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Infections caused by Streptococcus pneumoniae—including inva-
sive pneumococcal diseases (IPDs)—remain a significant public
health concern worldwide. The marked winter seasonality of IPDs
is a striking, but still enigmatic aspect of pneumococcal epidemi-
ology in nontropical climates. Here we confronted age-structured
dynamic models of carriage transmission and disease with detailed
IPD incidence data to test a range of hypotheses about the com-
ponents and the mechanisms of pneumococcal seasonality. We
find that seasonal variations in climate, influenza-like illnesses,
and interindividual contacts jointly explain IPD seasonality. We
show that both the carriage acquisition rate and the invasion rate
vary seasonally, acting in concert to generate the marked season-
ality typical of IPDs. We also find evidence that influenza-like ill-
nesses increase the invasion rate in an age-specific manner, with a
more pronounced effect in the elderly than in other demographics.
Finally, we quantify the potential impact of seasonally timed in-
terventions, a type of control measures that exploit pneumococcal
seasonality to help reduce IPDs. Our findings shed light on the
epidemiology of pneumococcus and may have notable implica-
tions for the control of pneumococcal infections.
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The pneumococcus (Streptococcus pneumoniae) is a bacterium
that frequently colonizes the human nasopharynx, particu-

larly that of young children (1). Upon reaching other body sites,
the pneumococcus can cause a variety of conditions, ranging
from mild infections of the upper respiratory tract to severe in-
vasive pneumococcal diseases (IPDs) (1). Although widespread
immunization with conjugate vaccines has had a marked impact
in many populations (2), IPDs remain a substantial cause of
morbidity and mortality, especially in low-income countries (3).
Seasonality is a striking, but still enigmatic aspect of IPD epi-
demiology (4). In nontropical climates, IPDs typically display
regular, marked seasonal variations, with a zenith of cases during
winter and a nadir during summer (5–9). Previous work has ex-
amined candidate seasonal factors that could contribute to this
pattern, such as climate (6, 7, 10), cocirculating pathogens [e.g.,
influenza viruses (11, 12)], or variations of interindividual con-
tact rates (13). Nevertheless, our understanding of pneumococ-
cal seasonality remains fragmentary (4, 14). Elucidating the
drivers of pneumococcal seasonality could provide critical insight
into the mechanisms of transmission and carriage, which sub-
sequently lead to disease.
To bridge this gap, here, we analyzed detailed IPD surveil-

lance data in France, collected between 2000 and 2010, alongside
parallel data on climate, cocirculating influenza-like illnesses
(ILIs), and timing of school holidays. Using likelihood-based
inference and semimechanistic models of transmission, carriage,
and disease, we systematically explored a range of hypotheses
about the mechanisms and the components of pneumococcal
seasonality. We found that IPD seasonality was best explained by
an amalgam of all of the seasonal factors considered. Further-
more, we showed that both the invasion rate and the carriage

acquisition rate varied seasonally and acted in concert to pro-
duce the strong seasonality typical of IPDs. Finally, we assessed
the potential impact of seasonally timed interventions, which
exploit pneumococcal seasonality to help control IPDs.

Methods
Choice of Spatial Scale.Mainland France covers an area of about 550,000 km2,
with a latitude span of ∼9° and a longitude span of ∼13°. An oceanic climate
(Köppen–Geiger group Cfb) predominates, although Mediterranean cli-
mates (Köppen–Geiger groups Csa and Csb) are present in the southeast
regions. In a previous study based on IPD data in five regions spanning
mainland France (5), we did not find evidence of marked geographical dif-
ferences of IPD seasonality. Here, we therefore chose to work with country-
level data. In a sensitivity analysis, we nevertheless verified the robustness of
our results by carrying out model simulations at higher spatial resolution in
France (SI Appendix, Table S4) and in tropical climates (SI Appendix, Fig. S6).

IPD Data. The IPD incidence data were available from the Epibac network, a
nationwide, hospital voluntary-based sentinel surveillance system described
previously (5, 15, 16). An IPD case was defined by the isolation of S. pneu-
moniae or the detection of pneumococcal DNA by PCR in cerebrospinal fluid
(meningitis) or only in blood (nonmeningitis bacteremia). As shown in Fig.
1A, the data consisted of country-level, weekly time series of IPD cases from
wk 27/2000 to wk 26/2010 (522 wk overall), stratified into five epidemiologically
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relevant age groups: [0, 5), [5, 20), [20, 40), [40, 60), and 60+ y. We corrected for
underreporting by applying an observation model to model outputs (SI Ap-
pendix, Supplementary Methods).

ILI Data. ILI incidence data were available from the French Sentinelles net-
work, a nationwide surveillance system based on a sample of general
practitioners across France (17). An ILI case was defined clinically as sudden
onset of fever (≥39 °C), associated with myalgia and respiratory symptoms
(e.g., cough and sore throat). According to previous evidence, this specific
case definition makes ILI a good proxy for influenza infection (5). As for the
IPD data, the ILI data consisted of weekly, age-stratified time series of cases
during wk 27/2000 to wk 26/2010 (Fig. 1B). Correction factors were applied
to account for the age-specific pattern of health-seeking behavior observed
in France, in particular the high probability of consulting a physician for an
ILI infection in young children (SI Appendix, Table S1).

Meteorological Data.Daily meteorological records from nineweather stations
located near the most populated cities across France were provided by
Météo-France, the French national meteorological service. The following
variables were considered, based on previous associational evidence (6, 7,
10): daily average temperature (measured in degrees Celsius), hours of
sunshine, average relative humidity (in %), and average vapor pressure (a
measure of absolute humidity, measured in hPa). Before analysis, the data
were preprocessed in two steps. First, the data were averaged temporally
and spatially to create weekly time series representing the average climatic
conditions in mainland France. Second, because these variables were
markedly correlated, we conducted a principal component analysis to sum-
marize them (SI Appendix, Figs. S2 and S3). The first two components, dis-
played in Fig. 1C, captured about 97% of the variability and were used
instead of the individual meteorological variables in all of the analyses.

Interindividual Contact Data.Data on age-specific contact rates were available
from an empirical study of self-reported contacts in France (ref. 18 and SI
Appendix, Fig. S1), comparable to the POLYMOD study in other European
countries (19). The POLYMOD contact matrix from Great Britain was also
tested in a sensitivity analysis (SI Appendix, Fig. S7 and Table S5).

Demographic Data. Annual birth rates and age-specific annual population
estimates in France were available from the French National Institute of
Statistics and Economic Studies. The smoothed estimates were used to cal-
culate age-specific migration rates, so that the simulated population sizes
approximately equaled the observed population sizes (SI Appendix,
Supplementary Data).

Model and Hypotheses Formulation. To identify the mechanisms underlying
the seasonal variations of IPDs, we formulated an age-structured, semi-
mechanistic model of pneumococcal transmission, carriage, and subsequent
invasive disease (20, 21). A feature of this model was the inclusion of two

stages of carriage (early and late) to test the hypothesis that disease risk was
not uniform over the duration of carriage (22). To analyze pneumococcal
seasonality, the model further incorporated seasonal variations of ILIs (Fig.
1B), climate (Fig. 1C), and interindividual contact rates. The impact of ILIs was
modeled mechanistically, by means of a pneumococcus–ILI coinfection
model that integrated different mechanisms of interaction (21, 23). Specif-
ically, we examined three different hypotheses of interaction: an individual
carrying pneumococcus and infected with ILI was assumed (i) to contribute
more to pneumococcal transmission or (ii) to be at higher risk of contracting
an IPD; an individual not carrying pneumococcus but infected with ILI was
assumed (iii) to have a higher risk of acquiring pneumococcal carriage. In
contrast to ILIs, and in the absence of information to inform a fully mech-
anistic model, the impact of climate was modeled semimechanistically.
Specifically, we considered four meteorological variables identified in pre-
vious ecological studies (6, 7, 10), summarized—via a principal component
analysis (PCA)—by two principal components to bypass collinearity issues
(Fig. 1C). We then constructed a background seasonal function that in-
corporated these two components, in addition to annual and semiannual
harmonic terms representing a potentially unexplained seasonality. The
model also incorporated seasonal variations of contacts between school-
children, timed according to the calendar of summer and Christmas holidays
in France. Finally, we also considered a potential increase of contacts be-
tween children and the elderly during Christmas school holidays, a hypoth-
esis previously put forth to explain the early-winter peaks of IPDs (24). In
sum, our model incorporated most of the seasonal factors thought to con-
tribute to pneumococcal epidemiology.

Because pneumococcal carriage precedes disease, the seasonal variations
of IPDs can be ascribed to seasonality in the carriage acquisition rate or in the
rate of progression from carriage to disease, i.e., the invasion rate. To identify
the source of IPD seasonality, we formulated five hypotheses about the
seasonalities of the acquisition and the invasion rates. The first and second
hypotheses proposed that either the acquisition rate or the invasion rate
varied seasonally. The third hypothesis proposed that both rates varied
seasonally with a similar timing, but a possibly lower amplitude [e.g., as a
result of bacterial population bottlenecks during transmission (25)] for the
acquisition rate. The fourth hypothesis proposed that both the invasion and
the acquisition rates varied seasonally, but the latter rate as a result of
differences of contacts between school terms and school holidays in chil-
dren. Finally, the fifth hypothesis combined the third and the fourth
hypotheses.

Model Implementation and Estimation. The model was represented as a set of
deterministic differential equations, completed by a negative-binomial sto-
chastic observation model to correct for underreporting of IPD cases. To test
our different hypotheses about pneumococcal seasonality, we conducted
maximum likelihood estimation via trajectory matching using the R pomp
package (26). For every hypothesis, the estimation was completed in several
steps, starting from a broad search of parameter space, followed by a re-
fined search to pinpoint the maximum likelihood estimate. The convergence

60+ yr

[40,60) yr

[20,40) yr

[5,20) yr

[0,5) yr

2001 2004 2007 2010

2001 2004 2007 2010

2001 2004 2007 2010

2001 2004 2007 2010

2001 2004 2007 2010
0
5

10
15
20
25

0

5

10

15

0

10

20

30

0

20

40

60

0

50

100

150

200

Year

W
ee

kl
y 

no
 o

f I
P

D
s

60+ yr

[40,60) yr

[20,40) yr

[5,20) yr

[0,5) yr

2001 2004 2007 2010

2001 2004 2007 2010

2001 2004 2007 2010

2001 2004 2007 2010

2001 2004 2007 2010
0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

0.0
0.5
1.0
1.5
2.0

Year

W
ee

kl
y 

in
ci

de
nc

e 
of

 IL
Is

 (p
er

 1
00

)

Principal component 2

Principal component 1

2001 2004 2007 2010

2001 2004 2007 2010

−2

0

2

4

−2

0

2

4

Year

Va
lu

e 
(d

im
en

si
on

le
ss

)

Invasive pneumococcal diseases Influenza−like illnesses PCA−transformed climate dataA B C

Fig. 1. Time series of IPDs, ILIs, and climate in
mainland France, 2000/wk 27 to 2010/wk 26. (A)
Weekly number of IPDs in different age groups. For
visual clarity, the y axis values differ between panels.
(B) Weekly incidence (per 100 population) of ILIs in
different age groups. (C) Weekly values of climate.
The meteorological variables considered were the
average temperature, vapor pressure (a measure of
absolute humidity), relative humidity, and duration
of insolation. We here represent the values of the
first two components derived from a principal com-
ponent analysis (PCA); these two components cap-
tured about 97% of the variability and were used
instead of the individual variables in all of the anal-
yses (see SI Appendix, Supplementary Methods for
further details on the PCA).
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was checked by inspecting the sliced log-likelihood around every estimated
parameter. Finally, a parametric bootstrap was used to calculate approxi-
mate confidence intervals at the 95% level. The parsimony of competing
hypotheses was quantified using the Akaike Information Criterion (AIC).
Complete details are provided in SI Appendix, Supplementary Methods.

Results
Components of Pneumococcal Seasonality. The results regarding the
components of pneumococcal seasonality were unambiguous in
our study (SI Appendix, Table S2). Irrespective of the assumptions
about the seasonalities of the acquisition and the invasion rate,
models that incorporated climate at lag 1 wk and ILIs at lag 0 wk
received more support from the data (as judged by the AIC).
Irrespective of the assumptions about climate and ILIs, we also
found evidence that both the invasion rate and the acquisition rate
varied seasonally. Hence, the seasonality of IPDs was best
explained by a model that incorporated all of the seasonal drivers
and mechanisms considered. The nature of the interaction with
ILIs was also unequivocal in this model (SI Appendix, Table S3),
with strong evidence that ILIs increased the invasion risk, but not
the transmission risk (relative risk: 1.0 [1.0, 4.3]) nor the acqui-
sition risk (relative risk: 1.0 [1.0, 2.1]). Of note, the estimated
relative risk of invasion was higher in the elderly (relative risk:
146 [89, 188]) than in individuals aged <5 y (relative risk: 49 [30,
68]) or [5, 60) y (relative risk: 59 [40, 72]). Finally, this model also
estimated a large (7 [6–9]-fold) increase of contacts between
children and the elderly during Christmas and a disease risk
concentrated during early carriage (100 [73–100]% of disease
occurring during the first third of carriage duration).
To assess the ability of our best (i.e., with lowest AIC) model

to explain pneumococcal seasonality, we compared the data to
model simulations (SI Appendix, Fig. S5). This revealed an ex-
cellent model–data agreement (generalized R2 of 0.79), although
the model did not capture well IPD peaks around October in
children <5 y. To further assess the robustness of our results and
the predictive power of our models, we conducted three addi-
tional analyses. First, we simulated all of the models to compare
their predictions in five geographical regions spanning conti-
nental France (5). The results confirmed our main conclusions:
the models incorporating climate and ILIs, with seasonality in
both the invasion and the acquisition rates, provided a better fit
while retaining correct predictive power in every region (R2

ranging from 0.39 to 0.56, SI Appendix, Table S4). Second, we
refitted all of the models using a contact matrix derived from the
POLYMOD study in Great Britain (SI Appendix, Fig. S7). We
found our estimates to be almost unchanged in this case (SI
Appendix, Table S5). Third, we ran out-of-fit model predictions
using climatic data in Mae Sot, Thailand and in Sibanor, The
Gambia, both tropical locations (Köppen–Geiger group Aw)
with two marked—dry and rainy—seasons. We found our model
predictions to be qualitatively consistent with longitudinal car-
riage data in both locations (refs. 27 and 28 and SI Appendix, Fig.
S6). The robustness of our results to variations in fixed model
parameters, data resolution, and climatic conditions strengthens
the evidence for our conclusions regarding the components and
the mechanisms of pneumococcal seasonality.

Dissecting Pneumococcal Seasonality. According to the best mod-
el’s estimates, the background seasonal function included a
climate-associated component that gradually increased from
summer to winter and an unexplained component that displayed
a shallow trough during early summer and a peak in early November
(Fig. 2A, Top). As a result, the estimated invasion rate displayed
large-amplitude oscillations over the year (approximately ±40%
around the seasonal mean, Fig. 2A, Middle). Despite a similar sea-
sonal shape, the background seasonality in the acquisition rate dis-
played smaller-amplitude variations over the year (approximately
±10% around the seasonal mean, Fig. 2A, Bottom). In addition to
this background seasonality, the acquisition rate incorporated
seasonal variations of contact rates, resulting from reduced con-
tacts between schoolchildren during school holidays and increased

contacts between children and the elderly during Christmas holidays
(SI Appendix, Table S3). The overall effect of the seasonal ingre-
dients composing the acquisition rate is apparent in model simu-
lations of age-specific carriage prevalence (Fig. 2B). In schoolchildren,
the predicted carriage prevalence was stable during winter and spring;
it gradually decreased during summer holidays and reincreased from
school resumption until the end of the year. In contrast, carriage
prevalence was more uniform in adults, except for a marked, but
transient increase in the elderly during Christmas and the start of the
new year. This pattern of seasonal carriage prevalence, combined with
the seasonally varying invasion rate, resulted in large-amplitude vari-
ations of IPDs (Fig. 2C). Hence, our results demonstrated that both
the acquisition rate and the invasion rate varied seasonally and acted
in concert to produce the pronounced seasonality typical of IPDs.

Estimated Impact of ILIs and Climate. To further interpret our es-
timates, we computed the attributable fraction, a population-
level measure of impact (Fig. 3A). The large individual-level
effect of ILIs on the invasion risk translated into a pronounced
population-level effect during periods of peak ILI activity (me-
dian [IQR] attributable fraction: 0.15 [0.11, 0.18]), but a more
modest effect overall (median [IQR]: 0.07 [0.05, 0.08]). Notably,
the impact of ILIs on IPDs was estimated to vary with age, with a
peak in children aged [5, 20) y (median [IQR]: 0.13 [0.12, 0.14])
and a smaller effect in young children (median [IQR]: 0.06 [0.05,
0.07]) and the elderly (median [IQR]: 0.06 [0.04, 0.09]). In the
absence of evidence that ILIs affected either pneumococcal ac-
quisition or transmission, this age-specific effect was explained
by the changes of ILIs over age (Fig. 1B) and their age-specific
individual effect on invasion risk. We note, however, that an
intervention targeting ILIs in a given age group can reduce ILI
transmission in the population at large and may, therefore, still
induce indirect effects on IPDs in other age groups. Compared
with ILIs, climate had a more pronounced, but also more vari-
able impact (Fig. 3B). This impact changed gradually over the
season, resulting in more cases of IPDs during winter (median
[IQR] attributable fraction: 0.18 [0.11, 0.23]) and spring (at-
tributable fraction 0.16 [0.08, 0.23]), but fewer cases during
summer (preventive fraction −0.23 [−0.32, −0.14]) and fall
(preventive fraction −0.17 [−0.29, −0.08]).

Predicted Impact of a Seasonally Timed Intervention. In addition to
the hypothetical interventions targeted at ILIs or climate de-
scribed above, the seasonality in the carriage acquisition rate
suggests that reducing interindividual contacts at specific times
of the year might be an effective way to control IPDs. The suc-
cess of such an intervention, however, will hinge on the pattern
of age-specific contacts and the identification of core transmitter
age groups. To examine this, we performed numerical experi-
ments in which contacts from a target age group were reduced
(e.g., by enhancing barrier precautions, such as improving hand
hygiene or using protective masks) during a specific week of the
year, throughout the study period. The predicted effect of such
a seasonally timed intervention on young children and the
elderly—the two demographics most at risk for IPDs—is shown
in Fig. 3C. To control IPDs in young children (Fig. 3C, Top),
the predicted best strategy was to reduce the frequency of
same-age contacts during fall and winter. By contrast, targeting
other age groups was predicted to have much lower impact,
except for a transient effect of reducing contacts from the elderly
during Christmas holidays. A different picture emerged regarding
the control of IPDs in the elderly (Fig. 3C, Bottom). Although the
best strategy remained to reduce same-age contacts during winter
and fall, the predicted impact of other age groups was more
pronounced. In particular, young children were the second most
impactful age group, with a seasonally varying effect of reducing
their contacts highest during fall and winter, particularly during
Christmas holidays. Similar results were obtained in other age
groups (SI Appendix, Fig. S9), with indication of a seasonal impact
of the timed intervention, highest when targeted, first, at same-age
contacts and, second, at contacts involving young children. We
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found these results to be robust with an alternative contact matrix,
derived from the POLYMOD study in Great Britain (SI Appendix,
Fig. S10). These results emphasize the assortative nature of pneu-
mococcal transmission, in addition to the key role of young children
as core transmitters to other age groups. Furthermore, they provide
a proof of concept of the potential usefulness of interventions that
exploit seasonality to control IPDs.

Discussion
The main goal of this study was to elucidate the mechanisms of
pneumococcal seasonality, by leveraging detailed IPD incidence data
in France. To do so, we developed semimechanistic models of
pneumococcal transmission, carriage, and disease that incorporated
seasonal variations of ILIs, climate, and interindividual contact
rates—all seasonal factors previously proposed to contribute to
pneumococcal epidemiology. Using likelihood-based statistical in-
ference methods, we systematically evaluated the support of multiple
hypotheses about the components and the mechanisms of pneu-
mococcal seasonality. We found that pneumococcal seasonality was
best explained by a conjunction of all of the seasonal factors con-
sidered. In addition, we found evidence that both the invasion
rate and the carriage acquisition rate varied seasonally and
acted in concert to generate the marked seasonality typical of
IPDs in France. Finally, we explored the impact of seasonally
timed interventions, which aim at exploiting pneumococcal
seasonality to control IPDs.
Our results indicated that a substantial part of IPD variability

was explained by seasonal variations of climate. These results are
broadly consistent with previous ecological studies that estimated
an association between IPDs and climatic drivers, such as tem-
perature (7, 10), humidity (6), UV radiation (6, 10), or sunshine
duration (7). Also in keeping with our findings in France, a recent
modeling study found evidence of higher pneumococcal trans-
mission during dry and cool seasons (28). Although the underlying
biological mechanisms are unknown, experimental evidence from
other respiratory pathogens—such as influenza (29)—suggests that
climatic conditions could also affect the survival or the trans-
mission of pneumococcus. Alternatively, it has been proposed that
climate modulates the host susceptibility to pneumococcal diseases
(14). In support of this hypothesis, a recent study demonstrated
marked seasonal variations in many markers of human immunity,
in particular a more proinflammatory response—known to facili-
tate the presence of pneumococcus in the nasopharynx (30)—
during European winter (31). Irrespective of the mechanisms in-
volved, a simple and testable prediction of our model is that

pneumococcal seasonality varies with climate and, therefore, with
latitude. The observation of a latitudinal gradient in the timing of
bacterial meningitis (32) and the reverse seasonality of IPDs in the
Southern hemisphere (9) provide preliminary evidence that sup-
ports this prediction. Our preliminary analyses in two tropical cli-
mates are also consistent with this prediction, but applying our
models to analyze data from other climates would be useful to
further elucidate pneumococcal seasonality.
Regarding influenza viruses, a number of experimental studies

have examined their interaction with pneumococcus (12). The
evidence garnered from these studies consistently demonstrated
that influenza viruses have a facilitatory effect on pneumococcus,
by increasing acquisition, bacterial load, transmission, or disease
severity. Understanding how these individual-level mechanisms
in animal models translate into population-level patterns in hu-
mans, however, is not straightforward. Indeed, population-based
studies have estimated an at most modest contribution of in-
fluenza to IPDs (Refs. 5, 7, 8, and 33, reviewed in ref. 11.). As
proposed by Shrestha et al. (23), this discrepancy may be
explained by the fact that a large individual-level interaction
results in a much lower population-level effect, whose identifi-
cation depends on the interannual variability of influenza peaks.
Our results, which also point to a disconnect between the indi-
vidual- and population-level scales, entirely support this view.
Unlike Shrestha et al., however, we found little evidence that
ILIs affected pneumococcal acquisition, but two differences are
worth noting. First, we explicitly modeled pneumococcal car-
riage, in addition to disease, so that our estimates may not be
directly comparable. Second, our study focused on two disease
outcomes (pneumococcal meningitis and bacteremia) whose epi-
demiology may differ from that of pneumococcal pneumonia.
Indeed, a US study documented differences of seasonality be-
tween pneumonia and nonpneumonia IPDs and suggested the
existence of different mechanisms leading to the two disease
outcomes (33). To further test this hypothesis, a natural follow-up
would be to apply our models to pneumococcal pneumonia data.
Regarding the specific outcomes considered here, our results are
consistent with those of Opatowski et al. (21), although a more
pronounced effect on pneumococcal carriage transmission was
found in that study. In addition, our estimate of the relative risk of
carriage acquisition in ILI-infected individuals (1.0 [1.0, 2.1], SI
Appendix, Table S3) is not incompatible with that of a case-control
study in young children (2.19 [1.02, 4.69], ref. 34).
Our results have public health implications. First, we found

that the population-level effect of ILIs on pneumococcal
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Fig. 2. Dissecting pneumococcal seasonality. (A)
(Top) The shape of the estimated background sea-
sonality, which comprised an unexplained seasonality
(modeled using a Fourier series with two harmonics,
red line) and a climate-associated seasonality (blue
lines). For the climate-related seasonality, each light
blue line represents a distinct epidemiological year;
the dark blue line is the average seasonal shape.
(Middle) The estimated seasonality in the invasion rate
(that is, the rate at which pneumococcal carriers con-
tract an IPD), which was the product of the unexplained
seasonality and the climate-associated seasonality.
(Bottom) The estimated seasonality in the carriage ac-
quisition rate, which had a similar seasonal shape but
damped oscillations. In the Middle and Bottom, each
light gray line represents a distinct epidemiological year;
the dark gray line is the average seasonal shape.
(B) Median (range) simulated carriage prevalence in
different age groups. (C) Median (range) simulated
IPD incidence (per 100,000 population) in different
age groups. All of the estimates and simulations
presented in this figure are from the best model.
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circulation—via either increased transmission or acquisition—
was minor. Importantly, therefore, interventions targeted at ILIs
are not expected to produce marked indirect effects on pneu-
mococcal carriage. Second, in keeping with previous studies (7,
8), we estimated that the overall fraction of IPDs due to ILIs was
modest. Considering the severity and the high incidence of IPDs
in certain regions, however, interventions that aim at reducing
ILIs could still prevent a large number of IPDs, in particular in
the context of influenza pandemics (35). Our results suggest that
such interventions should be directed to individuals aged [5, 20),
in whom the burden of ILIs and its subsequent direct impact on
IPDs are highest. Third, our results confirmed the key role of
young children as core transmitters of pneumococcus, who
should therefore be the prime target of control efforts that aim
to reduce pneumococcal carriage. Finally, our findings support
the concept of a senescence of the immune system in the elderly
(36), which may help explain the high burden of IPDs in that age
group. Hence, interventions targeted at the elderly are another
important component of control efforts, although we predict
they will have limited indirect effects.
To interpret our results more generally, we point out that both

ILIs and climate were estimated to have a much higher effect on

invasion than on either acquisition or transmission. Seconding a
previous study (33), we propose that seasonal variations in
pneumococcal carriage density may explain these results. Indeed,
we expect such variations to have a much higher effect on in-
vasion than on transmission, because bottlenecks (i.e., reductions
in bacterial population size) are presumably tighter during
between-host transmission than during within-host invasion.
Because we did not explicitly model carriage density, this in-
terpretation is speculative. However, previous experimental (25)
and epidemiological (37) studies have suggested that carriage
density in an important factor in transmission and invasion.
Several limits of our study are worth noting. First, in the ab-

sence of longitudinal carriage data, we made pragmatic assump-
tions based on available evidence. Specifically, we calibrated our
models to reproduce a decrease of carriage prevalence with age, a
robust signature of pneumococcal epidemiology (38). Regarding
the seasonality of carriage prevalence in high-income countries,
most [but not all (13)] longitudinal studies reported small-
amplitude variations of carriage over the year (39–41). Our
model-based hindcasts (Fig. 2B) of carriage prevalence are broadly
consistent with those observations. However, our result regarding
the increase of contact rates and of carriage prevalence in the

A C

B

Fig. 3. Predicted impact of different interventions. (A) Fraction of IPDs attributable to ILIs according to age (x axis), calculated during the whole study period
(blue boxplots) or the ILI epidemic periods (defined as ±6 wk around the ILI peak week every year, red boxplots). For every epidemiological year, ILIs were set to
0 in a given age group; the resulting number of IPDs in that age group during that year was calculated and compared with that of the base model (with ILIs). The
attributable fraction represents the relative decrease (compared with the base model) in the number of IPDs. Each boxplot shows the year-to-year variation in the
attributable fraction. (B) Relative excess of IPDs due to climate, according to week number (x axis). For every epidemiological year, the climate covariates of
the best model were set to 0; the resulting overall number of IPDs during that year was calculated and compared with that of the base model. The fraction
represents the relative decrease (if positive) or increase (if negative) in the number of IPDs, compared with the base model. For every week number, year-to-year
variability is summarized by the median (blue line), the interquartile range (dark blue ribbon), and the range (blue ribbon). (C) Predicted impact of a seasonally
timed intervention. We simulated the impact of reducing the contacts of a target age group (y axis) during a target week number (x axis) throughout the study
period. The heatmap shows the predicted relative decrease (in %) of IPDs in [0, 5) y (Top) and 60+ y (Bottom), the two age groups most at risk for IPDs. For visual
clarity, the color scale is square-root transformed. See SI Appendix, Supplementary Results for complete details of the simulation protocol and SI Appendix, Fig. S9,
showing the predicted impact in all of the age groups.
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elderly during Christmas holidays should be confronted with new
empirical data. Importantly, our estimate of the risk of disease
during early carriage was sensitive to this transient effect, as evi-
denced by the fact that the information about that parameter was
lost after removing data during Christmas holidays (95% confi-
dence interval [0, 1]). Acknowledging these limitations, our results
nevertheless demonstrate that IPD incidence data contain dy-
namic information about the transmission of pneumococcal car-
riage. Second, different types and subtypes of influenza can vary in
transmissibility and virulence and may have a different impact on
pneumococcus (11). Future work could therefore extend the
models proposed here to incorporate more detailed information
on influenza viruses, if available. Third, other cocirculating path-
ogens, not considered here, have been proposed to interact with
pneumococcus (42). Incorporating additional candidate pathogens
may help further understand pneumococcal seasonality, in par-
ticular the part that remained unexplained by our models (Fig.
2A). In SI Appendix, we present preliminary evidence suggesting
that the respiratory syncytial virus [quantified as the number of
visits to emergency departments for bronchiolitis in children <5 y
(SI Appendix, Fig. S8)] may also interact with pneumococcus. Fi-
nally, our model ignores a number of complexities associated with
pneumococcal epidemiology, foremost the differences of fitness

between the different serotypes (43). Previous studies, however,
indicated that IPD seasonality changed little after the introduction
of conjugate vaccines, despite substantial serotype replacement (5,
8), suggesting that the seasonal drivers act comparably on the
different serotypes.
In conclusion, we systematically dissected the seasonality of

pneumococcus, building on detailed IPD incidence data in
France. Our results bring together a number of previous lines of
evidence and add significant knowledge of the mechanisms that
govern transmission, carriage, and disease. We anticipate that
dynamic models, such as those presented here, will prove to be
valuable tools to further elucidate the seasonality of pneumo-
coccus and, it is likely, of other bacterial respiratory pathogens.
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