Skip to main content
. 2019 Jan 9;19(2):233. doi: 10.3390/s19020233

Table 2.

Summary of the gas-sensing performances of semiconductor metal oxides for ethanol gas.

Order Dimensions Materials Synthesis Method Conc. (ppm) LOD (ppm) Temp. (°C) τres (s) τrec (s) Resp. Ref.
1 0D CuBi2O4 powders polymerized complex method 1000 5 400 57 294 10.4 b [85]
2 SnO2 nanoparticles microwave treatment 250 NA 100 16 25 30 c [86]
3 1D Co3O4 microrods interfacial-reaction 100 NA 220 0.8 10.8 9.8 b [87]
4 CuO/In2O3 nanorods thermal evaporation and sputtering 50 NA 300 53 149 3.82 a [88]
5 In2O3 microrods hydrothermal 100 1 300 15 20 18.33 a [89]
6 LaFeO3 nanotubes electrospinning 100 NA 160 2 4 9.4 b [90]
7 Pd/Fe2O3 nanotubes electrospinning 50 0.1 240 8 30 65.4 a [91]
8 ZnO nanotubes electrodeposition and electrochemical etching 700 1 RT 4.56 min 1.53 min 64.17% c [83]
9 LaMnO3/SnO2 nanofibers electrospinning 100 NA 260 6 34 20 a [92]
10 WO3/SnO2 nanofibers coaxial electrospinning 10 NA 280 18.5 282 5.09 a [93]
11 ZnO nanowires solvothermal 500 NA 340 6 26 10.68 a [94]
12 SnO2/Fe2O3 nanowires VLS, hydrothermal and spin coating 5 NA 300 100 300 3.07 a [95]
13 SnO2/ZnO nanowires carbon-assisted thermal evaporation 400 NA 400 NA NA 128 c [96]
14 SnO2/ZnO nanowires thermal evaporation and spray-coating 100 NA 400 NA NA 14.1a [97]
15 2D CuO films RF sputtering 12.5 NA 180 31 52 2.2 b [98]
16 Pd/Ce/SnO2 films co-precipitation 100 NA 250 6 20 88 c [99]
17 NiO nanosheets hydrothermal 50 1 240 4 7 11.15 b [100]
18 ZnO nanosheets hydrothermal 50 1 330 15 12 83.6 a [101]
19 3D SnO2 nanoflowers hydrothermal 200 4.52 240 10 16 62.2 a [102]
20 SnO2 nanoflowers hydrothermal 100 NA 300 10 16 47.29 a [103]
21 Au/SnO2 hierarchical structures hydrothermal 100 NA 340 5 10 18 a [104]
22 NiO hierarchical structures hydrothermal 400 NA 300 4 8 32 b [105]
23 SnO2 macropores structures sol-gel method 500 NA 240 NA NA 70.94 a [106]
24 MoO3 microboxes hydrothermal 100 1 260 15 5 78 a [107]
25 SnO2 nanocubes hydrothermal 100 1 200 23 21 1670.5 a [108]
26 ZnSnO3 nanocubes co-precipitation 100 NA 260 4 276 34.1 a [109]
27 PdO/Zn2SnO4 octahedrons hydrothermal and wet impregnation treatment 100 0.5 250 1 206 82.3 a [110]
28 WO3 urchin-like structures hydrothermal 100 NA 350 28 12 68.56 a [111]
29 Co3O4 microspheres interfacial-reaction 100 1 220 0.1 0.7 38.2 b [112]
30 CuO microspheres precipitation 400 NA 250 17 11.9 5.6 b [113]
31 CuO microspheres hydrothermal 100 NA 200 2 8 390% c [114]
32 Fe2O3/Co3O4 microspheres solution route 100 NA 170 3.3 5.4 16.1 b [115]
33 SnO2 microspheres ion exchange method 200 NA 260 NA NA 103.1 a [116]
34 SnO2/Fe2O3 microspheres hydrothermal 100 0.1 260 3 4 41.7 a [117]
35 ZnFe2O4 microspheres solvothermal 10 0.5 180 5.1 6.5 6.85 a [118]
36 Pt/SnO2 nanospheres spray drying and Kirkendall diffusion 5 0.25 325 1 1577 1399.9 a [119]
37 SnO2 nanospheres precipitation 200 NA 260 10 8 274.5 a [120]
38 SnO2 nanospheres hydrothermal 100 0.5 350 5 NA 10.5 a [121]
39 SnO2/ZnO nanospheres self-sacrificial template 50 NA 270 0.4 235 7.5 a [122]
40 ZnSnO3 nanospheres hydrothermal 100 NA 200 4 30 32 a [123]
41 Zn2SnO4 nanospheres hydrothermal 50 5 180 NA NA 23.4 a [124]

Note: Conc. = concentration; LOD = limit of detection; Temp. = temperature; τres = response time; τcov = recovery time; Resp. = Response; Ref. = References; RT = room temperature; a S = Ra/Rg; b S = Rg/Ra; c S = (ΔR/Ra)*100%; d S = Ig/Ia; NA = not available.