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Integrative analysis with expanded DNA methylation data
reveals common key regulators and pathways in cancers
Shicai Fan1,2,3,4, Jianxiong Tang1, Nan Li3, Ying Zhao3, Rizi Ai3, Kai Zhang 3, Mengchi Wang3, Wei Du4 and Wei Wang3,5

The integration of genomic and DNA methylation data has been demonstrated as a powerful strategy in understanding cancer
mechanisms and identifying therapeutic targets. The TCGA consortium has mapped DNA methylation in thousands of cancer
samples using Illumina Infinium Human Methylation 450 K BeadChip (Illumina 450 K array) that only covers about 1.5% of CpGs in
the human genome. Therefore, increasing the coverage of the DNA methylome would significantly leverage the usage of the TCGA
data. Here, we present a new model called EAGLING that can expand the Illumina 450 K array data 18 times to cover about 30% of
the CpGs in the human genome. We applied it to analyze 13 cancers in TCGA. By integrating the expanded methylation, gene
expression, and somatic mutation data, we identified the genes showing differential patterns in each of the 13 cancers. Many of the
triple-evidenced genes identified in majority of the cancers are biomarkers or potential biomarkers. Pan-cancer analysis also
revealed the pathways in which the triple-evidenced genes are enriched, which include well known ones as well as new ones, such
as axonal guidance signaling pathway and pathways related to inflammatory processing or inflammation response. Triple-
evidenced genes, particularly TNXB, RRM2, CELSR3, SLC16A3, FANCI, MMP9, MMP11, SIK1, and TRIM59 showed superior predictive
power in both tumor diagnosis and prognosis. These results have demonstrated that the integrative analysis using the expanded
methylation data is powerful in identifying critical genes/pathways that may serve as new therapeutic targets.
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INTRODUCTION
The Cancer Genome Atlas (TCGA, https://tcga-data.nci.nih.gov/
tcga/) has profiled the genomic and epigenomic variations of
thousands of samples for several dozens of cancers.1 These multi-
omics data include genetic variation, gene expression, and DNA
methylation that provide an invaluable resource for understand-
ing the cancer mechanisms and identifying new therapeutic
targets. A limitation of the TCGA DNA methylation data is that it
was generated using Illumina Infinium Human Methylation 450 K
BeadChip (referred to as Illumina 450 K array hereinafter), which
only covers about 1.5% of the CpGs in the human genome. This
poor coverage restricts epigenomic analysis and many differen-
tially modified loci are likely missed. While whole genome bisulfite
sequencing (WGBS) and other technologies are available to
measure DNA methylation with much higher coverage, it is
unlikely to repeat the DNA methylation analysis in the large
number of TCGA samples considering the expense and effort in
the near future. Therefore, there is an urgent need to develop new
analysis strategy to better use these data.
Previously, we developed a method to expand the Illumina

450 K array data by considering sequence features and local
methylation profile in the neighboring CpGs.2,3 Despite the
promising results provided by these methods, their speed is slow
and applying them to expand the thousands of TCGA data is

infeasible. Here, we present an improved model called EAGLING
(Expanding the 450 K methylation Array with neighboring
methylation value and Local methylation profilling) with a more
than 10 times faster speed compared to our previous methods.
Furthermore, the location distribution of the expanded CpG sites
is less biased toward CpG rich regions, and the hyper/hypo-
methylated ratio is also more similar to the ratio from the WGBS
data. Importantly, the coverage of CpGs is significantly increased
from about 1.5% of all CpGs in the human genome in the original
Illumina 450 K data to about 30% after expansion.
This new model allows integrative analysis of genetic variation,

gene expression, and expanded DNA methylation to identify genes
and pathways that are important for diagnosis and therapeutic
treatment. We identified the triple-evidenced genes in each of the
13 TCGA cancers that have sufficient samples. The triple-evidenced
genes represent the genes that are differentially methylated,
differentially expressed, and associated with somatic mutation. We
found that the triple-evidenced genes shared by a majority of the
13 cancers include many previously identified biomarkers or
therapeutic targets.4–7 These triple-evidenced genes are enriched
in numerous pathways, suggesting new possible targets for
therapeutics. Importantly, these triple-evidenced genes can
discriminate the cancer from normal samples and predict survival.
In particular, nine genes, TNXB, RRM2, CELSR3, SLC16A3, FANCI,
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MMP9, MMP11, SIK1, and TRIM59 are important in both cancer
diagnosis and prognosis; note that FANCI and SIK1 would be
missed on using the original Illumina 450 K data. The EAGLING
model and all of the triple-evidenced genes are available at http://
114.55.236.67:8013/Integrative_Analysis/home.

RESULTS
We propose here an integrative analysis strategy to identify key
regulators and pathways in cancers from the TCGA data. By
comparing gene expression, genetic variation, and DNA methyla-
tion data between normal and cancer samples, we extracted the
triple-evidenced genes for 13 cancers and analyzed the character-
istics of these genes (Fig. 1a).

The EAGLING model expands the 450 K array methylation data 18
times
In order to expand the Illumina 450 K array DNA methylation data,
we previously developed prediction models based on local
methylation patterns and sequence features. In this work, we
proposed a new model dubbed as EAGLING that has two steps to
predict methylation levels of CpGs based on the Illumina 450 K
array data. First, it finds a WGBS methylome that shares the most
similar local methylation profile around the CpG L under
consideration, and the methylation value of the CpG in the
selected WGBS methylome is taken as an input feature; second,
the methylation value of the closest CpG from Illumina 450 K array
is taken as another input feature. A logistic regression model was
built on these two features to predict the methylation level at L
(Fig. 1b, see details in Methods). Note that this procedure is
repeated for each CpG so that different CpGs may be predicted
from different WGBS methylomes. Thirty-three tissues/cell lines in
which both 450 K array and WGBS data were available were used
to optimize the parameters. There are three major improvements
over our previous models.2,3 First, DNA sequence features are not
included in EAGLING, which significantly improves the speed
without deteriorating the performance; second, the methylation

value of the closest CpG is used because of its higher precision
compared to the weighted neighbor CpGs used in our previous
models;2,3 third, more training data are included (33 versus 14
tissues/cell lines), which is expected to improve the model.
We have searched for the optimal number of CpGs to represent

the local methylation pattern in step 1, which is crucial to identify
the WGBS methylome from which we take the methylation level
for the CpG under consideration. We performed the leave-one-
tissue-out cross validations using 1–10 neighbor CpGs and
5–50 Kbp flanking regions (Fig. 2a). The flanking regions confine
the CpGs we considered. Only the CpGs with the required number
of neighbor CpGs in the specified flanking regions were included
for expansion, because their local methylation profiles could be
accurately represented. We chose four CpGs each on upstream
and downstream sides to represent the local methylation profile
as there was no performance improvement by including more
than four flanking CpGs and 30 Kbp for the flanking region size
considering the balance between satisfactory performance and
genome coverage (Fig. 2b). Using these parameters, the leave-
one-tissue-out cross validations achieved superior performance
(Fig. 2c). To show the impact of the training size on the model
performance, we trained the EAGLING model using 14 (the
training sample size for our previous model in reference 3) and 23
WGBS data sets (the 14 WGBS data plus another nine randomly
chosen WGBS data) separately. We compared their predicted
results on another 10 WGBS samples not included in the training
set. We repeated this cross validation 10 times and the results are
shown in Figure S1a. The EAGLING model trained using 23 WGBS
data showed improved correlation coefficient (0.8441), concor-
dance (0.8532), accuracy (89.65%), and AUC (0.8645) compared to
those trained using 14 WGBS data (0.8321, 0.8375, 87.11%, and
0.8595). Importantly, not including DNA sequence features in
EAGLING does not impair the prediction performance while
removing the time consuming step of considering sequence
features in the previous model (Figure S1b) to achieve a 10 times
faster speed.

Fig. 1 The workflow of the integrative analysis and the EAGLING model. a The multi-omics data of 13 cancers from TCGA were used to identify
the genes that are differentially expressed and differentially methylated and also contain somatic mutations (i.e. triple-evidenced genes) in
each cancer. Pan-cancer analysis revealed that the triple-evidenced genes shared by a majority of the 13 cancers include many previously
identified biomarkers or therapeutic targets. b In the model construction, two features are used to build the logistic regression model: the
methylation level of the closest CpG based on 450 K array and the methylation value from the WGBS of the corresponding CpG from the
tissue that has the most similar local methylation profile with the site to be predicted
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Fig. 2 The performance of EAGLING model and the expanded methylation profile. a and b The leave-one-tissue-out cross validations with
different flanking CpG numbers and sizes of the flanking regions. c The performance with four CpGs in the flanking 30 Kbp regions. Pearson
correlation coefficient (COR), concord (CONCORD, the percent of CpGs with a methylation proportion difference less than 0.2560), sensitivity
(SE), specificity (SP), accuracy (ACC), and Area Under ROC Curve (AUC) are used as the metrics to assess the performance. d, e, and f are the
CpG location, hyper/hypo methylation ratio in tumor/normal samples from the Illumina 450 K array, respectively.g, h, and i are the CpG
location, hyper/hypo methylation ratio from the expanded data, respectively. j, k, and l are the CpG location, hyper/hypo methylation ratio
from the WGBS data, respectively
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Furthermore, we applied our EAGLING model on 450 K array
data of K562 and HepG2, two independent cancer cell lines from
the ENCODE project. The predicted methylation levels were well
correlated with the WGBS data in the same cell lines: the
correlation, accuracy and AUC on K562 and HepG2 were 0.84,
84.13%, 0.84, and 0.91, 92.27%, 0.87, respectively. The correlation,
accuracy and AUC in K562 and HepG2 using our previous model3

were 0.82, 81.13%, 0.80, and 0.89, 90.13%, 0.82, respectively. The
superior performance further validated the EAGLING model.

Expanding the Illumina 450 K array data in the TCGA samples
Using the EAGLING model trained on the 33 tissues/cell lines (see
details in Table S1), we expanded the Illumina 450 K methylation
array data in 13 cancers from TCGA (LUAD, LUSC, BRCA, BLCA,
COAD, KIRC, KIRP, PRAD, ESCA, LIHC, THCA, UCEC, and HNSC) that
have at least 10 normal samples of Illumina 450 K array and RNA-
seq data. The expanded data increased the coverage of CpGs to
18.9 times (about 30% of CpGs in the human genome).
Particularly, the intergenic coverage was significantly increased
from 39.02% in 450 K array to 50.94% in the expanded data and
the non-CpG island coverage also increased from 69.03 to 79.98%,
which is important to identify functional enhancers (Fig. 2d, g).
The location distribution of the expanded data is much closer to
that of all the CpGs in human genome (Fig. 2j) than the original
450 K array. Furthermore, we identified the hyper-methylation
(>0.7) and hypo-methylation (<0.3) CpGs from the original 450 K
array data and calculated their percentages among all the CpGs
for the tumor and normal samples of the 13 cancers (Fig. 2e, f).
Obviously, the ratio distributions of the expanded CpGs (Fig. 2h, i)
are much closer to those of the WGBS data (Fig. 2k, l), indicating
that the analysis results based on the expanded methylation data

would be less biased compared to the results from the 450 K array
data.

Identification of triple-evidenced genes
Using the expanded methylation data in the 13 cancers, we
identified the differentially methylated genes (DMGs) between the
tumor and normal samples (see Methods for detail). We also
identified the differentially expressed genes (DEGs) using the RNA-
seq data and genes containing somatic mutations (see details in
Methods and Figure S2). As an example, the overlap between
DMGs, DEGs and genes with somatic mutation of LUSC is shown in
Fig. 3a. In the 13 cancers, the number of triple-evidenced genes
ranges from 396 in PRAD to 1438 in LUSC (Figure S2).
Only a small portion of the triple-evidenced genes were found

in more than six cancers (Fig. 3b). The top five triple-evidenced
genes found most often in the 13 cancers are listed in Table S2.
They were CELSR3, TNXB, TRPM2, KCNAB1, and TRIP13 that were
identified as triple-evidenced genes in 11, 11, 11,10, and 10 types
of cancers, respectively. We first examined the difference of their
methylation and expression levels between tumor and normal
samples (Fig. 3c) (difference= normal value− tumor value).
CELSR3, TRPM2, and TRIP13 are over-expressed in all the 13
cancers, TNXB is under-expressed in all the 13 cancers, KCNAB1 is
over-expressed in KIRC but under-expressed in the other 12
cancers. These genes show abnormal but consistent expression
patterns across different cancers. The methylation level does not
show clear trend though, indicating that the relationship between
gene expression and their promoter methylation is complex,
which is consistent with the previous studies.8,9

Four of the five genes have been reported as biomarkers,
potential biomarkers or therapeutic targets. CELSR3 was found to

Fig. 3 Analysis of triple-evidenced genes and enriched pathways. a Genes supported by one, two or three evidences in LUSC. b The number
of triple-evidenced genes shared between the 13 cancers. c The differential methylation and expression levels of the top five triple-evidenced
genes (difference= normal value− tumor value) that are most common in the 13 cancers. X axis is the difference of methylation, y axis is the
log2(RPKM ratio) to represent the gene expression difference. One red circle in each graph represents a cancer type. d The top five pathways
enriched in the 13 cancers, the red dot indicates the cancer type in which a pathway is enriched
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be highly expressed in ovarian cancer,4 and hypermethylated in
primary oral squamous cell carcinoma, and might be used as a
biomarker in OSCC prognostication10 and small intestinal neu-
roendocrine tumor.5 TNXB was reported to be important for the
tumorigenesis of lung adenocarcinoma,6 and was validated as a
promising biomarker for early metastasis of breast cancer.7 TRPM2
was reported to be a potential target of the selective treatment of
prostate cancer11 and was suggested to be a potential therapeutic
target in breast cancer.12 TRIP13 promoted early steps of the DNA
double-strand break repair and its presence was associated with
progression in prostate cancer and squamous cell carcinoma of
the head and neck.13,14 For KCNAB1, there were few reports about
its function in cancer, but it was downregulated in follicular
carcinoma and could be combined with other genes for the
classifier construction.15

As a comparison, we also identified the triple-evidenced genes
using the Illumina 450 K data (Figure S3). There are two
advantages using the expanded methylation data. First, the
triple-evidenced genes can be identified in more cancers. For
example, the CELSR3 gene was found as the triple-evidenced gene
in two cancers using the original 450 K array data but in 11 cancers
using the expanded data; second, consistently, more triple-
evidenced genes can be identified in a particular cancer by the
expanded data than the original 450 K array data. For example,
five genes (FANCI, RECQL4, TACC3, CLU, and SIK1) were reported
to function in different cancers10,16–19 but they could not be
identified using the Illumina 450 K array data in any of the 13
cancers; in contrast, all of them were found as triple-evidenced
genes in more than six cancers using the expanded data
(Table S3).

Triple-evidenced genes are enriched in particular pathways
For each of the 13 cancers, we checked the enriched pathways
among the triple-evidenced genes using ingenuity pathway
analysis (IPA) (with Benjamini-hochberg adjusted p-value < 0.05).
Some enriched pathways are known to be important in cancer,
such as MMPs (inhibition of matrix metalloproteinases), VEGF
family ligand–receptor interactions, Wnt pathway, NF-kB signaling,
MAPK Signaling. The top five pathways most often found in the 13
cancers are shown in Fig. 3d.
Axonal guidance signaling, which belongs to neurotransmitters

and other nervous system/organismal growth and development
signaling, is enriched in 11 out of 13 cancers (Figure S4). Genes
included in the pathway have been implicated in cancer cell
growth, survival, invasion, and angiogenesis.20 It was also reported
that pancreatic cancer genomes show aberrations in the axonal
guidance pathway genes.21 As an example, the triple-evidenced
genes in LUSC overlapped with this pathway are marked in purple
in Figure S4. The top genes shared in the 11 cancers on the
pathway are marked with star shape. Some of them have been
targeted by drugs to treat numerous cancers, such as marimastat
for breast and lung cancer, and dabrafenib for non small-cell lung
cancer.
The other four enriched pathways are hepatic fibrosis/hepatic

stellate cell activation, leukocyte extravasation signaling, agranu-
locyte adhesion, and diapedesis and atherosclerosis signaling. All
of them are involved in inflammatory process or response, and
their top functions are in cell-to-cell signaling and interaction,
cellular movement or immune cell trafficking. The association
between the development of cancer and inflammatory is well
recognized,22 and about 20% of human cancers are related to
chronic inflammatory caused by infections, exposure to irritants or
autoimmune disease.23,24 The details of the pathways (LUSC as an
example) are shown in Figure S5–S8. Note that the number of
cancers in which the enriched pathways was identified is

significantly larger than that identified from the original 450 K
array data (Figure S9).
Several triple-evidenced genes (MMP9, MMP11, CXCL12, MYL9)

appear in three out of the five significantly enriched pathways and
in more than half of the 13 cancers. All of these genes have been
reported associated with cancers. The promoter methylation of
CXCL12 was acted as a prognostic biomarker in prostate cancer
patients25 or sporadic breast cancer.26 The low expression level of
MYL9 is correlated with a significantly reduced median survival
rate in colon cancer patients and might act as clinical biomarkers
for the early diagnosis of colon cancer.27 MMP9 and MMP11, both
of which belong to Proteins of the matrix metalloproteinase
(MMP) family, were reported as tumor biomarkers28 or associated
with tumor survival,29 and targeted by an inhibitor marimastat.

Diagnostic power of the triple-evidenced genes
We then investigated whether the triple-evidenced genes are
useful in distinguishing cancers from normal samples. We trained
a random forest model with the selected triple-evidenced genes
to discriminate the pooled cancer samples from the normal ones.
As there are a large number of triple evidenced genes in all the
cancers, we chose those that appear in more than half of the 10
training cancer types as the candidates. Their associated gene
expression and DNA methylation levels of individual CpGs in the
promoters of the selected genes in the expanded data were input
features; the somatic mutation information could not be included
because the mutation information for each gene in every sample
was not available. The model was constructed with a cross
validation strategy by sampling 10 cancer samples as training data
and the remaining three cancer samples as test data for 100 times.
LASSO was applied to select features in constructing each random
forest model. The features are presumably important if they were
most often selected in the 100 cross validations. We list the 47
features selected in more than 50 times of the cross validations in
Table S4, including expression of 13 genes and methylation levels
of 34 CpGs. As shown in Fig. 4a, most of the test tumor samples
could be correctly predicted as cancers while about 75% of the
test normal samples were predicted as normal samples. Obviously,
using triple-evidenced genes derived from the expanded methy-
lation data outperformed using the original 450 K array data (t-
test), particularly the specificity. The AUC of the cancer diagnosis
with the triple-evidenced genes is about 0.85, which indicates that
there are common differential gene expression and methylation
features of the triple-evidenced genes that distinguish tumors
from the normal samples.
To validate whether the triple-evidenced genes could also

perform well in other datasets, firstly, we extracted gene
expression data of normal and tumor tissues of liver, breast,
uterus, bladder, esophagea, and colon from GENT,30 and tested
the classification performances based on the triple-evidenced
genes (Table 1); secondly, we extracted the expression data of five
other cancers (STAD, READ, CHOL, GBM and PAAD) not included in
the 13 cancers studied here from TCGA, and investigated the
prediction performances based on the triple-evidenced genes
(Table 2). We used the random forest model constructed from all
the tumor samples with 47 features selected in more than half of
the 100 cross validations. The prediction results showed
satisfactory results and suggested that the triple-evidenced genes
are important and robust for pan-cancer analysis.
Furthermore, we investigated whether it is possible to

distinguish individual cancers. The candidate features were the
combination of all the features selected in any of the 100 cross
validations in the above diagnosis analysis. For the 13 cancer
samples, multi-class logistic regression model was constructed
based on the gene expression and the methylation levels of
promoter CpGs using LASSO. The average prediction accuracy
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with 10-fold cross validation for 100 times was 95.27 ± 0.64%. This
accurate prediction indicates that the expression and methylation
features based on the triple-evidenced genes reflect the
differential patterns not only between cancer and normal samples

but also between different cancers. Among the 13 cancers, THCA
and PRAD were with the highest accuracies (99.32 and 99.16%),
while the LUSC was with the lowest accuracy (87.41%). When
looking into the misclassification results, KIRP is prone to be

Fig. 4 Diagnosis and prognosis analysis using the triple-evidenced genes. a Diagnostic analysis to distinguish cancers from normal samples
using the triple-evidenced genes in 10-fold cross validations (t-test). Sensitivity (SE), specificity (SP), accuracy (ACC), and Area Under ROC Curve
(AUC) are used as the metrics to assess the performance. b The boxplots of the concordances using expression data alone, expanded
methylation data alone, both expression and expanded methylation data or both expression and the original 450 K data on COAD (repeating
for 100 times). c The hierarchical clustered heatmap using the selected features (both gene expression and methylated loci) in prognosis
analysis. Both the tumor samples and the features were clustered, and the log2 (RPKM) of gene expression value was normlized to [0,1]. d The
Kaplan-Meier survival plot of the two clustered samples

Table 1. The classification performances on cancers from the GENT data

Tumor Sensitivity Specificity Accuracy AUC

Liver hepotocellular carcinoma (LIHC) 0.9904 0.7505 0.9177 0.8705

Breast invasive carcinoma (BRCA) 0.9805 0.8067 0.9294 0.8936

Uterine corpus endometrial carcinoma (UCEC) 0.9779 0.9845 0.9784 0.9812

Bladder Urothelial Carcinoma (BLCA) 0.9877 0.9082 0.9663 0.9479

Esophageal carcinoma (ESCA) 1.0000 0.8725 0.9869 0.9363

Colon adenocarcinorma (COAD) 0.8971 0.5633 0.8801 0.7242
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predicted as KIRC and vice versa, LUAD is prone to be predicted as
LUSC and vice versa, which is reasonable because they belong to
the same tumor category. Also we found that the majority of mis-
classified HNSC were predicted as LUSC, and many of the mis-
classified LUSC were predicted as HNSC. The interesting results
were consistent with the previous reports that patients treated for
head and neck squamous cell carcinoma frequently developed
second primary tumors in the lung, and they shared many
common patterns.31,32

Among the top 20 features (Table S5), 13 features are gene
expression and seven are CpG methylation values of the triple-
evidenced genes. Some of these features have literature evidences
to support their importance in discriminating cancers. For
example, the gene expression of SUSD2 is the second most
important feature, which is consistent with its reported variable
expression in cancers, e.g. down-regulation in colon cancer33 and
hepatocellular carcinoma,34 and highly expressed in breast
cancer.35 Another example is CYGB expression, the fifth most
important feature. CYGB shows variable expression in cancers: it is
down-regulated in many cancers36 but up-regulated in lung and
brain metastases, and head and neck cancer.37,38 The methylation
level at a LAMA4 promoter CpG was found as the seventh most
important feature; previously, the aberrant methylation at the
LAMA4 promoter was observed in breast carcinoma39 and low
methylation was associated with poor progression-free survival.40

Prognostic value of the triple-evidenced genes
We also investigated whether the triple-evidenced genes are
useful in predicting survival rate. For the survival data of each
cancer (11 cancers with sufficient samples were analyzed, see
details in Methods), we applied the LASSO cox proportional
hazards regression for feature selection. The candidate features
include gene expression and expanded methylation data (the
methylation level of all the CpGs in the promoters) of triple-
evidenced genes identified in each cancer. The performance was
assessed using 10-fold cross validation for 100 times. We
compared the concordances (C-indexes) based on four different
candidate features (expanded methylation and expression levels,
only expanded methylation, only expression level, and the original
450 K methylation and expression levels of the triple-evidenced
genes). As an example, the boxplots of the concordances of COAD
in cross validation are shown in Fig. 4b. The concordance based on
the features selected from using both the expression levels and
expanded methylation data is superior to using either data alone,
or the combination of the original 450 K methylation and
expression levels: the p-values are 0.03 (compared with expanded
methylation data), 1.2e-11 (compared with expression data) and
9.1e-6 (compared with the combination of the original 450 K
methylation and expression levels).
Furthermore, we focused on the gene features frequently

selected among the cross validations to cluster the tumor samples.
For example, using the 19 features selected in more than 20% of
the cross validations in the COAD samples (as shown in Fig. 4c),
hierarchical clustering identified two obvious subgroups, which
shows significantly different survival times in the Kaplan-Meier
survival plot in Fig. 4d (p-value= 0.00145). The results for the

other 10 cancers are shown in Figure S10–S19. In eight out of the
11 cancers, the concordances based on the features selected from
the combination of both the expression levels and expanded
methylation data are the highest, indicating the usefulness of the
expanded methylation data in prognosis analysis. Among the
most often selected features, TNXB, RRM2, CELSR3, DBNDD1, and
SLC16A3 are the top five most often selected genes in the survival
analysis among the 11 cancers (Table S6 and see discussion
below).

Triple-evidenced genes important for both diagnosis and
prognosis
Nine genes are most often selected in both diagnosis and
prognosis analyses: TNXB, RRM2, CELSR3, SLC16A3, FANCI, MMP9,
MMP11, SIK1, and TRIM59. Their differential expression and
methylation levels between normal and cancer samples as well
as the somatic mutations in the 13 cancers are shown in Fig. 5. The
expression and somatic mutation patterns of the nine genes are
quite consistent in the 13 cancers but the methylation patterns of
their promoters vary. These nine genes are currently considered as
biomarkers or potential biomarkers for diagnosis or prognosis in
specific cancers. However, our analyses suggested that they are
likely general biomarkers for at least the 13 cancers analyzed here.
TNXB was reported as a potential marker for prognosis in

patients with stage III serous ovarian cancer.41 RRM2 was reported
as independent negative prognostic marker for survival in patients
with resected pancreas cancer42 and a promising prognostic
biomarker and therapeutic target for ER-negative breast cancer
patients.43 CELSR3 was suggested as a biomarker in OSCC
prognostication,10 and prognostic marker in small intestinal
neuroendocrine tumor.5 MMP11 and MMP9 were reported as
breast tumor biomarkers and associated with tumor survival.28,29

For SLC16A3, there is no report on its prognostic power but
studies showed that it might be an epigenetic marker for clinical
outcome in clear cell renal cell carcinoma.44

It is worth noting that FANCI and SIK1 genes could not be
identified as the triple-evidenced genes using the original 450 K
array data. FANCI belongs to Fanconi anemia complementation
group and it was a negative regulator of Akt activation that
connects with the oncogenic PI3K-Akt pathway and the tumor
suppressing FA pathway.45 This gene has also been linked to drug
resistance in cancer treatment.46 SIK1 is stimulated by a cancer
suppressor LKB1, which leads to metastatic spread and invasive-
ness, as well as apoptosis resistance.47 Loss of SIK1 has been found
in epithelial ovarian cancer and pancreatic cancer,48 and
decreased SIK1 expression is correlated with poor outcome of
breast cancer treatment,49 indicating the potential application in
prognosis. Our results further support the potential of using FACNI
and SIK1 as prognosis marker and provide insight in broadening
its application in other cancer types.
Among the nine genes, RRM2, MMP9, MMP11, and SIK1 are

known drug targets. For example, they are inhibited by
gemcitabine (RRM2), marimastat (MMP9 and MMP11) for treating
several cancers. Our analyses suggested these inhibitors may be
effective for the majority of the 13 cancers, which suggests
possible broader applications of these inhibitors. For example,

Table 2. The classification performances on 5 other cancers from the TCGA data

Tumor Sensitivity Specificity Accuracy AUC

Stomach Adenocarcinoma (STAD) 0.7734 0.8378 0.7791 0.8056

Rectum adenocarcinoma (READ) 0.8842 1.0000 0.8942 0.9421

Cholangiocarcinoma (CHOL) 0.9722 1.0000 0.9778 0.9861

Glioblastoma Multiforme (GBM) 0.9341 0.6211 0.9244 0.7671

Pancreatic adenocarcinoma (PAAD) 0.8245 0.5278 0.8042 0.7122
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gemcitabine targeting RRM2 are validated for the treatment of
non-small-cell lung cancer,50 ovarian cancer,51 pancreatic cancer,52

adrenocortical cancer,53 and oral squamous cell carcinoma.54 We
speculate that gemcitabine can be used to treat bladder, colon,
kidney, liver and prostate cancers. Furthermore, HG-9-91-01(SIK1)
was reported to induce anti-inflammatory phenotype and could
be used to treat certain autoimmune diseases,55,56 we speculate
that it can be repurposed to treat cancers as four of the top five
enriched pathways in the pan-cancers analysis are closely related
to inflammatory processing or inflammation response.

DISCUSSION
We present here a method EAGLING to significantly expand the
Illumina 450 K array data with a fast speed and better precision
than the previous models. We have performed pan-cancer analysis
on 13 TCGA cancers to identify genes with differential methylation
and gene expression between cancer and normal samples as well
as containing somatic mutations. These triple-evidenced genes,
particularly TNXB, RRM2, CELSR3, SLC16A3, FANCI, MMP9, MMP11,
SIK1, and TRIM59 show diagnostic and prognostic power. Note
that FANCI and SIK1 could only be identified as triple-evidenced

genes using the expanded methylation data. The pathways in
which they are enriched also suggest new therapeutic targets or
repurposing the existing drugs. We focused on discussing the
common features among the 13 cancers but it is worth noting that
the triple-evidenced genes in individual cancers can also be
potential biomarkers or drug targets.
We showed that the expanded methylation data allowed

identification of more cancer-related genes, which led to better
performance in both diagnosis and prognosis. The common
patterns shared among the 13 cancers suggest that some drugs
(such as gemcitabine) currently aiming to specific cancers might
be useful to treat other cancers, and drugs aiming to immune
diseases (such as HG-9-91-01) might be repurposed for cancer
therapy.

METHODS
DNA methylation data for model construction
In total, 33 tissues or cell lines with both WGBS and 450 K array data were
retrieved from the NIH Roadmap Epigenomics project57 and TCGA(Table
S1). We downloaded the methylation proportion values of WGBS data and
beta values of 450 K array from the GEO Database and TCGA data portal
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Fig. 5 Nine genes important for both diagnosis and prognosis analyses in the 13 cancers. a gene expression, b methylation, and c somatic
mutations of the 9 genes
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directly. Both WGBS data and 450 K array data were quantile normalized.
We used the quantile normalization between the 450 K arrays, and
between the WGBS data, to reduce the batch effect, as the quantile
normalization strategy was reported to be efficient for the intra- and inter-
arrays normalization.58,59

In the EAGLING model, the CpG site to be predicted is denoted as L. The
WGBS methylation value at L in the tissue that shows the most similar local
methylation profile among the 33 tissues was used as one feature (x1) and
the methylation value measured by the Illumina 450 K array of the closest
neighbor CpG of L was used as the second feature (x2). The local
methylation profile was defined by four CpGs in the upstream and
downstream 30 Kbp regions of site L (see Results and Fig. 1 for details of
how these parameters were selected). Only the CpG loci having four
neighbor CpGs in the 30 Kbp flanking regions would be considered for
expansion. A logistic regression model was built on these two features to
predict the methylation level at L. The main differences between EAGLING
and our previous model3 include: (1) not using DNA sequence features to
achieve a faster speed, (2) optimized parameters of local methylation
pattern and the flanking region size, (3) the training set was significantly
increased from 14 to 33 that is expected to improve the performance.
The performance of EAGLING was assessed by leave-one-tissue-out cross

validation on all the 22 autosomes. The evaluation metrics included
Pearson correlation coefficient (COR), Concord (CONCORD, the percent of
CpGs with a methylation proportion difference less than 0.2560), sensitivity
(SE), specificity (SP), accuracy (ACC), andArea Under ROC Curve(AUC). For
calculating SE, SP, ACC, and AUC, we defined the methylation status as + 1
if the methylation value is larger than 0.5, and the methylation status as −1
otherwise.
For performance validation, the 450 K array and WGBS data of K562 and

HepG2, two independent cancer cell lines from ENCODE project were
retrieved from GEO database. The expanded methylation levels from
EAGLING model were compared with the real WGBS data for performance
validation.

Expanding the DNA methylation data in the TCGA samples
We downloaded the 450 K array data from TCGA. We only included 13
cancers with at least 10 normal samples of 450 K array and RNA-seq data
for the integrative analysis (Table S7): Lung adenocarcinoma (LUAD), lung
squamous cell carcinoma(LUSC), breast invasive carcinoma (BRCA), bladder
urothelialcarcinoma (BLCA), colon adenocarcinorma (COAD), kidney renal
clear cell carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
prostate adenocarcinoma (PRAD), esophageal carcinoma (ESCA),liver
hepotocellular carcinoma (LIHC), thyroid carcinoma (THCA),uterine corpus
endometrial carcinoma (UCEC), head and neck squamous cell carcinoma
(HNSC). All the 450 K array data were quantile normalized.
In calculating the ratio of hyper/hypo-methylated CpGs of the tumor and

normal samples, the methylation value(ranging from 0(totally unmethy-
lated) to 1(totally methylated)) larger than 0.7 was defined as hyper-
methylation, and the value less than 0.3 was defined as hypo-methylation.
For comparison, the ratios of hyper/hypo-methylated CpGs of WGBS data
of lung cancers were calculated.

Identification of triple-evidenced genes in cancers
We compared the methylation levels of each CpG between tumor samples
and the corresponding normal sample data, and defined a CpG site to be
differentially methylated (DML) if the q-value of t-test < 0.05 and the
absolute difference of methylation value > 0.1. We considered genes
whose promoters contain any CpG covered by the original or the
expanded methylation data. To identify the genes differentially methylated
in each cancer, the methylation status of all the CpG sites covered in
promoters were considered. For each promoter, the Fisher’s combined test
was used to get the q-value to evaluate whether a gene is differentially
methylated. Similar to call DMLs, genes with q-value < 0.05 and mean
difference of DNA methylation >0.1 were selected as differentially
methylated genes (DMGs).
The RNA-seq data were downloaded for the cancers listed in Table S7

from TCGA. The sample sizes are also shown in Table S7. The gene
expression data were log2-transformed and normalized. Differentially
expressed genes (DEGs) were defined if the fold change >2 and the q-
value of t-test is <0.05.
To collect genes with mutation related to the 13 cancers, we

downloaded the somatic mutation level 2 data from TCGA. For each
cancer, a gene that was annotated with curated somatic mutation in TCGA

was considered. We extracted the gene lists with somatic mutation of all
the 13 cancers for integrative analysis.

Diagnostic and prognostic analysis
To search for common features in pan-cancer analysis, all the 13 cancer
samples and normal samples were combined together, respectively. A
random forest model was constructed using cross validation. In each of the
cross validation, the cancer and normal samples of 10 cancers were
randomly selected for model training, and the remaining samples of three
cancers were used for test. The cross validation was repeated for 100 times.
We chose the triple-evidenced genes that appear in more than half of the
10 training cancer types as the candidate genes. Their associated gene
expression and DNA methylation levels of individual CpGs in the
promoters of the selected genes in the expanded data were used as
input features; Both of the gene expression and the methylation levels of
CpGs in the promoters were candidate features for feature selection with
LASSO.
To indicate whether these potential common features also reflect some

differences between the cancers, a multi-class regression model was
constructed with the tumor samples of the 13 cancers. The candidate
features were the combination of all the features selected in any of the 100
cross validations in the above diagnosis analysis. The gene expression and
the methylation levels of promoter CpGs were further selected using
LASSO.
In the prognostic analysis, the PRAD and THCA were not analyzed due to

their limited samples with the expression, methylation, and survival data.
The sample sizes of the 11 tumors are listed in Table S8. For each of the
remaining 11 tumors, both of the expression levels and DNA methylation
levels of CpGs in the promoter regions were included for variable selection
with LASSO Cox proportional hazards regression model, and the
concordances in the 10-fold cross validations were compared for
prognostic power.

Reporting Summary
Further information on experimental design is available in the Nature
Research Reporting Summary linked to this article.
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