in 
glioblastoma patients (28). Given that glioblastoma multi-
forme currently has no approved targeted therapeutics, 
the clinical need is overwhelming.

Liver cancer also represents potentially fertile ground to 
develop new therapeutics within classically underserved 
populations. Although incidence rates have been falling 
for almost all cancers since 1999, the incidence rates of 
liver cancer in African Americans and Hispanics have con-
tinued to rise (182–184). Many hepatocellular carcinoma 
and cholangiocellular carcinoma liver tumors and many 
liver cancer cell lines have lost PTEN (150, 152, 185). Can-
cers of the liver may be an appealing potential therapeutic 
target for nuclear phosphoinositide intervention for sev-
eral reasons. These tumors have excellent therapeutic  
potential as they have a poor prognosis (186), sorafenib 
(Nexavar) is the only currently approved therapeutic (187–
189), and loss of specifically nuclear PTEN associates with 
increased progression to liver cancer in human primary 
hepatocytes infected with hepatitis C virus, one of the most 
common causes of liver cancers (190). Pten liver-specific 
knockout generates liver tumors in mice that are models 
for human hepatocellular and cholangiocellular carcino-
mas, which are dependent on loss of PTEN (150). Further, 
IPMK expression is highest in the human liver (94) and 
IPMK expression is associated with hyper-proliferation of 
liver tissue and cells (94, 191), providing an ideal potential 
kinase target for new drug design efforts (28). Several stud-
ies have linked prolonged metformin use in diabetic pa-
tients to decreased incidence of hepatocellular carcinoma 
(142, 192–194). IPMK knockout from homozygous IPMK 
floxed mouse embryonic fibroblasts using virally mediated 
CRE-recombinase decreases AMPK phosphorylation and 
activation mediated by metformin treatment, suggesting 
that IPMK may be required for full responsiveness to met-
formin treatment (142, 143). Clearly, the role of nuclear 
phosphoinositide signaling in glioblastoma and hepatocel-
lular carcinoma will require much more investigation, but 
PTEN-null glioblastoma and hepatocellular carcinoma 
represent excellent first model systems to pursue clinical 
applications.
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CONCLUSIONS

Non-membrane nuclear phosphoinositide signaling rep-
resents a novel unexplored opportunity to pharmacologi-
cally target several human pathologies that have been 
historically recalcitrant to clinical intervention. Some of 
the diseases most likely to be treatable with therapeutics 
targeting nuclear phosphoinositide signaling are endome-
triosis, NAFLD, NASH, glioblastomas, and hepatocellular 
carcinomas. The evidence linking nuclear phosphoinosit-
ide signaling to the molecular underpinnings of these dis-
eases suggests that further exploration and validation in 
preclinical models is warranted. The more we learn about 
nuclear phosphoinositide signaling, the more likely that we 
can harness their unique signaling potential to reprogram 
the pathological state in these human diseases.
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