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Abstract

Cardiovascular (CV)- and lifestyle-associated risk factors (RFs) are increasingly recognized as
important for Alzheimer’s disease (AD) pathogenesis. Beyond the e4 allele of apolipoprotein E
(APOE), comparatively little is known about whether CV-associated genes also increase risk for
AD. Using large genome-wide association studies and validated tools to quantify genetic overlap,
we systematically identified single nucleotide polymorphisms (SNPs) jointly associated with AD
and one or more CV-associated RFs, namely body mass index (BMI), type 2 diabetes (T2D),
coronary artery disease (CAD), waist hip ratio (WHR), total cholesterol (TC), triglycerides (TG),
low-density (LDL) and high-density lipoprotein (HDL). In fold enrichment plots, we observed
robust genetic enrichment in AD as a function of plasma lipids (TG, TC, LDL, and HDL); we
found minimal AD genetic enrichment conditional on BMI, T2D, CAD, and WHR. Beyond
APOE, at conjunction FDR < 0.05 we identified 90 SNPs on 19 different chromosomes that were
jointly associated with AD and CV-associated outcomes. In meta-analyses across three
independent cohorts, we found four novel loci within MBLACI (chromosome 7, meta-p = 1.44 x
1079), MINKI (chromosome 17, meta-p = 1.98 x 10~7) and two chromosome 11 SNPs within the
MTCHZ2/SPI1 region (closest gene = DDB2, meta-p = 7.01 x 10~/ and closest gene = MYBPC3,
meta-p = 5.62 x 1078). In a large ‘AD-by-proxy’ cohort from the UK Biobank, we replicated three
of the four novel AD/CV pleiotropic SNPs, namely variants within MINK1, MBLACI, and
DDB?2. Expression of MBLACI, SPI1, MINK1 and DDBZ2was differentially altered within
postmortem AD brains. Beyond APOE, we show that the polygenic component of AD is enriched
for lipid-associated RFs. We pinpoint a subset of cardiovascular-associated genes that strongly
increase the risk for AD. Our collective findings support a disease model in which cardiovascular
biology is integral to the development of clinical AD in a subset of individuals.

Keywords
Lipids; Polygenic enrichment; Cardiovascular; Alzheimer’s disease; Genetic pleiotropy

Introduction

There is mounting evidence that cardiovascular (CV) disease impacts Alzheimer’s disease
(AD) pathogenesis. Co-occurrence of CV and AD pathology is the most common cause of
dementia among the elderly [6] and imaging manifestations of vascular pathology are
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routinely observed in the brain on MRI scans of AD patients [41]. Observational
epidemiology studies have found that cardiovascular-/lifestyle-related risk factors (RFs) are
associated with dementia risk and targeting these modifiable RFs may represent a viable
dementia prevention strategy [7, 32]. Recently, the National Academy of Medicine [30] and
the Lancet [26] commissioned independent reports on strategies for dementia prevention.
Both reports found encouraging evidence for targeting cardiovascular RFs with the Lancet
commission concluding that 35% of dementia could be prevented by modifying several RFs
including diabetes, hypertension, obesity, and physical inactivity.

Genetic studies have found CV-associated loci that also increase risk for late-onset AD. The
e4 allele of apolipo-protein E (APOE) is the biggest genetic risk factor for AD and encodes
a lipid transport protein involved in cholesterol metabolism [29]. Genome-wide association
studies (GWAS) in late-onset AD have identified single nucleotide polymorphisms (SNPs)
implicated in lipid processes, such as CLUand ABCA7[24, 37], and enrichment in
cholesterol metabolism pathways [9]. Considered together, these findings suggest
‘pleiotropy’, where variations in a single gene can affect multiple, seemingly unrelated
phenotypes [42].

We have previously shown that genetic enrichment in cardiovascular-/lifestyle-associated
RFs and diseases (hereafter referred to as CV-associated RFs) results in improved statistical
power for discovery of novel AD genes [13]. Building on this work, in the present study, we
systematically evaluated shared genetic risk between AD and cardiovascular-/lifestyle-
associated RFs and diseases. We focused on publicly available genetic data from
cardiovascular outcomes and a combination of traits and diseases that have been
epidemiologically associated with increased AD risk. Using large GWAS and validated tools
to estimate pleiotropy, we sought to identify SNPs joint/y associated with AD and one or
more CV-associated RF, namely body mass index (BMI), type 2 diabetes (T2D), coronary
artery disease (CAD), waist hip ratio (WHR), total cholesterol (TC), triglycerides (TG), low-
density (LDL) and high-density lipoprotein (HDL). We additionally assessed whether the
AD/CV genes showed independent replication within a large ‘AD-by-proxy’ phenotype
sample that relies upon parental AD status to identify proxy cases and proxy controls [52].
Finally, we examined whether the AD/CV pleiotropic genes are differentially expressed
within AD brains.

Participant samples

We evaluated complete GWAS results in the form of summary statistics (p values and odds
ratios) for clinically diagnosed AD dementia [24] and eight CV-associated RFs, including
BMI [47], T2D [28], CAD [31], WHR [18], and plasma lipid levels (TC, TG, LDL, and
HDL [44]). We obtained publicly available AD GWAS summary statistic data from the
International Genomics of Alzheimer’s Disease Project (IGAP Stages 1 and 2; for additional
details, see Supplemental Information and [24]; Table 1). As our primary cohort, we used
IGAP Stage 1 which consists of 17,008 AD cases (mean age = 74.7 = 7.7 years; 59.4%
female) and 37,154 controls (mean age = 76.3 £ 8.1 years; 58.6% female) drawn from four
different consortia across North America and Europe with genotyped or imputed data at
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7,055,881 SNPs (for a description of the AD dementia cases and controls within the IGAP
Stage 1 sub-studies, please see Ref. [24]). To confirm our findings from IGAP Stage 1, we
assessed the pvalues of pleiotropic SNPs (conjunction FDR < 0.05; see statistical analysis
below) from two independent AD cohorts, namely the IGAP Stage 2 [24] sample, and a
cohort of AD cases and controls drawn from the population of the United States and part of
phase 2 of the Alzheimer’s Disease Genetics Consortium (ADGC?2). The IGAP Stage 2
sample consisted of 8,572 AD cases (mean age = 72.5 + 8.1 years; 61% female) and 11,312
controls (mean age = 65.5 + 8.0 years; 43.3% female) of European ancestry with genotyped
data at 11,632 SNPs (for additional details, see Ref. [24]). The ADGC2 sample consisted of
2,122 AD cases and 3,213 controls of European ancestry (for additional details, see Ref.

[21]).

We further assessed the p values of our AD/CV pleiotropic SNPs in an AD-by-proxy cohort
that is based on individuals of European ancestry in the UK Biobank (UKB) for whom
parental AD status was available (/Vproxy cases = 47,793; N proxy controls = 328,320) (for
additional details, see Ref. [52]). Individuals with one or two parents with AD were defined
as proxy cases, while putting more weight on the proxy cases with two parents. Similarly,
individuals with two parents without AD were defined as proxy controls, where older
cognitively normal parents were up-weighted as proxy controls to account for the higher
likelihood that younger parents may still develop AD. As the proxy phenotype is not
equivalent to a clinical diagnosis of AD and may include individuals that never develop AD,
we evaluated the UKB by-proxy sample separately from the IGAP and ADGC2 case control
samples.

Details of the summary data and available URLs from all GWAS used in the current study
are listed in Table 1. The relevant institutional review boards or ethics committees approved
the research protocol of all individual GWAS used in the current analysis, and all human
participants gave written informed consent.

Genetic enrichment and conjunction false discovery rates (FDR)

A brief summary of these methods follows. For details, see Supplementary methods and
previous publications [2, 3, 5, 8, 12, 13, 19, 48].

We evaluated whether there is pleiotropic genetic enrichment in AD as a function of each of
the eight CV-associated RFs. To do this, we compare the association with a primary trait
(e.g., AD) across all SNPs and within SNP strata determined by their association with a
secondary trait (e.g., BMI), and provide a visual pattern of overlap in SNP associations. For
given associated phenotypes A (e.g., AD) and B (e.g., BMI), pleiotropic ‘enrichment’ of
phenotype A with phenotype B exists if the proportion of SNPs or genes associated with
phenotype A increases as a function of increased association with phenotype B (see
Supplementary Methods). To assess for enrichment, we constructed fold-enrichment plots of
nominal — logyo(p) values for all AD SNPs and for subsets of SNPs determined by the
significance of their association with each of the eight CV-associated RFs (e.g., — logio(p) >
1, > 2, and > 3 in CV-associated RFs). In fold-enrichment plots, the presence of enrichment
is reflected as an upward deflection of the curve for phenotype A if the degree of deflection
from the expected null line is dependent on the degree of association with phenotype B.
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More specifically, fold enrichment is computed as follows: first, we compute the empirical
cumulative distribution of — log1g(p) values for SNP association with a given phenotype
(e.g., AD) for all SNPs, and then the cumulative - logyo(p) values for each SNP stratum,
which is determined by the p value of these SNPs in the conditioning phenotype (e.g., BMI).
We then calculate the fold enrichment of each stratum as the ratio between the - log,o(0)
cumulative distribution for that stratum and the cumulative distribution for all SNPs. The x-
axis shows nominal pvalues (- log1g(p)); the y~axis shows fold enrichment. To assess for
polygenic effects below the standard GWAS significance threshold, we focused the fold-
enrichment plots on SNPs with nominal - logyg(0) < 7.3 (corresponding to p> 5 x 1078),
The enrichment seen can be directly interpreted in terms of true discovery rate [TDR =1 -
false discovery rate (FDR)] (for additional details, see Supplemental Information).

To account for large blocks of linkage disequilibrium (LD) that may result in spurious
genetic enrichment, we applied a random pruning approach, where one random SNP per LD
block (defined by an /2 of 0.8) was used and averaged over 200 random pruning runs. Given
prior evidence that several genetic variants within the human leukocyte antigen (HLA)
region on chromosome 6 [43, 49], microtubule-associated tau protein (MAPT) region on
chromosome 17 [12] and the APOE region on chromosome 19 [13] are associated with
increased AD risk, one concern is that random pruning may not sufficiently account for
these large LD blocks, resulting in artificially inflated genetic enrichment [8]. To better
account for these large LD blocks, in our genetic enrichment analyses, we removed all SNPs
in LD with 2 > 0.2 within 1 Mb of HLA, MAPT and APOE variants (based on 1000
Genomes Project LD structure).

To identify specific loci jointly involved with AD and the eight CV-associated risk factors,
we computed conjunction false discovery rates (FDRs), a statistical framework that is well
suited to a genetic epidemiology approach to investigate genetic pleiotropy. The standard
FDR framework is based on Bayesian statistics and follows the assumption that SNPs are
either associated with the phenotype (non-null) or are not associated with the phenotype
(null SNIPs). Within a Bayesian statistical framework, the FDR is then the probability of the
SNP being null given its pvalue is as small as or smaller than the observed one. An
extension of the standard FDR is the conjunction FDR, defined as the probability that a SNP
is null for either phenotype or for both phenotypes simultaneously given its pvalue in both
phenotypes are as small or smaller as the observed ones. The conjunction is a conservative
approach requiring that loci exceed a conjunction FDR significance threshold for two traits
jointly. Conjunction FDR, therefore, is more conservative and specifically pinpoints
pleiotropic loci between the traits of interest. We used an overall FDR threshold of < 0.05,
which means five expected false discoveries per hundred reported. Manhattan plots were
constructed based on the ranking of conjunction FDR to illustrate the genomic location of
the pleiotropic loci. In all analyses, we controlled for the effects of genomic inflation using
intergenic SNPs (see Supplemental and previous reports for additional details [2, 5, 8, 12,
13, 19]).

For loci with conjunction FDR < 0.05, we performed a fixed-effect, inverse variance-
weighted meta-analysis [46] using independent AD cohorts: IGAP Stages 1 and 2 (cases =
25,580, controls = 48,466) and ADGC2 (cases = 2122, controls = 3213). As the separate
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IGAP Stage 2 summary statistics are not publically available, in our meta-analysis, we used
the combined IGAP Stage 1 and 2 sample which was available publically. The meta-
analyses were conducted using the R package meta (http://CRAN.R-project.org/
package=meta). Briefly, the fixed effects, inverse variance-weighted meta-analysis
summarizes the combined statistical support across independent studies under the
assumption of homogeneity of effects. Individual study estimates (log odds ratios) are
averaged, weighted by the estimated standard error [23].

Functional evaluation of shared risk loci

To assess whether SNPs that are shared between AD and CV-associated RFs modify gene
expression, we identified cis-expression quantitative loci (eQTLs, defined as variants within
1 Mb of a gene’s transcription start site) and regional brain expression of AD/CV SNPs in a
publicly available dataset of normal control brains (UKBEC, http://braineac.org [36]). Given
the evaluation of CV-associated RFs, we also evaluated eQTLs using a blood-based dataset
[45].

Gene expression alterations in AD brains

Results

To determine whether the AD/CV pleiotropic genes are differentially expressed in AD
brains, we analyzed gene expression of overlapping genes in a publicly available dataset. We
accessed the Mayo Clinic Brain Bank (Mayo) RNAseq study from the Accelerating
Medicines Partnership-Alzheimer’s Disease (AMP-AD) portal (syn3163039; accessed April
2017). We examined gene expression in the temporal cortex of brains with neuropathologic
diagnosis of AD dementia (V= 82) and elderly control brains that lacked a diagnosis of
neurodegenerative disease (A= 80) [1]. Multi-variable linear regression analyses were
conducted using CQN normalized gene expression measures and including age at death,
gender, RNA integrity number (RIN), brain tissue source, and flow cell as biological and
technical covariates.

Pleiotropic enrichment in AD conditional on plasma lipid levels

For progressively stringent p value thresholds for AD SNPs [i.e., increasing values of
nominal — logyo(p)], we found approximately 100-fold enrichment using LDL, 75-fold
enrichment using TC, 65-fold enrichment using TG, and 25-fold enrichment using HDL
(Fig. 1). In comparison, we found minimal to no enrichment with BMI, T2D, CAD, and
WHR. Together, these findings suggest selective genetic overlap between plasma lipids and
AD. We note that these results reflect genetic enrichment in AD as a function of CV-
associated RFs after the exclusion of SNPs in LD with HLA, MAPT, and APOE (see
“Methods").

Given the long-range LD associated with the APOE/TOMMA40region [49], we focused our
pleiotropy analyses on genetic variants outside chromosome 19. At a conjunction FDR<
0.05, we identified 90 SNPs, in total, across 19 chromosomes jointly associated with AD and
the CV-associated RFs (Fig. 2; Table 2). After accounting for LD, we identified several
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AD-/CV-associated loci involved in cholesterol/lipid function including variants within
ABCG5, ABCA1, and APOA4.

For the 90 pleiotropic SNPs, we conducted a meta-analysis across IGAP Stages 1 and 2 and
ADGC2. We focused on SNPs found in all three cohorts and identified six variants with p <
5.0 x 1078 (Table 3; Fig. 3a—f): (1) rs6733839 (chromosome 2, closest gene = BINJ,
conditioning trait = HDL, reference allele = T, OR = 1.210, 95% CI 1.18-1.1.25, p=1.44 x
1079), (2) rs1534576 (chromosome 11, closest gene = SL.C39A13, conditioning trait =
BMI, reference allele = T, OR = 1.080, 95% CI 1.05-1.11, p= 1.49 x 1079), (3) rs3844143
(chromosome 11, closest gene = PICALM, conditioning trait = LDL, reference allele =T,
OR =0.899, 95% CI 0.877-0.922, p= 6.52 x 10~17), (4) rs17125924 (chromosome 14,
closest gene = FERMTZ, conditioning trait = BMI, reference allele = G, OR = 1.130, 95%
Cl11.08-1.18, p=2.62 x 1078), (5) rs35991721 (chromosome 7, closest gene = MBLAC1/
GATS, conditioning trait = CAD, reference allele = T, OR = 0.921, 95% CI 0.896-0.947, p=
1.44 x 1079), (6) rs536810 (chromosome 6, closest gene = HLA-DRB5, conditioning trait =
WHR, reference allele = T, OR = 0.924, 95% CI 0.899-0.95, p= 1.14 x 1078).

We also identified three AD susceptibility loci at p< 1.0 x 1078 (Table 3; Supplemental
Figure 1): (1) rs11039131 (chromosome 11, closest gene = DDBZ, conditioning trait = TG,
reference allele = T, OR = 0.934, 95% CI 0.91-0.96, p=7.01 x 1077), 2) rs8070572
(chromo-some 17, closest gene = M/NK1, conditioning trait = BMI, reference allele = C,
OR =1.120, 95% CI 1.07-1.17, p=1.98 x 10~7), and (3) rs2071305 (chromosome 11,
closest gene = MYBPCS3, conditioning trait = HDL, reference allele = C, OR = 0.928, 95%
C10.903-0.953, p=5.62 x 1078).

These meta-analyses point to novel AD-associated susceptibility loci. On chromosome 7, we
found that the genome-wide significant rs35991721 was not in LD with the previously
reported SNP rs1476679 ([24], 2 =0.28, D' = 0.56) and may be tagging genetic signal
within GATS, STAG3or PVRIG (Fig. 4). On chromosome 11 within the CELFI region, we
detected independent signal within rs1534576, rs11039131 and rs2071305 (Fig. 5). The
genome-wide significant rs1534576 was in LD with the previously reported rs10838725 (/2
=0.64, D' =0.99) indicating that these two SNPs may be tagging signal within CELFI
[24]. In contrast, rs11039131 and rs2071305 were not in LD with rs10838725 suggesting
independent signal from CELF1 (Fig. 5). Of interest, rs2071305 (but not rs11039131) was in
LD with rs1057233 (2 = 0.65, D’ = 0.99), a SNP that has been associated with AD age of
onset in a survival analysis [20]. Collectively, these results suggest several different AD-
associated genetic variants within chromosome 11.

We also assessed whether the AD/CV pleiotropic SNPs listed in Table 2 replicated in an
AD-by-proxy cohort. Of the 90 IGAP pleiotropic SNPs, 68 SNPs were available in the UKB
AD-by-proxy cohort. We identified 20 significant SNPs at p < 0.05 (Table 4). The replicated
variants include three of the four novel AD/CV pleiotropic SNPs, namely variants within
MINK1, MBLACI, and DDB2.
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Shared genetic risk between CV-associated RFs

cis—eQTLs

To evaluate whether the AD susceptibility loci listed in Table 2 are associated with a single
CV-associated RF or with multiple associated RFs, we constructed a matrix plot. For each of
the eight CV-associated RFs, we plotted the minimum conjunction FDR for all AD/CV
closest genes (Fig. 6; Supplemental Table 1). We found that some common genetic variants
influencing AD risk are associated with multiple CV-associated RFs. For minimum
conjunction FDR < 0.05, variants within (1) ABCAI were associated with CAD, lipid
fractions, and WHR, (2) C60RF10with T2D and lipid fractions and (3) SPRY4with BMI,
lipid fractions, and WHR (Fig. 6).

We focused on the four novel genetic variants (one genome-wide significant and three
suggestive SNPs, see above) and found significant ¢/is-associations in either brain or blood
tissue types (Supplemental Table 2). None of the associations replicated in botf tissue types.
Within blood, rs8070572 showed a significant ¢is-eQTLs with PLD2 (Supplemental Table
2).

Gene expression in brains from AD patients and healthy controls

To investigate whether the AD/CV pleiotropic genes are differentially expressed in AD
brains, we compared gene expression in AD brains with neuropathologically normal control
brains. We focused on differential expression of the closest genes from the four novel
genetic variants (one genome-wide significant and three suggestive SNPs, see above) and
SPI1 based on LD within chromosome 11 (see above). We used a Bonferroni-corrected p
value of < 0.01 and found significant effects for differential expression of MINKI, SP/1,
DDBZ2and MBLACI (Supplemental Table 3).

Discussion

Beyond APOE, we identified 90 SNPs on 19 different chromosomes that jointly conferred
increased risk for AD and cardiovascular outcomes. In meta-analyses across three
independent cohorts, we found four novel genetic variants that increased risk for AD. Three
of these new susceptibility loci independently replicated in an AD-by-proxy cohort.
Expression of three of these AD/CV pleiotropic genes was differentially altered within AD
brains. Collectively, our findings suggest that the polygenic component of AD is highly
enriched for cardiovascular RFs.

In their genetic association with AD, not all cardiovascular RFs are created equal. We found
minimal genetic enrichment in AD as a function of T2D, BMI, WHR, and CAD suggesting
that the known comorbidity [27, 34, 40] between these CV-associated RFs and Alzheimer’s
etiology are likely not genetic. In contrast, genetic enrichment in AD was predominantly
localized to plasma lipids. Each of the four plasma lipid RFs resulted in a comparable level
of enrichment suggesting a tight correlation between the lipid fractions. Building on our
prior work leveraging statistical power from large CV GWASs for AD gene discovery [13],
we found genetic variants jointly associated with AD and CV-associated RFs, many with
known cholesterol/lipid function. By conditioning on plasma TC, TG, LDL, and HDL levels,
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we identified AD susceptibility loci within genes encoding apolipoproteins, such as APOA4,
ATP-binding cassette transporters, such as ABCAI and ABCG5, and phospholipases, such
as ATP8B4and L/PG (for a discussion on lipid genes and AD, see Ref. [14]).

Cholesterol in the brain involves metabolic pathways that work independently from those in
peripheral tissue. The blood-brain barrier (BBB) prevents peripheral cholesterol from
entering and leaving the brain. In the adult brain, cholesterol is synthesized predominately in
astrocytes and oligodendrocytes; minimal cholesterol is synthesized in neurons. Within glial
cells, cholesterol is transported by apoE and secreted into the extracellular matrix via
ABCAI- and ABCGI-associated mechanisms [50]. The cholesterol then binds to the low-
density receptors (LDLR) on neuronal cells. This cholesterol is critical for synapse
development, synapse formation, dendrite differentiation, and synaptic transmission [50]. In
the periphery, cholesterol is produced in the liver or obtained through diet. Mounting
epidemiological, clinical, and animal research indicates that high plasma lipid levels (i.e.,
hypercholesterolemia) act as a risk factor for AD [51]. Hypercholesterolemia is thought to
possibly damage the BBB, resulting in pathological cholesterol metabolism in the brain [51].
Collectively, our findings demonstrate a shared genetic basis for plasma lipids and AD.
Further, we pinpoint specific genes that may be driving this genetic association.

By combining several GWASs, our results provide important insights into shared genetic
risk. Conceptually similar to stepwise gatekeeper hypothesis testing [12] and a proxy
phenotype approach [38], conjunction FDR identifies loci associated with two traits. These
two-stage methods do not lower the statistical ‘bar’ for gene detection and maintain a
constant Type | error rate. Unlike stepwise gatekeeper hypothesis testing [12] and proxy
phenotype [38], which have predominantly been used in a genome-wide framework,
conjunction FDR focuses on ‘hidden’ SNPs with p< 5 x 1078, which directly translates into
an effective increase in sample size [4]. Here, we used independent samples to confirm our
conjunction FDR results, thereby pinpointing a subset of cardiovascular-associated genes
strongly associated with AD. Our findings reinforce that specific Alzheimer’s genes, such as
BIN1and PICALM, also increase risk for cardiovascular outcomes. Importantly, using this
pleiotropy informed approach, and across three independent cohorts, we found four new
susceptibility loci associated with elevated Alzheimer’s risk.

In meta-analyses, we identified novel AD-associated genetic signal in one genome-wide
SNP and three SNPs at p< 1 x 1076, By conditioning on cardiovascular RFs, we detected a
genetic variant within the MBLAC1/GATS/STAG3region on chromosome 7 and with a
meta-p value of 1.44 x 1072, MBLACI encodes a metallo-B-lactamase domain-containing
protein and shows ubiquitous expression in the brain [16]. Building on this, we found that
expression of MBLACI was differentially altered in AD brains. We also identified a variant
within M/NKZ on chromosome 17. Interestingly, M/NK1 expression was altered in AD
brains supporting the hypothesis that phosphorylated kinases, like M/NKZ, are abnormal in
AD [10].

On chromosome 11, our results point to AD-associated genetic signal within the MTCHZ/
SP/1region that is independent of CELF1/CUGBI. We identified rs2071305 and
rs11039131 that were tagging variants within MYBPC3and DDB2, within the MTCHZ and
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SPI1 regions. Furthermore, rs2071305 was in LD with an AD age of onset SNP that was
associated with lower expression of SP/1in monocytes and macrophages [20, 22]. We found
that SP11 expression was altered in AD brains. SP/1 encodes a transcription factor, PU.1,
that is essential for myeloid cell development and a major regulator of cellular
communication in the immune system [29]. Coupled with our HLA findings, these results
implicate genes expressed in microglia, astrocytes or other myeloid cell types in AD
pathogenesis [39].

We identified enrichment for our novel AD/CV genetic variants within an AD-by-proxy
cohort. Of the four new SNPs that strongly influenced Alzheimer’s risk, we found that
MBLAC, DDB2and MINK1 were associated with proxy AD status in the UKB sample.
Importantly, five of the six IGAP/ADGC2 SNPs replicated in UKB consistent with prior
work highlighting the usefulness of the by-proxy phenotype approach for AD [52]. Although
a proxy phenotype is not equivalent to a clinical diagnosis of dementia, our findings
illustrate that a subset of cardiovascular genes influences disease risk even in people with a
genetic predisposition for developing AD.

Our pleiotropy findings suggest that complex diseases and traits have a complex genetic
architecture. Although we did not evaluate causal associations using a Mendelian
Randomization (MR) framework, our results have implications for the relationship between
common genetic variants, CV-associated RFs and AD as an outcome. To date, MR studies
have typically evaluated a single CV risk factor at a time, which is valid only if the genetic
variants used for the MR influence AD exclusively via the selected CV-associated risk factor
[25, 33]. For some variants, we found pleiotropy challenging the conventional MR approach
for genes such as ABCA1 [17]. Instead of a single causal link [15], these results suggest two
possible scenarios for genetic variants associated with multiple traits: (1) genetic variants
influence cardiovascular RFs and AD independently, or (2) genetic variants influence AD
through multiple cardiovascular RFs.

Several studies have explored the overall genetic relationship between CV-associated risk
factors and Alzheimer’s disease. In line with our results, studies have reported significant
genetic overlap between AD and plasma lipids [13, 53]. However, others have found weak
casual evidence for plasma lipids and AD using MR [54] or no association between these
traits using LD score regression [55]. The methods used in these studies may help explain
differences from our results to some extent. As discussed above, MR analyses do not
account for pleiotropic effects, which we specifically focus on in the current manuscript.
Further, our pleiotropic approach allows for allelic heterogeneity and might consequently
find shared genetic effects missed by the LD score regression method. Moreover, similar to
our findings, others have shown minimal to no genetic overlap between CAD and T2D and
AD [53]. Using MR, some have explored the causal relationship between CAD and AD risk
[56] and found a lack of causal relevance of CAD for risk of late-onset AD after exclusion of
APOE. Also, although CAD and AD show minimal genetic overlap, a genetic risk score for
CAD has been shown to modify the association between CVD and AD [53]. Further, our
understanding of the genetic relationship between BMI and AD is not well understood. We
found minimal genetic overlap between BMI and AD. Others have found strong genetic
overlap between BMI and AD [53], and yet others found no casual evidence between these
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traits [57]. These findings suggest that the genetic relationship between AD and BMI and
CAD is complex and other factors may be influencing the relationship.

Our findings have clinical implications. First, given the common co-occurrence of vascular
and Alzheimer’s pathology, it is highly likely that the clinically diagnosed AD individuals
from our cohort have concomitant vascular brain disease, which may further contribute to
their cognitive decline and dementia. As such, a plausible interpretation of our findings is
that the susceptibility loci identified in this study may increase brain vulnerability to
vascular and/or inflammatory insults, which in turn may exacerbate the clinical
consequences of AD pathological changes. Second, no single common variant detected in
this study will be clinically informative. Rather, integration of these pleiotropic variants into
a cardiovascular pathway-specific, polygenic ‘hazard’ framework for predicting AD age of
onset may help identify older individuals jointly at risk for cardiovascular and Alzheimer’s
disease [11]. Therapeutically targeting cardiovascular RFs in these individuals may impact
the Alzheimer’s disease trajectory.

This study has limitations. First, our AD patients were diagnosed largely using clinical
criteria without neuropathology confirmation and this may result in misclassification of case
status. However, such misclassification should reduce statistical power and bias results
toward the null. Second, we focused on the closest genes as the eQTL analyses did not
replicate in both brain and blood. Additional work will be required to determine the causal
genes responsible for the association between these novel loci and AD. Finally, given
evidence that phospholipids are proinflammatory [35], future work should evaluate whether
LDL, HDL TG, or TC influence AD risk through inflammation or other mediator variables.

In summary, we show cardiovascular-associated polygenic enrichment in AD. Beyond
APOE, our findings support a disease model in which lipid biology is integral to the
development of clinical AD in a subset of individuals. Lastly, considerable clinical,
pathological and epidemiological evidence has shown overlap between Alzheimer’s and
cardiovascular risk factors. Here, we provide genetic support for this association.
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Nominal -log{ P-value in AD

Fold enrichment plots of nominal — logyq p values (corrected for inflation and excluding
APOE, MAPT, and HLA regions) in Alzheimer’s disease (AD) below the standard GWAS
threshold of p< 5 x 1078 as a function of significance of association with body mass index
(BMI), type 2 diabetes (T2D), coronary artery disease (CAD), waist hip ratio (WHR), total
cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density
lipoprotein (HDL) at the level of p< 1, p<0.1, p<0.01, respectively. Blue line indicates all

SNPs
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Conjunction Manhattan plot of conjunction - logyq (FDR) values for Alzheimer’s disease
(AD) alone (black) and AD given body mass index (BMI; AD&BMI, red), type 2 diabetes
(T2D; AD&T2D, blue), coronary artery disease (CAD; AD&CAD, pink), waist hip ratio
(WHR; AD&WHR, magenta), total cholesterol (TC; AD&TC, green), triglycerides (TG;
AD&TG, teal), low-density lipoprotein (LDL; &LDL, purple) and high-density lipoprotein
(HDL, AD|HDL, maroon). SNPs with conjunction — logyg FDR > 1.3 (i.e., FDR < 0.05) are
shown with large points. A black line around the large points indicates the most significant
SNP in each LD block and this SNP was annotated with the closest gene, which is listed
above
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Fig. 4.

Regional association plots for rs35991721 on chromosome 7. Linkage disequilibrium
measured in the 1000 genomes European populations
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Fig. 5.
The pair-wise linkage disequilibrium patterns between rs1534576, rs11039131 rs2071305,

rs10838725, and rs1057233 on chromosome 11
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genes for each CV-associated RF. Asterisk indicates the conditioning RF used to identify the

most significant SNP (see Table 2 and Fig. 2)

Fig. 6.
Matrix plot mapping minimum conjunction FDR for the non-APOE AD/CV pleiotropic
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