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Trait-based community assembly and succession
of the infant gut microbiome

John Guittar® !, Ashley Shade® 23 & Elena Litchman'#

The human gut microbiome develops over early childhood and aids in food digestion and
immunomodulation, but the mechanisms driving its development remain elusive. Here we
use data curated from literature and online repositories to examine trait-based patterns of gut
microbiome succession in 56 infants over their first three years of life. We also develop a new
phylogeny-based approach of inferring trait values that can extend readily to other microbial
systems and questions. Trait-based patterns suggest that infant gut succession begins with a
functionally variable cohort of taxa, adept at proliferating rapidly within hosts, which gradually
matures into a more functionally uniform cohort of taxa adapted to thrive in the anoxic gut
and disperse between anoxic patches as oxygen-tolerant spores. Trait-based composition
stabilizes after the first year, while taxonomic turnover continues unabated, suggesting
functional redundancy in the traits examined. Trait-based approaches powerfully complement
taxonomy-based approaches to understanding the mechanisms of microbial community
assembly and succession.

TKellogg Biological Station, Michigan State University, 3700 E Gull Lake Dr., Hickory Corners, Ml 49060, USA. 2 Department of Microbiology and Molecular
Genetics, Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48840, USA. 3 Program in Ecology, Evolutionary
Biology and Behavior, Michigan State University, East Lansing, MI 48840, USA. 4 Department of Integrative Biology, Michigan State University, East Lansing,
MI 48824, USA. Correspondence and requests for materials should be addressed to J.G. (email: guittarj@msu.edu)

| (2019) 10:512 | https://doi.org/10.1038/s41467-019-08377-w | www.nature.com/naturecommunications 1


http://orcid.org/0000-0002-8897-8841
http://orcid.org/0000-0002-8897-8841
http://orcid.org/0000-0002-8897-8841
http://orcid.org/0000-0002-8897-8841
http://orcid.org/0000-0002-8897-8841
http://orcid.org/0000-0002-7189-3067
http://orcid.org/0000-0002-7189-3067
http://orcid.org/0000-0002-7189-3067
http://orcid.org/0000-0002-7189-3067
http://orcid.org/0000-0002-7189-3067
mailto:guittarj@msu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

lassical ecological theory posits that successional patterns

arise from the combined influence of dispersal, species

interactions, and the environment!’2, and this general
framework extends readily to gut communities>. Before a microbe
can inhabit the colon, the most distal and speciose part of the
gastrointestinal tract, it must first be swallowed by the host and
survive the acidic conditions of the stomach and small intestine
(i.e., it must disperse). A species will persist in the colon only if it
can acquire enough resources to reproduce (i.e., it must be
competitive) or arrive there in high enough numbers to sustain a
population®. Microbial colonists may then alter the environment,
e.g., by depleting intestinal oxygen® or providing opportunities
for cross-feeding®, favoring taxa with different phenotypes as
succession proceeds.

Yet successional patterns in the gut may differ from classical
successional expectations due to the active influence of the host
and the host mother”8. Early colonists are passed directly from
the mother during or even before birth?, and therefore may lack
characteristics that would otherwise facilitate early arrival, e.g., via
active dispersal, and instead have characteristics selected for in
the mother’s gut or vaginal environment. Following birth,
mothers supply bacterial growth factors in breast milk and con-
tinue to introduce new taxa through physical contact!?. Mean-
while, the maturing infant is beginning to suppress undesirable
taxa through immune response!l, and actively cultivate com-
mensal taxa by providing nitrogen-rich mucus and favorable
habitat in the outer mucus layer of the large intestine!?. Gut
community composition is also affected by the introduction of
solid food!3, in particular with the introduction of insoluble
fiber!4.

One approach to determining the relative influence of different
mechanisms of community assembly is to examine patterns in
trait-based community composition!®>. A trait is commonly
defined as a measurable organismal characteristic directly or
indirectly linked to fitness or performancel®. As such, observable
shifts in the trait-based composition of a community imply shifts
in local environmental conditions favoring different species and/
or dispersal limitation (i.e., when a taxon does not colonize a site
because it does not arrive). Despite the success and proliferation
of trait-based approaches to study community assembly in
plant!7-18, animal!®20, and phytoplankton systems2!, they have
only rarely been used for bacterial and archaeal systems2>23. This
is due partly to the challenges of identifying ecologically relevant
traits for a functionally diverse cohort of taxa, and partly to a
dearth of curated trait data. But thanks to recent advances in
high-throughput molecular techniques, renewed efforts to
directly collect phenotypic data?4, and the aggregation of data
from disparate sources2>20, trait-based approaches to microbial
community dynamics are becoming more feasible, especially for
well-studied systems like the human gut.

Here, we examine trait-based successional patterns in a cohort
of 56 infants from Finland and Estonia for which longitudinal
microbiome survey data were publicly available2”28, We develop
a unique approach to inferring microbial trait data, which entails
(1) building a phylogeny that contains the taxa from infant gut
samples and 13,900 other taxa with formally described type
specimens and Latin binomials?®, (2) using the Latin binomials to
map trait data curated from literature and online repositories
onto the tips of the phylogeny, and (3) inferring unknown trait
values using hidden state prediction. We then compare taxo-
nomic and trait-based community turnover in time (i.e., over
infant development) and space (i.e., across infants) to gain insight
into the mechanisms driving successional patterns. We show
significant trends in predicted traits over the first year of infant
development, during which time oxygen-tolerant taxa and fla-
gellated taxa become less abundant, and slower-growing taxa (i.e.,

taxa with fewer 16S rRNA gene copies) and sporulating taxa
become more abundant. Intriguingly, during this time, micro-
biomes become more similar across infants in both taxonomic
and trait-based compositions. Taxonomic turnover continues
after the first year, but is largely redundant with respect to the
traits examined. The trait-based patterns in our analysis suggest
that succession begins with a functionally variable cohort of early
arrivers, adept at proliferating rapidly within hosts, which gra-
dually matures into a more functionally uniform cohort of taxa
able to both thrive in the anoxic gut environment and disperse
between anoxic patches (e.g., guts) as oxygen-tolerant spores.

Results

Trait-based patterns of succession. We observed consistent
taxonomic and trait-based shifts in infant gut microbiomes during
the first 3 years of infant life (Fig. 1, Fig. 2). With respect to
taxonomic composition, early succession was dominated by Bac-
teroidaceae and Bifidobacteriaceae (Fig. la, b), whereas late suc-
cession was dominated by Lachnospiraceae, Ruminococcaceae,
and (still) Bacteroidaceae (Fig. le,f). About three-fourths of the
operational taxonomic units (OTUs) in this study, defined using a
threshold of 97% sequence similarity in the 16S rRNA V4 region,
exhibited significant positive or negative trends in abundance over
succession across all infants, based on linear regressions. The
extensive number of significant trends emphasizes the tax-
onomically predictable nature of gut microbiome development. To
evaluate trait-based shifts over development, we combine curated
trait data and hidden state predictions to generate a custom
database of 12 microbial traits for the OTUs in the infant
microbiome samples (see Methods). Early and late successional
specialists differed significantly in their predicted trait values: late
successional specialists were less tolerant of oxygen, were more
capable of sporulation, and had higher temperature optima than
early successional specialists (Supplementary Figure 1).

Community weighted means (CWMs) of several traits trended
significantly over the course of succession (Fig. 2), illustrating the
functionally predictable nature of gut microbiome development3(.
A CWM is the mean trait value of the OTUs in a community,
weighted by their relative abundances. Ecologically speaking,
CWNMs characterize the dominant traits of a community, and can
be thought of both in terms of how they reflect system properties
(i.e., as response traits) and how they influence system properties
(ie., as effect traits)3!. For example, oxygen-tolerant taxa (e.g.,
facultative anaerobes) present at the onset of succession were
rapidly overtaken by obligate anaerobes (Fig. 2i), presumably in
response to a drop in gut oxygen concentration due to increased
uptake by epithelial cells2, Meanwhile, the mean number of B-
vitamin pathways in OTU genomes decreased over time (Fig. 2b),
contradicting our expectation that human hosts would selectively
enrich such taxa over the course of succession to promote the
production of these essential nutrients.

Pronounced shifts in the predicted values of two traits
potentially related to dispersal ability suggest that dispersal
dynamics may play a key role in shaping successional patterns.
First, the initial presence and subsequent decline of taxa likely to
have flagella (Fig. 2h) could mean that the ability to actively
disperse over short distances (i.e., spread within hosts) improves
colonization rates during early succession, but that flagella are not
as advantageous in the mature gut. In support of this,
unflagellated strains have been shown to be poorer colonizers
of chickens’ gastrointestinal tracts than flagellated strains3, and a
positive relationship has been drawn between motility and
bacterial transmission®*. Second, the increase over time in
predicted sporulating ability (Fig. 2j, Supplementary Figure 3)
may reflect the long-term advantages of being able to disperse
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Fig. 1 OTU abundances over gut succession. OTUs were placed into one of three successional groups based on their average trends in abundance
across 56 infants over development. Taxa were categorized as early successional if their abundances increased significantly over time (p < 0.05), and late
successional if their abundances decreased significantly over time, based on linear regressions; OTUs that did not trend significantly over time were placed
into a mid-successional or no-trend category. a, ¢, and e Combined relative abundances of the OTUs of each successional category over time. b, d, and
f The five most commonly-represented families among the OTUs of each successional category, and their total relative abundances over the entire

sampling period

among hosts and/or persist within hosts in a dormant state
during stressful conditions®»3>. As succession proceeds and the
gut environment becomes increasingly anoxic, obligate anaerobes
gain a competitive advantage over facultative anaerobes because
they do not need to maintain the machinery for tolerating
oxidative stress. However, this advantage comes at the cost of
being more vulnerable to oxidative stress while dispersing
through oxic environments to colonize new hosts. Sporulating
taxa circumvent this potential tradeoff by traversing oxic
environments as oxygen-tolerant spores, and then thriving in
the gut as anaerobes. The observed increase of sporulating taxa
over gut community development, both in total abundance
(Fig. 2j) and OTU richness (Supplementary Figure 3), likely
reflects the steady arrival and successful colonization of these taxa
well-adapted for the anoxic gut environment.

The mean predicted number of 16S rRNA gene copies, a
genomic trait associated with the ability to quickly exploit
available resources due to higher maximum potential growth
rates®®, decreased steadily in gut microbiomes over time (Fig. 2a).
A decrease in mean 16S rRNA gene copy number over time is
characteristic of primary succession in microbial systems that are
initially rich in resources8, such as a vial of sterile nutrient broth
placed in an open-air environment3’. However, a decrease in
mean 16S rRNA gene copy number could also arise if faster-
growing taxa thrive on easily-digested milk or formula, the
primary carbon source during early succession, and slower-
growing taxa only begin to thrive as the primary carbon source
shifts toward increasingly complex molecules derived from solid

food. In either case, the decrease in mean 16S rRNA gene copy
number over time likely reflects a shift from taxa capable of rapid
low-efficiency growth to slower high-efficiency growth over
succession?3-38,

Many predicted traits correlated significantly among taxa
(Supplementary Figure 2). The strongest positive correlations
were between gene number and genome size, genome size and
B-vitamin pathway number, and sporulation and Gram-
positive status, while the strongest negative correlations were
between optimal growth temperature and oxygen tolerance,
Gram-positive status and B-vitamin pathway number, and GC
content and 16S rRNA gene copy number. The remaining
Pearson correlation coefficients were less than 0.6 or greater
than —0.6. On one hand, correlations among traits are
noteworthy because they may be independent indicators of a
taxon’s position on the same ecological tradeoff axis (i.e., they
may constitute a trait syndrome). For example, the negative
correlation observed between sporulation score and oxygen
tolerance may be because these traits provide two alternative
methods of dealing with oxidative stress, either by becoming
metabolically dormant until oxidative stress is relaxed, or by
carrying the cellular machinery to tolerate it, respectively. On
the other hand, correlations among traits may simply be
artifacts of arbitrary genomic linkage, and not independent
instances of evolutionary adaptation. As such, the mechanisms
we invoke as possible explanations for the trait-based patterns
observed in this study are merely hypotheses which hopefully
spur further experimental work.
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Fig. 2 Abundance-weighted trait means over gut succession. Filled red circles show average abundance-weighted means of predicted trait values of gut
microbiomes of up to 56 infants in each month of development (a-I). N is equal to the number of samples in each month, and ranges from 27 to 59.
Vertical red lines show 95% confidence intervals. Black trendlines were fit using generalized additive models

To explore how early arrival of different taxa could affect the
trajectory of gut succession, we compared trait-based successional
patterns of infants delivered vaginally and by C-section (Fig. 3).
We reasoned that any consistent community differences between
the two groups of infants would likely arise due to differences in
early colonization, ie., because infants born vaginally were
initially colonized by taxa from the mother during delivery, and
infants born by C-section were initially colonized by a different
cohort of taxa arriving from the ambient environment (e.g., the
mother’s skin, hospital surfaces). Notable trait-based differences
between the microbiomes in C-section infants, relative to those in
vaginally delivered infants, were initially elevated numbers of
Gram-positive taxa (Fig. 3f), and prolonged persistence of
oxygen-tolerant taxa (Fig. 3i). There were also initially elevated
mean 16S rRNA gene copy numbers (Fig. 3a) and initially higher
prevalence of flagellated taxa (Fig. 3h) in C-section infants,
relative to vaginally born infants, but these differences were not
statistically significant after accounting for multiple comparisons.
At minimum, these results suggest that taxa encountered by
infants during vaginal delivery are functionally distinct from
those encountered by infants after C-section delivery in the

hospital environment. More interestingly, however, they suggest
that gut colonization patterns differ depending on the composi-
tion of the initial pool of colonizing taxa. Significant trait-based
compositional differences by birth mode persisted for up to 2
years (Fig. 3i), corroborating previous research showing that
differences in early colonization can have lasting effects on
community composition3>4%, a phenomenon also termed priority
effects*1#2. On the other hand, sustained trait-based differences
between infants by delivery mode are surprising, given recent
work that found strong selective forces to quickly discourage the
growth of immigrant taxa from the mother’s skin or birth canal;*3
hence, our findings suggest that the persistent differences by birth
mode may result from a lack of arrival (i.e., dispersal limitation)
of gut-adapted taxa from the mother, rather than qualitatively
different community filters among infants.

Exposure to antibiotics was associated with consistent trait-
based shifts in gut microbiome composition (Fig. 3). Specifically,
infants exposed to repeated antibiotic treatments had gut taxa
that were on average less likely to be Gram-positive (Fig. 3f),
smaller (Fig. 3g), and less capable of sporulation (Fig. 3j) than
infants exposed to no antibiotics. Decreases in the relative
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Fig. 3 Trait-based successional patterns differ by delivery mode and antibiotic history. Abundance-weighted means of predicted trait values of infant
microbiomes over succession, grouped by infant delivery mode and antibiotic history (a-I). Filled circles show average abundance-weighted trait means of
samples within 6-month periods in each cohort of infants. N is equal to the number of samples in each 6-month period; there were between 25 to 31 total
samples from six infants delivered by C-section who received little to no antibiotics ("C-section" group), 66-91 total samples from 18 infants who were
treated with antibiotics for at least 50 days ("Antibiotics" group), and 72-93 total samples from 18 control infants that were delivered vaginally and
received no antibiotics ("Control" group). Vertical lines show 95% confidence intervals. Asterisks denote significance based on Welch t tests performed
between each treatment group and the control group (*: adjusted p < 0.05; **: adjusted p < 0.01; ***: adjusted p < 0.001)

abundances of Gram-positive taxa over time is arguably expected
given that Gram-positive taxa lack the protective outer membrane
that make Gram-negative bacteria generally more resistant to
antibiotics*4. The drop in mean predicted sporulation score is less
expected, given that spores are generally very resistant to
antibiotics?*. However, spore formation is far from the only
mechanism of antibiotic tolerance in Bacteria, and other strategies
may be more effective for survival in the gut environment. For
instance, antibiotic treatments usually result in decreases in the
relative abundances of spore-forming taxa in the class Clostridia,
and increases in the relative abundances of non-spore-forming
taxa in the family Enterobacteriaceae32. More generally, con-
sistent with prior work?>, the persistent differences in trait-based
community composition between infants that underwent heavy
antibiotic treatments and those that did not suggests that these

disturbances can exert long-term effects on community structure
and function.

Trait variances within infant gut communities decreased over
time in seven traits, and increased over time only in three traits
(Supplementary Figure 4). The overall decrease in trait-based
variance over time indicates that individuals of the gut
community became more functionally homogeneous with respect
to the traits examined in this study, perhaps due to increasingly
strict environmental filtering processes*® and/or competitive
exclusion of poorly adapted taxa?.

Comparing taxonomic and trait-based successional patterns.
To evaluate the degree to which taxonomic changes aligned with
trait-based changes, we compared taxonomic and trait-based
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Fig. 4 Trait-based composition stabilizes earlier than taxonomic composition. Filled circles show mean pairwise compositional dissimilarities of gut
microbiome samples collected from individual infants, averaged within 6-month periods for each infant, and then across infants. OTU-based dissimilarity
was calculated using Bray-Curtis dissimilarity. Trait-based dissimilarity was calculated using multidimensional Euclidean distance after scaling the
distributions of values for each trait to ensure equal contribution. a Mean OTU-based dissimilarity between subsequent samples declines slightly over time.
b Mean OTU-based dissimilarity between samples and the final samples taken from each infant decreases steadily throughout the sampling period until
finally reaching baseline levels of between-sample dissimilarity in the last 6-month period, seen in a. ¢ Mean trait-based dissimilarity between subsequent
samples appears elevated in the first year, but does not differ significantly from null model predictions that assume trait-agnostic turnover (see Methods).
d Mean trait-based dissimilarity between samples and the final samples taken from each infant decreases rapidly and approaches baseline levels of
between-sample dissimilarity within the first year, seen in ¢. Moreover, trait-based community composition converges toward that of the final sample
significantly faster than null model expectations, illustrating the non-random nature of trait-based community turnover over succession. In all panels,

N equals 56, the number of infants. Vertical lines show 95% confidence intervals. Asterisks denote significance between observed and null model

predictions based on Welch t tests (*p < 0.05; **p < 0.01; ***p < 0.001)

turnover over time within infants, both in terms of short-term
compositional variability (measured as the dissimilarity between
subsequent samples) and long-term directional turnover (mea-
sured as the dissimilarity between each sample and the final
sample collected). Compositional variability was higher in the
first year of development, both in terms of OTUs (Fig. 4a) and
predicted traits (Fig. 4c), than in the second or third years of
development. A decrease in compositional variability over time is
a classical feature of many ecological successional systems*3. To
evaluate whether trait-based compositional variability was higher
or lower than expected by chance, given the magnitudes of
taxonomic variability observed, we compared observed patterns
to predictions from null model simulations for which trait values
were randomly shuffled among taxa and trait-based composi-
tional variability was re-calculated (see Methods). In other words,
we calculated what trait-based compositional variability would
look like if the traits in our study were completely decoupled from
taxon performance. Differences between observed and null
model predictions were neither large nor significant (Fig. 4c),
suggesting that the traits in our study had little influence on
compositional variability over succession.

An analysis of directional turnover over succession revealed
that infant gut communities matured and stabilized faster in their
trait-based compositions than in their OTU-based compositions.
Specifically, OTU-based directional turnover was relatively steady
across all 3 years of study (Fig. 4b), whereas trait-based
directional turnover was high only in the first year (Fig. 4d)
before dropping to nearly-baseline levels of trait-based composi-
tional variability (Fig. 4c). Trait-based directional turnover
significantly exceeded null model predictions of trait-agnostic
turnover (Fig. 4d), suggesting that infant gut microbiomes
stabilize (i.e., cease to exhibit directional turnover) in terms of
traits and their associated functions sooner than they stabilize in
terms of OTUs, aligning with previous metagenomic work3C. The
fact that OTU-based directional turnover continued steadily over
the first 3 years of infant development despite a relative slowing of
trait-based directional turnover after the first year indicates that
late-stage OTU-based turnover was functionally redundant with
respect to the traits examined in this study. Functionally
redundant turnover could arise due to variable immigration rates
(i.e, if functionally redundant taxa immigrated into the gut at
variable rates over time), or due to ecological drift (ie., if
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functionally redundant taxa increased or decreased in relative
abundances due to stochastic birth/death events). With respect to
the latter: even though the gut community has a large number of
individuals (i.e., cells), which, all else being equal, makes it less
susceptible to ecological drift*%, many of its constituent taxa are
rare and therefore still vulnerable to stochastic variation in their
relative population sizes over time. Future work should quantify
immigration rates, and consider other traits as potential drivers of
late-stage successional community turnover, such as those
relating to metabolism of specific dietary compounds®’, cross-
feeding®, or phage-host interactions’!.

Compositional differences across microbiomes. Surprisingly,
gut community compositions became more similar (ie., con-
verged) across infants as they matured (Fig. 5). This ran counter
to our expectations that gut community compositions would
diverge as infants shifted from subsisting on milk and/or formula
(i.e,, simple substrates with low resource variability expected
among hosts) to solid foods (i.e., complex substrates with higher
resource variability expected among hosts), and as interactions
between infants and their idiosyncratic home environments
accumulated over time. Compositional convergence across
infants over development may reflect a process whereby a sto-
chastic cohort of initial taxa colonize infant guts but are gradually
replaced, or supplemented with, taxa better suited for the gut
environment. Such initial compositional differences among
infants could be generated by stochastic colonization dynamics,
differences in the pool of potential immigrants from the infants’
mothers, or a combination of the both. Regardless, it is likely that
gut community convergence across infants over development is
partly due to the delayed arrival of taxa well-adapted for the gut
environment, i.e., dispersal limitation.

Compositional convergence among infant gut communities
was more pronounced and abrupt in terms of traits (Fig. 5b) than
in OTUs (Fig. 5a), which converged only slightly and gradually
over time. Trait-based rates of convergence significantly exceeded
null model expectations of trait-agnostic convergence (Fig. 5b),
indicating that trait-based convergence was not random with
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respect to the traits examined in this study. This discrepancy
between OTU-based and trait-based patterns of convergence
among infants leads to two insights. First, it is another reminder
that microbial communities with different OTU-based composi-
tions do not necessarily differ in their functional potentials3%>2.
Second, it means that community succession can be more
predictable with respect to traits than OTUs. Once again, these
results indicate that OTU-based turnover over late succession is
largely functionally redundant with respect to the traits examined.
Functional redundancy among gut microbiome taxa may benefit
the host by improving community resilience in response to
disturbance”3. Interestingly, mean compositional differences
among infants born by C-section were, on average, greater both
in terms of OTU-based and trait-based dissimilarity (Supple-
mentary Figure 5). Such differences could arise if the taxa to
which C-section infants are initially exposed are more taxono-
mically and functionally variable than the taxa to which vaginally
delivered infants are exposed.

Discussion

As in the ecological studies of macroorganisms, trait-based ana-
lysis of gut microbiome succession offers insights into the
mechanisms of community assembly, such as dispersal limitation
and ecological filtering, and the balance between stochastic and
deterministic forces. The stabilization of trait-based community
composition after the first year of development (Fig. 4), and the
drop in variance of predicted trait values in gut communities for
most traits over time (Supplementary Figure 4), both suggest that
succession is at least partially functionally deterministic, with
early dynamics potentially reflecting stochastic colonization
during the birthing process, followed by the gradual colonization
and enrichment of a more functionally uniform cohort of taxa
better adapted for the mature gut environment. Rates of OTU-
based directional turnover remained steady over the first 3 years
of succession (Fig. 4b), even though trait-based directional
turnover essentially stabilized after only 1 year (Fig. 4d), under-
scoring the fact that OTU-based compositional changes need not
imply changes in trait-based composition>*. However, there are

Trait-based dissimilarity
among infants

3 9 15 21 27 33
Months after birth

+ Observed ¢> Null model

Fig. 5 Infants’ microbiomes converge compositionally over time. Filled circles show mean compositional dissimilarities of gut microbiomes across infants
within each 6-month periods. Mean dissimilarities were calculated by first taking the mean dissimilarity of all sample pairs, except those from the same
infant, in each of the first 36 months of development (for these means, N ranges from 88 to 3410), and then taking their means within each 6-month
period; hence, for each circle, N equals 6. OTU-based dissimilarity was calculated using Bray-Curtis dissimilarity. Trait-based dissimilarity was calculated
using multidimensional Euclidean distance after scaling the distributions of values for each trait to ensure equal contribution. a OTU-based dissimilarity
among infants decreased slightly over time, indicating a modest convergence in taxonomic composition. b Trait-based dissimilarity among infants fell
quickly over the first 18 months and then remained relatively static thereafter, indicating rapid convergence in trait-based composition during early
succession. The magnitude of trait-based compositional convergence across infants was significantly greater than predicted by a null model assuming trait-
agnostic turnover. Vertical lines show 95% confidence intervals. Asterisks denote significance between observed and null model predictions based on

Welch t tests (*p<0.05; **p<0.01; ***p<0.001)
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surely aspects of community assembly that cannot be understood
using only the traits used in this study, and future work should
expand the number of traits considered. Moreover, because our
study is observational, we cannot distinguish between an OTU
that fails to disperse to a potential host and an OTU that arrives
but fails to establish, so future research should also explore the
relationship between OTU arrival and detection in fecal samples
to better disentangle dispersal limitation and niched-based dif-
ferences among taxa.

Comparisons of trait-based patterns between cohorts of infants
are an opportunity to understand the effects of specific events
(e.g., delivery mode, antibiotic exposure), and serve as natural
experiments that can reveal how gut communities respond to,
and recover from, systematic disturbances. In our analysis, for
example, delivery mode resulted in sustained differences in
community composition, indicating that priority effects can play
an important role in gut community assembly*142, a result that
likely extends to other types of disturbance during early life, such
as gastrointestinal illness or malnutrition. Similarly, repeated
antibiotics treatments led to significant differences in trait-based
community compositions (Fig. 3), suggesting that gut commu-
nities are not infinitely functionally resistant and/or that tradeoffs
exist between antibiotic resistance and other traits®2. Under-
standing trait-based differences between other cohorts, such as
healthy versus diseased>, or on and off specific diets®®, could
provide insight into additional factors shaping gut microbiome
community assembly. For example, the unhealthy, dysbiotic gut
may have a higher prevalence of microaerobic and biofilm-
forming species®’, a difference that could be detected using trait-
based analyses. Trait-based approaches, which link organismal
structures to ecological functions, are poised to advance our
mechanistic understanding of the gut microbiome, and their
usefulness will only increase as we improve our knowledge of how
traits mediate microbial interactions and as we increase the depth
and breadth of microbial trait databases.

Methods

Infant microbiome sampling and sequence processing. Our foremost aim in this
study was to characterize general patterns of gut primary succession that hold true
regardless of host-related differences. As such, unless otherwise noted, we include
all infants in our analyses, regardless of delivery mode or other host differences
specific to each included study. Longitudinal infant gut microbiome data were
compiled from two studies from the DIABIMMUNE study group (https://pubs.
broadinstitute.org/diabimmune), one focused on the effects of antibiotics on gut
community development?3, and the other focused on the effects of type-1 diabetes
on gut community development?’. In the antibiotics study, infants either had nine
or more antibiotic on gut community development courses, or no antibiotic
courses?8. In the type-1 diabetes study, infants tested positive for HLA DR-DQ
alleles conferring risk of type-1 diabetes; of the infants which met our sampling
criteria (see below), three developed type-1 diabetes during the sampling period®”.

Stool samples of infants were collected by participants’ parents and stored in
their house freezers until the next scheduled visit to the local study center. Samples
were then shipped on dry ice to the DIABIMMUNE Core Laboratory, where they
were stored at —80 °C until being sent to the Broad Institute for DNA extraction
and 16S rRNA amplicon sequencing. Sequencing was performed on the Illumina
HiSeq 2500 platform using the 515 F and 806 R primers. Of 74 infants across the
two studies, only those with at least 12 samples and those which extended more
than 30 months were used in this study, yielding 56 infants with 12-36 sampling
points (mean = 26.45; median = 27) taken at semi-regular intervals over the first 3
years of infant life (Supplementary Figure 6). All subjects were from Finland,
except one from Estonia.

Infants varied in their modes of delivery and antibiotic histories, providing an
opportunity to explore the potential effects of these natural experiments on trait-
based gut community composition. To this end, infants were divided into three
groups: (1) high antibiotic exposure (n = 18), if they underwent at least 50 days of
antibiotic treatment and were delivered vaginally, (2) C-section delivery (n = 6), if
they were delivered by C-section and underwent two or fewer rounds of antibiotics,
and (3) a control group that was delivered vaginally and received no antibiotic
treatments (n = 18). In some instances, antibiotic treatment durations were not
reported, in which case we assumed 7 days per treatment. Twelve types of
antibiotics were administered for a variety of ailments, with the most common
being amoxicillin, trimethoprim, and sulfadiazine aimed at treating acute ear

infections. Infant metadata, drawn from the two studies from which sequence data
for this study are drawn?7-28, is available in Supplementary Data 1.

Sequence processing was done using USEARCH version 10.0.240°8. Raw
sequencing data were downloaded from the DIABIMMUNE website https://pubs.
broadinstitute.org/diabimmune/. Chimeras and reads flagged with more than one
error were excluded, and the remaining reads were truncated to 250 bp, the
expected overlap when using 515 F and 806 R primers. Reads were clustered into
OTUs at 97% sequence identity using the UPARSE-OTU algorithm
(Supplementary Data 2). Representative sequences from each OTU were mapped
to the SILVA v123 database® to determine potential taxonomic identities
(Supplementary Data 3). To avoid bias in sampling effort, samples were rarefied to
5,000 sequences, and seven samples with fewer than 5000 sequences were removed.

Assembling trait data. We compiled data on 16 genomic, physiological, and life
history traits of bacteria from public databases and individual studies (Table 1,
Supplementary Data 4). Trait data were only included if they were explicitly
associated with taxa with full Latin binomials (i.e., Genus and Species labels) and
also appeared either in our SILVA-derived taxonomy file for the combined gut
community samples or in the curated taxonomy file from the 132 release of the
Living Tree Project?®. Altogether, these amounted to 57,543 collected trait data
spread across 10,906 taxa. When a taxon had more than one trait value, the mean
or mode was used, depending on whether the trait was quantified continuously or
discretely.

Descriptions and data sources for each trait are listed briefly in Table 1, but here
we elaborate with a few additional details: (1) the numbers of B-vitamin synthesis
pathways in the genome were drawn from ref. ° and are based on genome
annotations from the pubSEED platform®!. (2) In some cases, optimal temperature
was calculated as the mean of lower and upper temperature ranges, consistent with
ref. 26, (3) IgA binding affinity refers to the degree that immunoglobulin A bound
to specific bacterial taxa, and was quantified using an IgA coating index calculated
in ref. 62 using flow-cytometry-based bacterial cell sorting and 16S rRNA
sequencing to characterize the coating load of IgA on specific taxa from fecal
samples in a murine model. (4) Sporulation score indicates the tendency of taxa to
sporulate, and was calculated in ref. 24 as a continuous score ranging from zero to
one that depended on a combination of targeted phenotypic culturing and whole-
genome sequencing from stool samples. When possible, we used sporulation scores
from ref. 2. When sporulation scores from ref. 24 were unavailable for a given
Latin binomial, we drew on sporulation data from other repositories (Table 1),
which were generally binary, either noting the presence or absence of spores; in
cases when spores were present, taxa were given sporulation scores of 0.549, equal
to the median sporulation score of the taxa with sporulation scores greater than
zero in ref. 2% when spores were not observed, taxa were given sporulation scores of
zZero.

Predicting unknown trait data. We estimated unknown trait data using hidden
state prediction methods based on phylogenetic inference (Supplementary Data 5).
Specifically, we generated a phylogenetic tree with the 3311 OTUs from our
USEARCH pipeline (before any taxa were lost due to rarefying) and the 13,900
OTUs from the 132 release of the Living Tree Project (LTP)? (Supplementary
Figure 7; Supplementary Data 6). The topology of the tree reflects percent sequence
similarity among taxa in the 16S rRNA V4 region, and was generated using
agglomerative clustering of a distance matrix based on the U-sort heuristic>.
Because LTP representative sequences were of the entire 16S rRNA gene (i.e., the
ribosomal small subunit), they were truncated to the 250 bp of the V4 region using
515 F and 806 R primer sequences before generating the distance matrix. Trait data
were then mapped onto the tips of the phylogenetic tree with Latin binomials. The
LTP database was uniquely well-suited to interface with literature-derived trait data
because each sequence represents a type strain with Genus and Species annotations
drawn from the literature, not inferred phylogenetically.

Missing trait values were estimated using three hidden state prediction
algorithms: independent contrasts, subtree averaging, and weighted squared-
change parsimony, each calculated using the R package Castor version 1.3.4%%. The
three methods have different strengths and weaknesses®>%4, but their predictions
correlated strongly (Supplementary Table 1), lending confidence to our results. We
ultimately used weighted square-change parsimony for our analysis, which
recursively calculates locally parsimonious states for each node based on its
descending subtree, until reaching a parsimonious state estimate for the tree root®.
Because all curated trait data were either numeric or converted to numeric (e.g.,
Gram-negative = 0 and Gram-positive = 1), state predictions for discrete traits
could be fractional (e.g., a Gram-positive score of 0.5), reflecting their probabilistic
uncertainty.

Methods of hidden state prediction offer estimates for all taxa with hidden
states, even when there is not sufficient confidence to warrant estimation. To
mitigate this, we discarded predictions that were statistically no better than
random. More specifically, for each trait, we first pruned the full phylogenetic tree
so that only OTUs (i.e., tree tips) with direct trait observations remained. Next, we
calculated differences in trait values for up to 10,000 randomly selected OTU pairs
within each 0.005 increment of phylogenetic distance (i.e., percent 16S rRNA
V4 sequence similarity). Five generic models were then used to predict average trait
differences between OTU pairs, |y|, as a function of phylogenetic distance, x, and
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Table 1 Sources of trait data gathered in this study

Salt optimum
Sporulation score
Temperature optimum °C
Width log (pm)

g per |

Trait Description/units Sources

Aggregation score 0 (never) to 1 (observed aggregation) BacDive2>; 1JSEM26

B vitamins No. B-vitamin pathways in genome Ref. 60

16S gene copies No. in 16S rRNA gene copies in genome rrnDB68

GC content Percent guanine and cytosine in genome 1JSEM26; NCBI9

Gene number No. genes in genome NCBI6?

Genome size Genome size in megabases NCBI69

Gram-positive 0 (Gram-negative) to 1 (Gram-positive) BacDive25; GOLD’9; [JSEM26
IgA binding affinity log ([IgA+1/[IgA-1+ 1D Ref. 62

Length log (pm)

Motility 0 (never motile) to 1 (always motile)
Oxygen tolerance 0 (obligate anaerobe) to 5 (obligate aerobe)
pH optimum pH

0 (never sporulates) to 1 (sporulates easily)

BacDive2>; GOLD’9; [JSEM26
BacDive25; GOLD70; |JSEM26
BacDive2>; GOLD’9; [JSEM26
GOLD79; |JSEM26

|JSEM26

BacDive?>; GOLD0; [JSEM26; ref. 24
|JSEM26

BacDive; GOLD70; [JSEM26

IgA: immunoglobulin A, BacDive: bacterial diversity metadatabase, IJSEM: International Journal of Systematic and Evolutionary Microbiology, GOLD: Genomes OnLine Database: Joint Genome Institute,
NCBI: National Center for Biotechnology Information, rrnDB: the ribosomal RNA operon copy number database

the best fitting model was selected by AIC. The models included: (1) Null: |y| ~ 1;
(2) Linear regression: |y| ~ x; (3) Logarithmic regression: |y| ~ log(x); (4)
Asymptotic regression: |y| ~ a(1 — e("¢'*)), where a and b were determined using a
self-starting nonlinear least squares approach, and the model fit was constrained to
pass through the origin; and (5) Logistic regression: |y| ~ — > where a, b, and ¢
were determined using a self-starting nonlinear least squares approach. Null
models provided the best fit for aggregation score, IgA binding affinity, pH
optimum, and salt optimum, indicating that for these traits, trait values should not
be estimated at any phylogenetic distance. For the remaining 12 traits, we identified
the phylogenetic distances at which the values of each trait were no longer
evolutionarily conserved, i.e., when model-predicted trait differences between OTU
pairs were no different than null expectations. We defined null expectations as the
mean trait difference of all OTU pairs with more than 0.1 phylogenetic distance
between them. We only predicted traits of OTUs when there were taxa with known
(i.e., literature-derived) trait values within trait-specific thresholds of phylogenetic
distance; we defined these thresholds as the points at which model predictions rose
to 90% of null expectations (Table 2; refer to Supplementary Figure 8 for a
graphical rendering of the approach). Of the traits that were amenable to hidden
state prediction, coverage ranged from 78.7% (16S rRNA gene copy number) to
99.9% (temperature optimum) of sequences used in this study (Supplementary
Figure 9). We assessed statistical independence among traits predictions using
Pearson correlation coefficients; p-values were adjusted for multiple comparisons
using the Benjamini-Hochberg procedure.

Trait-based successional patterns within and across infants. Trait-based suc-
cessional patterns were evaluated at both the OTU-level and the community level
(i.e., on the level of individual samples). For the OTU-level analysis, OTUs were
placed into one of three groups based on results of linear models of OTU abun-
dances over time across all infants: OTUs with significant negative trends in
abundance over time (p < 0.05, $<0) were categorized as early successional; OTUs
with significant positive trends in abundance over time (p < 0.05, 8 > 0) were
categorized as late successional; otherwise, taxa were placed into a third category
that included OTUs with sporadic, unvarying, or hump-shaped patterns of
abundance over time. Statistical differences in the predicted trait values of OTUs in
the three groups were evaluated with Welch ¢ tests; p-values were adjusted for
multiple comparisons using the Benjamini-Hochberg procedure.

Trait-based differences at the community level were quantified using CWMs. A
CWM is the mean trait value of the OTUs in a community, weighted by their
relative abundances. Here, a CWM is formally equal to Z?Zl pix;» where p; is the
abundance of OTU i (i = 1, 2, ...S), and x; is the trait value for OTU i. We used
Welch ¢ tests to test for differences in CWMs between infants treated with and
without antibiotics, and infants delivered by C-section and vaginally, for each 6-
month period of infant development; p-values were adjusted for multiple
comparisons using the Benjamini-Hochberg procedure.

Comparison of taxonomic and trait-based turnover. We quantified differences
in microbiome community compositions in two ways. First, we used Bray—Curtis
dissimilarity to quantify differences in the OTU-based compositions of samples®®.
Second, we quantified trait-based differences among communities with multi-
dimensional Euclidean distance®”. Specifically, Euclidean distance between two
communities was calculated by (1) scaling predicted trait values by their standard

Table 2 Maximum phylogenetic distances used to infer trait
values

Trait Max. distance
Aggregation score 0.00

B vitamins 0.06

16S gene copies 0.05

GC content 0.12

Gene number 0.08

Genome size 0.09

Gram-positive 0.10

IgA binding affinity 0.00

Length 0.12

Motility 0.08

Oxygen tolerance 0on

pH optimum 0.00

Salt optimum 0.00

Sporulation score 0.06

Temperature optimum 0.14

Width 0.12

Percent sequence dissimilarities (i.e., phylogenetic distances) in the 16S rRNA V4 region at
which statistical support for trait conservatism disappears for each trait (see Methods and
Supplementary Figure 9)

deviations to give each trait equal weight, (2) calculating the CWM:s of each trait
for both communities, and then (3) using the Pythagorean theorem to determine
the distance between the two communities in n-dimensional trait space.

We examined OTU-based and trait-based community changes over time in two
ways. First, to quantify changes in short-term compositional variability over infant
development, we examined compositional differences of subsequent samples from
the same infant, at intervals approximately between 1 to 3 months. Second, to
quantify rates of long-term directional turnover over infant development, we
examined compositional differences between samples and the final sample from
each infant. To determine whether trait-based rates of compositional variability
and directional turnover exceeded those expected by chance, we compared
observed rates of trait-based turnover to null models of trait-agnostic community
change. Specifically, we generated 1000 mock versions of our data with trait values
randomly shuffled among OTUs, and recalculating pairwise sample dissimilarities.
In other words, null models reflect what trait-based turnover would have been if
organismal traits were unrelated to performance. We tested for statistical
differences between observed and null turnover rates within 6-month periods using
Welch ¢ tests.

To determine if community composition converged or diverged across infants
as development progressed, we divided samples into 1-month slices and calculated
mean OTU-based and trait-based distances for all pairwise combinations of
samples, excluding pairs of samples from the same infant. To determine whether
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observed rates of trait-based compositional convergence/divergence across infants
differed from those expected by chance, we compared our observations to null
models of trait-agnostic community changes over time. Similar to our analysis of
trait-based turnover within infants, null models were performed by randomly
shuffling trait values among OTUs and recalculating pairwise sample
dissimilarities. We tested for statistical differences between observed and null
model rates of convergence within 6-month periods using Welch ¢ tests.

Data availability

Raw sequencing data are available online at the NCBI project accession numbers
PRJNA231909 and PRJNA290381. Custom scripts used in the bioinformatic
pipeline and statistical analyses are available at: https:/github.com/ShadeLab/
microbiome_trait_succession. All relevant data used in this study are included as
Supplementary Data files, available at: https://figshare.com/projects/Trait-
based_succession_of_the_infant_gut_microbiome/58202.
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