
sensors

Article

Visible-Light Camera Sensor-Based Presentation
Attack Detection for Face Recognition by Combining
Spatial and Temporal Information

Dat Tien Nguyen, Tuyen Danh Pham, Min Beom Lee and Kang Ryoung Park *

Division of Electronics and Electrical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu,
Seoul 100-715, Korea; nguyentiendat@dongguk.edu (D.T.N.); phamdanhtuyen@dongguk.edu (T.D.P.);
mblee@dongguk.edu (M.B.L.)
* Correspondence: parkgr@dongguk.edu; Tel.: +82-10-3111-7022; Fax: +82-2-2277-8735

Received: 17 December 2018; Accepted: 17 January 2019; Published: 20 January 2019
����������
�������

Abstract: Face-based biometric recognition systems that can recognize human faces are widely
employed in places such as airports, immigration offices, and companies, and applications such as
mobile phones. However, the security of this recognition method can be compromised by attackers
(unauthorized persons), who might bypass the recognition system using artificial facial images.
In addition, most previous studies on face presentation attack detection have only utilized spatial
information. To address this problem, we propose a visible-light camera sensor-based presentation
attack detection that is based on both spatial and temporal information, using the deep features
extracted by a stacked convolutional neural network (CNN)-recurrent neural network (RNN) along
with handcrafted features. Through experiments using two public datasets, we demonstrate that the
temporal information is sufficient for detecting attacks using face images. In addition, it is established
that the handcrafted image features efficiently enhance the detection performance of deep features,
and the proposed method outperforms previous methods.

Keywords: visible-light camera sensor-based presentation attack detection; face recognition; spatial
and temporal information; stacked convolutional neural network (CNN)-recurrent neural network
(RNN); handcrafted features

1. Introduction

To recognize a person, two major conventional recognition methods have been used in
applications: token-based (keys, cards) and knowledge-based method (passwords) [1,2]. However,
these techniques are inconvenient for users, because they must carry a key (or card), or remember
a long and complex password identification. In addition, the key or password might be easily
stolen by attackers. To overcome this problem, the biometric recognition technique can be used
as an alternative. By definition, biometrics recognition is a recognition technique that uses one or
more physical or behavioral characteristics of the human body to recognize/identify a person [1].
For this purpose, the biometric recognition technique only utilizes the unique body features for
each individual for recognition. Several biometric recognition systems based on face, fingerprint,
finger-vein, and iris data have been well studied and have various applications in daily life including
airports, immigration offices, and companies, and smart phones [1,3–9]. Because physical/behavioral
characteristics of a human are inherent features, this kind of recognition technique offers convenience
to users. In addition, as shown in many previous studies, this recognition technique offers a very
high recognition performance and its data are difficult to be stolen, compared with the conventional
recognition methods [1,2].

Sensors 2019, 19, 410; doi:10.3390/s19020410 www.mdpi.com/journal/sensors

http://www.mdpi.com/journal/sensors
http://www.mdpi.com
http://www.mdpi.com/1424-8220/19/2/410?type=check_update&version=1
http://dx.doi.org/10.3390/s19020410
http://www.mdpi.com/journal/sensors

Sensors 2019, 19, 410 2 of 27

Face recognition is one of the most popular biometric recognition methods used in various
applications [8–12]. As inferred from the name, this method uses the human face data to distinguish a
person from others. As shown in many previous studies, the face recognition system has been deeply
studied and its recognition performance is now comparable or superior to human recognition, and is
robust to changing capturing conditions [8–11]. However, this recognition method has recently been
confronted with attacks in which a perpetrator can use a fake sample to successfully circumvent the
face recognition system, instead of using the real face data. Therefore, the security of the recognition
system is compromised, emphasizing the need to detect these kinds of fake samples before they can be
used for recognition.

In previous studies, researchers demonstrated that the spatial information (information extracted
using texture information from a still image) and temporal information (information extracted using
the temporal dependency of images in an image sequence) are sufficient for a presentation attack
detection (PAD) for a face recognition system (face-PAD) problem. However, they only used either
spatial information or temporal information for face-PAD [13–28]. To overcome this problem and
enhance the detection accuracy of face-PAD, our study proposes a new method for face-PAD that is
based on a combination of both spatial and temporal information.

The remainder of this paper is organized as follows: Related studies on face-presentation attack
detection (face-PAD) are provided in Section 2, and the contributions of our research are explained
in Section 3. In Section 4, a detailed description of our proposed face-PAD method is provided,
i.e., the preprocessing steps, the deep and handcrafted image feature extraction, and the classification
using the support vector machine (SVM) method. In Section 5, we illustrate the results of intensive
experiments using two public datasets, namely, the Institute of Automation, Chinese Academy of
Sciences (CASIA) [13] and Replay-mobile [14], to validate the performance as well as demonstrate
the efficiency of our proposed method over previous methods through a comparison of detection
performance. Finally, we conclude our work in Section 6.

2. Related Works

To prevent attackers from accessing a face recognition system, several methods have been
proposed to detect fake samples before they can be used as input to the system. Research on this
purpose, namely face-PAD, normally extracts the discriminative features from input face images
to distinguish a real image from a presentation attack (PA) image [15–28]. Then, a classification
method such as a discriminative model or SVM is employed to classify the input images into real and
presentation attack classes. These studies can be grouped into two: a study group that uses a still
(single) image, and a study group that uses a sequence of images for detection.

Most previous studies belong to the first group that uses a still image for face-PAD. One of the
earliest studies in this group is that conducted by Tan et al. [16]. In their study, they classified real and
presentation attack face images using a sparse low-rank bilinear discriminative model based on image
features extracted by logarithmic total variation or a difference of Gaussian (DoG) methods. Through
experimental results with an open dataset, namely, Nanjing University of Aeronautics and Astronautics
(NUAA), they illustrated that it is possible to discriminate real and presentation attacks using face
images. However, the detection performance of this study was not high because of weak image feature
extraction. To extract adequate image features for a face-PAD system, Maatta et al. [17] employed
three handcrafted image feature extraction methods, i.e., the Gabor filter, local phase quantization,
and local binary pattern (LBP). With the extracted image features, face-PAD was performed using
the SVM method. Due to a more powerful feature extraction method, the study by Maatta et al. [17]
demonstrated a superior detection performance to the study by Tan et al. [16] using the NUAA dataset.
Similar to the study by Maatta et al. [17], Benlamoudi et al. [22] applied the LBP method on local image
regions (image patches) to extract image features. By dividing the entire face image into several image
patches for extracting image features, the work by Benlamoudi et al. [22] extracted image features
locally, which is sufficient to address the PAD problem because the fake features appear non-uniformly

Sensors 2019, 19, 410 3 of 27

in a face image. Based on this approach, they showed a very high detection performance using the
NUAA dataset. In a recent method proposed by Parveen et al. [23], a new feature extraction method,
namely, dynamic local ternary pattern (DLTP), was applied for feature extraction. Using the SVM
method for classification, they proved that DLTP works better than several feature extraction methods
such as LBP or DoG.

Besides texture features, several other studies use the appearance features for face-PAD. In a
study conducted by Boulkenafet et al. [19], the texture and color information were used for detecting
presentation attack face images. This study is based on the fact that the color information can be
changed owing to the effect of recapturing procedure. Therefore, color information can be used to
discriminate the real and presentation attack face images. For this purpose, they first transformed
the RGB image into the YCbCr color space to extract the color information of input image; then, they
applied the LBP method to each individual channel of the color image in YCbCr space to extract
the image features. The classification with the SVM method using the extracted color-LBP features
with two open datasets, namely, CASIA and Replay-attack, confirmed the efficiency of this approach.
In another study, Kim et al. [15] used the effects of defocus of face to discriminate real and presentation
attack images. This study is based on the fact that the real face images are captured directly on a
3-dimensional face, whereas the presentation attack images are captured on a flat 2-dimensional
face. Consequently, some parts of a real face such as nose and ears are relatively far from each other.
Therefore, a case exists where, if the nose is in focus, the ear might be blurred, and vice versa, because
of the narrow depth of field of the capturing device. Through experiments, the authors proved that
defocus can be used for face-PAD. However, because this study using the defocus effect for face-PAD is
based on the assumption that the presentation attack images are captured from a flat 2-dimensional face
(print, video display), this method might to be difficult to be applied in the cases where 3-dimensional
masks are used as presentation attack samples. Galbally et al. [21] proposed the use of image quality
measurements for the face-PAD problem. In their study, they used 14 image quality measurements
such as peak signal to noise ratio, image correlation, and total edge differences for feature extraction,
and demonstrated a detection performance comparable to state-of-the-art methods using CASIA and
the Replay-attack dataset.

Recently, with the development of deep learning-based methods such as the convolutional
neural network (CNN), several studies have used this technique to address the face-PAD problem.
Menotti et al. [26] used the CNN method for PAD for iris, face, and fingerprint recognition systems.
To efficiently detect the presentation attack samples, they applied two optimization procedures,
i.e., the architecture optimization and filter optimization, to optimize both the network architecture
and its parameters. The results of this study demonstrated that the deep learning framework is
sufficient for PAD, because it offers a better detection performance than the conventional methods
based on handcrafted features. In a recent study by De-Souza et al. [20], they extracted deep texture
features from face images by integrating the LBP descriptor to a modified CNN network for face-PAD.
By integrating the LBP descriptor to a CNN network, this study acquired the advantages of both LBP
and CNN to enhance the detection performance of the face-PAD system. However, the use of the
deep learning-based method generally presents the problem of over-fitting or under-fitting due to
the huge number of network parameters that are required to be learnt, from limited training data.
To address this problem, a study by Nguyen et al. [27] combined the deep features extracted using the
CNN method with handcrafted image features extracted using multi-level local binary pattern (MLBP)
with SVM for the face-PAD problem. As a result, they demonstrated a higher detection performance
than conventional systems that only use deep or handcrafted image features.

Although the above-mentioned methods have demonstrated a good detection performance for the
face-PAD problem, they utilized texture information extracted from a single image. From observation,
fake features can occur non-uniformly in a sequence of PA images captured in a certain period of
time compared with a still image. This phenomenon can be caused by the change of illumination
or pose of presentation attack instrument (PAI) during the image acquisition procedure that results

Sensors 2019, 19, 410 4 of 27

in a difference between real and PA image. As a result, some still images could exist in a sequence
that contains more discriminative information than the others. In simple words, we can extract more
discriminative information for face-PAD using a sequence of images than from a still image. In a
study by Xu et al. [28], they used a sequence of face images for face-PAD based on deep learning
architecture by combining CNN and long-short term memory (LSTM), a special kind of recurrent
neural network (RNN). They confirmed that the performance of the sequence-based method is higher
than that of the still image-based method. However, this study used a very shallow CNN network with
two convolutional layers and one fully connected layer for extracting image features. In addition, they
used dense-connection as a classifier for face-PAD. This approach usually has a problem of over-fitting
caused by a huge number of system parameters.

Recently, thermal image-based and depth-image-based face recognition systems have been
proposed in addition to the visible-light face recognition systems [29,30]. The use of these special
imaging devices can help reduce the negative effects of illumination on face recognition systems.
However, most face recognition systems in application including mobile devices use only the
visible-light camera. In addition, the use of thermal or depth image cameras for face recognition
systems has a limitation of the price of hardware of the systems. Higher cost of thermal or depth
cameras than a conventional visible-light camera normally causes price increases for the recognition
system, and consequently makes it hard to be applied in broad applications. Because of these reasons,
our study only focuses on face-PAD for visible-light face recognition systems and we believe that our
study provides a case for real applications at present. In Table 1, we summarize and compare previous
studies on the face-PAD problem with the proposed method.

Table 1. A summary of previous studies on face-PAD with comparison with our proposed method.

Category Detection Method Strength Weakness

Uses still images

- Uses handcrafted image
features [15–19,21–25]

- Detection system is simple and
easy to implement

- Can achieve high
processing speed

- Detection performance is limited
because of handcrafted features
designed by humans based on
limited observation aspects of
face-PAD problem

- Uses deep image features:
CNN [20,26]

- Uses deep features extracted by
CNN for enhancing
detection performance

- More complex and requires more
power and processing time than
the methods that only use
handcrafted image features

- Uses a combination of deep
and handcrafted image
features [27]

- Uses a very deep CNN network to
efficiently extract image features

- Uses SVM for classification
instead of fully-connected layer
that might reduce the
overfitting problem.

- Higher detection performance
using a combination of deep and
handcrafted image features

- More complex and requires more
power and processing time than
the methods that only use
handcrafted image features

Uses sequence
images

- Uses stacked CNN-RNN
network to learn the temporal
relation between image frames
for face-PAD [28]

- Obtains higher detection
performance than previous
methods that only use a still
image for detection using
information learnt from more
than one image

- Complex structure requiring more
power and processing time - The
CNN network is shallow with
only two convolution layers and
one fully connected layer

- Uses very deep stacked
CNN-RNN to learn the
temporal relation between
image frames

- Combines deep and
handcrafted image features to
enhance the
detection performance

(Proposed method)

- Uses very deep CNN network to
efficiently extract image features
for inputs of RNN

- Obtains higher detection
performance than previous
methods using very deep
CNN-RNN network and
handcrafted image features

- Requires more power and
processing time to process a
sequence of images

Sensors 2019, 19, 410 5 of 27

3. Contributions

Our research is novel in the following four ways compared with previous studies on the problem
of PAD for face recognition.

- First, our study extracts the temporal information from successive input face images for detection,
instead of using single images. Because a sequence of face images is used, not only is the
extraction of richer information from inputs made possible, but the relation between each image
in a given sequence is learnt to precisely detect the PA image.

- Second, inspired by the success of the CNN-based method for a computer vision system, we
use a very deep CNN network to efficiently extract image features for each image in a given
sequence images of faces. With the extracted image features, we use a special kind of neural
network, named RNN, to learn the temporal information of the entire input sequence. This kind
of network, named stacked CNN-RNN, allows our system to efficiently detect the PA sample
using a sequence of faces.

- Third, we additionally extract handcrafted image features based on our proficient knowledge of
the face-PAD problem using an extraction method named MLBP to enhance the performance of
detection system. By combining the deep and handcrafted image features, we demonstrate that
the performance of face-PAD system is significantly enhanced compared with the use of single
deep or handcrafted image features.

- Finally, we make our proposed algorithm accessible [31] for reference and comparison for future
studies on face-PAD problem.

4. Proposed Method

In this section, we explain the proposed method for face-PAD, including the architecture of stacked
CNN-RNN network for deep image feature extraction, the handcrafted image feature extraction by
MLBP method, and the classification method using SVM based on the extracted image features.

4.1. Overall Design of Proposed Method

In most previous studies, a still face image was used for face-PAD [16–25]. However, our
observation illustrates that a difference between real and presentation attack images can not only
appear in a single still image but also in a sequence of successive images. Fake features can occur
in presentation attack images clearer in specific frames than in other frames, due to the effect of a
change of illumination or the pose of a presentation attack instrument (PAI) during image acquisition.
In addition, a conventional face recognition system can acquire and process a sequence of successive
images instead of a single image to enhance the recognition performance. Therefore, the use of a single
image could limit the performance of the face-PAD system. From these observations, we design a new
detection method that is based on the image features extracted from both a current single image and a
sequence of successive images, as shown in Figure 1.

As shown in Figure 1, the proposed method uses two kinds of image features for face-PAD, i.e., the
deep features extracted by a stacked CNN-RNN network and handcrafted features extracted by the
MLBP method. The proposed method acquires a sequence of images from capturing devices (camera).
With a sequence of images, we first perform preprocessing to detect and align the faces. Details of this
step are explained in Section 4.2. As a result of this step, we obtain a sequence of faces, including the
current face and several faces from previous frames, as shown in Figure 1. Using this sequence of faces,
we use a stacked CNN-RNN network to extract the associated temporal information. In addition to
deep features, we also extract the texture features of the current frame using the MLBP method, which
is further discussed in Sections 4.3 and 4.4. As the final step of our proposed method, the extracted
features (deep and handcrafted features) are used for classifying the input image sequence into either
real or presentation attack classes using the SVM method.

Sensors 2019, 19, 410 6 of 27
Sensors 2019, 18, x FOR PEER REVIEW 6 of 27

Figure 1. Working sequence of the proposed method for face-PAD.

4.2. Face Detection, Alignment, and Face Region Image Extraction

Similar to conventional face recognition systems, the initial step of the proposed method is the
extraction of faces from an input image sequence. This step is essential for any face-based biometrics
system that has the purpose of removing the background region that does not contain sufficient
information [27]. Because this is a preprocessing step and not our main contribution, we use an
efficient existing method proposed by Kazemi et al. [32] named ensemble of regression tree (ERT) to
efficiently localize the face and its landmark points. Although other face detection methods exist,
such as the adaptive boosting (Adaboost) that uses SVM on Haar-like or the LBP features [33] for
face detection, the ERT method offers an important advantage: this method provides not only the
face location, but also the landmark points. These landmark points are sufficient for indicating the
face orientation and are useful for aligning faces. As indicated by a previous study by
Benlamoudi et al. [22], face alignment plays an important role in the performance of the face-PAD
system. In detail, we detect a total of 68 landmark points for a face as shown in Figures 2b,c. Using
the detected landmark points, our study finds three special points, i.e. two center points of the left
and right eyes, and one center point of the entire face region. These points can be used as rough
indicators of face orientation. Based on these special points, we align a face by rotating the entire face
region around the center point of the face, as shown in Figures 2b,c. We rotate the original face
region, as shown in Figure 2b, by a rotation angle that is calculated using Equation (1) to obtain an
aligned face region, as shown in Figure 2c. In this equation, (Rx,Ry) and (Lx,Ly) indicate the center
points of the right and left eyes, respectively. 𝜃 = 𝑡𝑎𝑛ିଵ ൬𝑅௬ − 𝐿௬𝑅௫ − 𝐿௫൰ (1)

As a result, all the faces are aligned at the same center position and frontal view, instead of the
natural orientation. As the final step of our preprocessing method, we crop the face using the largest
bounding box of the face on the rotated face image and obtain the final extracted face region for
further processing steps, as shown in Figure 2d.

Figure 1. Working sequence of the proposed method for face-PAD.

4.2. Face Detection, Alignment, and Face Region Image Extraction

Similar to conventional face recognition systems, the initial step of the proposed method is the
extraction of faces from an input image sequence. This step is essential for any face-based biometrics
system that has the purpose of removing the background region that does not contain sufficient
information [27]. Because this is a preprocessing step and not our main contribution, we use an
efficient existing method proposed by Kazemi et al. [32] named ensemble of regression tree (ERT)
to efficiently localize the face and its landmark points. Although other face detection methods exist,
such as the adaptive boosting (Adaboost) that uses SVM on Haar-like or the LBP features [33] for face
detection, the ERT method offers an important advantage: this method provides not only the face
location, but also the landmark points. These landmark points are sufficient for indicating the face
orientation and are useful for aligning faces. As indicated by a previous study by Benlamoudi et al. [22],
face alignment plays an important role in the performance of the face-PAD system. In detail, we detect
a total of 68 landmark points for a face as shown in Figure 2b,c. Using the detected landmark points,
our study finds three special points, i.e., two center points of the left and right eyes, and one center
point of the entire face region. These points can be used as rough indicators of face orientation. Based
on these special points, we align a face by rotating the entire face region around the center point of the
face, as shown in Figure 2b,c. We rotate the original face region, as shown in Figure 2b, by a rotation
angle that is calculated using Equation (1) to obtain an aligned face region, as shown in Figure 2c.
In this equation, (Rx,Ry) and (Lx,Ly) indicate the center points of the right and left eyes, respectively.

θ = tan−1
(

Ry − Ly

Rx − Lx

)
(1)

Sensors 2019, 19, 410 7 of 27

Sensors 2019, 18, x FOR PEER REVIEW 7 of 27

(a) (b)

(c) (d)

Figure 2. Demonstration of our preprocessing step: (a) input face image from NUAA dataset [16];
(b) detected face region on input face image using ERT method; (c) face region is aligned using center
points of face, left and right eyes; (d) final extracted face region.

4.3. Stacked CNN-RNN Architecture for Learning Temporal Information from Successive Images

The deep learning framework has been successfully employed in many computer vision tasks
such as object detection [34,35], image classification [36–38], and image feature extraction [6,39].
Inspired by the success of this technique, our study uses a special deep learning network, named the
stacked CNN-RNN, to learn and extract the temporal information from a sequence of face images.

To extract the deep image features for computer vision systems, several previous studies [6,39]
have used the CNN networks. The use of a CNN network offers an important advantage over
conventional handcrafted image feature extraction methods that the CNN network can learn to
extract sufficient image features using a large amount of training data. Consequently, the
performance of computer vision systems that use CNN is usually better than that based on
conventional handcrafted image feature extraction methods. However, the CNN network also has
its own limitations. Beside the limitations on the internal structure of its architecture, such as the
over-fitting problem caused by the lack of training data and the huge volume of the network’s
parameters, the CNN networks normally work with a single image to extract its texture features. As
a result, it is prevented from learning temporal information from a sequence of images. To overcome
this limitation, the RNN architecture is considered [40]. In Figure 3, the basic architecture of the
RNN network is shown, to demonstrate its ability of learning the temporal information. Figure 3a
shows the basic RNN memory cell (on the left) and its unrolled version (on the right). As shown in
this figure, the RNN cell is a neural network that comprises several states. At the initial state (t = 0),
the input to the RNN cell includes only input feature vector 𝑥, and the network will learn the
output 𝑦 and a state vector ℎ, as denoted in Equations (2) and (3). The state vector serves as a
memory that stores some information of this state, and forwards the information to the next state of
RNN cell. In these equations, f01 and f02 denote the functions learnt by the RNN network at the initial
state using neural network. In a simple case of the RNN network, y0 and h0 are set to be equal. 𝑦 = 𝑓ଵሺ𝑥ሻ (2) ℎ = 𝑓ଶሺ𝑥ሻ (3)

Figure 2. Demonstration of our preprocessing step: (a) input face image from NUAA dataset [16];
(b) detected face region on input face image using ERT method; (c) face region is aligned using center
points of face, left and right eyes; (d) final extracted face region.

As a result, all the faces are aligned at the same center position and frontal view, instead of the
natural orientation. As the final step of our preprocessing method, we crop the face using the largest
bounding box of the face on the rotated face image and obtain the final extracted face region for further
processing steps, as shown in Figure 2d.

4.3. Stacked CNN-RNN Architecture for Learning Temporal Information from Successive Images

The deep learning framework has been successfully employed in many computer vision tasks such
as object detection [34,35], image classification [36–38], and image feature extraction [6,39]. Inspired
by the success of this technique, our study uses a special deep learning network, named the stacked
CNN-RNN, to learn and extract the temporal information from a sequence of face images.

To extract the deep image features for computer vision systems, several previous studies [6,39]
have used the CNN networks. The use of a CNN network offers an important advantage over
conventional handcrafted image feature extraction methods that the CNN network can learn to extract
sufficient image features using a large amount of training data. Consequently, the performance of
computer vision systems that use CNN is usually better than that based on conventional handcrafted
image feature extraction methods. However, the CNN network also has its own limitations. Beside
the limitations on the internal structure of its architecture, such as the over-fitting problem caused
by the lack of training data and the huge volume of the network’s parameters, the CNN networks
normally work with a single image to extract its texture features. As a result, it is prevented from
learning temporal information from a sequence of images. To overcome this limitation, the RNN
architecture is considered [40]. In Figure 3, the basic architecture of the RNN network is shown, to
demonstrate its ability of learning the temporal information. Figure 3a shows the basic RNN memory
cell (on the left) and its unrolled version (on the right). As shown in this figure, the RNN cell is a neural
network that comprises several states. At the initial state (t = 0), the input to the RNN cell includes
only input feature vector x0, and the network will learn the output y0 and a state vector h0, as denoted
in Equations (2) and (3). The state vector serves as a memory that stores some information of this state,

Sensors 2019, 19, 410 8 of 27

and forwards the information to the next state of RNN cell. In these equations, f01 and f02 denote the
functions learnt by the RNN network at the initial state using neural network. In a simple case of the
RNN network, y0 and h0 are set to be equal.

y0 = f01(x0) (2)

h0 = f02(x0) (3)

Sensors 2019, 18, x FOR PEER REVIEW 9 of 27

Consequently, the dimension of the extracted image features is about 25,088 (512 × 7 × 7). This
number is too large to be used as an input for the RNN network. Therefore, we perform an
additional global average pooling operation on the outputs of convolution layers of VG-19-Net. As a
result, we obtain 512 features maps of 1 × 1 pixels. This indicates that the extracted features for each
input image are a 512-dimensional vector that is much smaller than the 25,088-dimensional vector.

(a)

(b)

Figure 3. Demonstration of an RNN network: (a) a simple RNN cell; (b) structure of a standard
LSTM cell.

Figure 4. General architecture of a stacked CNN-RNN network for temporal image extraction.

Figure 3. Demonstration of an RNN network: (a) a simple RNN cell; (b) structure of a standard
LSTM cell.

As a result, at a certain state (t 6= 0), the input of an RNN cell includes the input feature vector
xt and additional information ht−1 that was produced by the RNN cell at stage (t − 1), as shown in
Equations (4) and (5). As shown in Figure 3a and Equations (2)–(5), it can be seen that the output of a
certain state (yt) is a function of not only the current input (xt), but also the memory obtained from
previous state (ht−1). As shown in Equations (3) and (5), the state vector ht−1 is also a function of the
previous input feature vector xt−1 and previous state ht−2, and so on. Consequently, the output yt

of RNN cell at state t contains information of not only the current input feature vector, but also the
information of all previous states. Because of this reason, the RNN cell is called a memory cell.

yt = ft1(ht−1, xt) (4)

ht = ft2(ht−1, xt) (5)

Sensors 2019, 19, 410 9 of 27

Figure 3a and Equations (2)–(5) demonstrate the simple case of the RNN network. To utilize the
RNN architecture more efficiently, our study employs a special variant of the RNN network, named
long-short term memory (LSTM) [41]. This architecture is demonstrated in Figure 3b and is a sufficient
design for the RNN to learn information for both long- and short-term inputs. For this purpose,
the state vector of LSTM is divided into two parts: short-term memory (ht) and long-term memory
(ct). For implementation, the LSTM architecture includes three gates, namely, the input, forget, and
output gates, as shown in Figure 3b and Equations (6)–(12). In these figures and equations, σ indicates
the standard sigmoid function that nonlinearly scales the input to the output in the range of 0~1;
τ indicates the standard tanh function that scales the input nonlinearly to the output in the range
of −1~1. Using the forget gate, the network will learn how much of long-term information is to be
erased/retained for using in the current state. The input gate decides which information of this state is
to be added to the long-term state. By combining the outputs of forget and input gates, the LSTM cell
updates the long-term memory state, which verifies if the amount of information from previous states
is sufficiently used for the current state. Finally, the output gate combines current input with the state
vector to produce the output of the network. This kind of RNN network has been widely utilized in
applications for gait recognition [42] and action recognition [43].

it = σ(fit(xt, ht−1)) (6)

gt = τ
(

fgt(xt, ht−1)
)

(7)

It = gt × it (8)

ft = σ
(

f f t(xt, ht−1)
)

(9)

ot = σ(fot(xt, ht−1)) (10)

ct = ft × ct−1 + It (11)

yt = ht = ot × τ(ct) (12)

As shown in Figure 3, the inputs of RNN cells are a sequence of image features that are extracted
from a sequence of input images (in our study). In our study, we use the CNN network to extract
sufficient image features for the RNN network. As a result, we constructed a stacked CNN-RNN
network architecture, as shown in Figure 4. In Table 2, we describe in detail, the architecture of
the stacked CNN-RNN network shown in Figure 4. As shown in Table 2, our stacked CNN-RNN
network includes two parts of CNN and LSTM stacked together. In detail, the CNN part uses the
convolutional layers from VGG-19-Net that is responsible for image feature extraction using the
convolution operation [36]. Although it is possible to use other CNN network architectures, we use
VGG-19-Net in our study for a certain choice because our study focuses on the temporal information
extraction using stacked CNN-RNN architecture, not on the CNN. In original VGG-19-Net, the outputs
of the convolutional part are 512 feature maps with the size of 7 × 7 pixels. Consequently, the
dimension of the extracted image features is about 25,088 (512 × 7 × 7). This number is too large to be
used as an input for the RNN network. Therefore, we perform an additional global average pooling
operation on the outputs of convolution layers of VG-19-Net. As a result, we obtain 512 features maps
of 1 × 1 pixels. This indicates that the extracted features for each input image are a 512-dimensional
vector that is much smaller than the 25,088-dimensional vector.

Sensors 2019, 19, 410 10 of 27

Sensors 2019, 18, x FOR PEER REVIEW 9 of 27

Consequently, the dimension of the extracted image features is about 25,088 (512 × 7 × 7). This
number is too large to be used as an input for the RNN network. Therefore, we perform an
additional global average pooling operation on the outputs of convolution layers of VG-19-Net. As a
result, we obtain 512 features maps of 1 × 1 pixels. This indicates that the extracted features for each
input image are a 512-dimensional vector that is much smaller than the 25,088-dimensional vector.

(a)

(b)

Figure 3. Demonstration of an RNN network: (a) a simple RNN cell; (b) structure of a standard
LSTM cell.

Figure 4. General architecture of a stacked CNN-RNN network for temporal image extraction. Figure 4. General architecture of a stacked CNN-RNN network for temporal image extraction.

Table 2. Detailed description of architecture of the stacked CNN-RNN network in our study.

Repeat
Times Layer Type Padding

Size Stride Filter Size
Number
of Filters

(Neurons)

Size of Feature
Maps

Number of
Parameters

1 Input Layer n/a n/a n/a n/a 5 × 224 × 224 × 3 0

2
Convolution 1 × 1 1 × 1 3 × 3 64 5 × 224 × 224 × 64 38,720

ReLU n/a n/a n/a n/a 5 × 224 × 224 × 64 0

1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 112 × 112 × 64 0

2
Convolution 1 × 1 1 × 1 3 × 3 128 5 × 112 × 112 × 128 221,440

ReLU n/a n/a n/a n/a 5 × 112 × 112 × 128 0

1 Max Pooling n/a 2 × 2 2 × 2 1 5 ×56× 56× 128 0

4
Convolution 1 × 1 1 × 1 3 × 3 256 5 ×56× 56× 256 2,065,408

ReLU n/a n/a n/a n/a 5 × 56 × 56 × 256 0

1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 28 × 28 ×256 0

4
Convolution 1 × 1 1 × 1 3 × 3 512 5 × 28 × 28 × 512 8,259,584

ReLU n/a n/a n/a n/a 5 × 28 × 28 × 512 0

1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 14 × 14 × 512 0

4
Convolution 1 × 1 1 × 1 3 × 3 512 5 × 14 × 14 × 512 9,439,232

ReLU n/a n/a n/a n/a 5 × 14 × 14 × 512 0

1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 7 × 7 × 512 0

1 Global Average
Pooling n/a n/a n/a 1 5 × 512 0

1 Fully Connected
Layer n/a n/a n/a 1024 5 × 1024 525,312

1 Batch
Normalization n/a n/a n/a n/a 5 × 1024 4096

1 ReLU n/a n/a n/a n/a 5 × 1024 0

1 LSTM n/a n/a n/a n/a 1024 8,392,704

1 Dropout n/a n/a n/a n/a 1024 0

1 Fully Connected
Layer n/a n/a n/a 2 2 2050

Total number of parameters: 28,948,546
Total number of trainable parameters: 28,946,498
Total number of non-trainable parameters: 2048

Because the extracted features by convolutional layers of CNN network are the abstract texture
features, we further perform an additional manipulation on these features using a fully-connected
layer with 1024 neurons, to convert the extracted 512-dimensional texture features to abstract
1024-dimensional image features. This fully-connected layer serves two purposes: First, we further

Sensors 2019, 19, 410 11 of 27

learn the extracted image texture features to convert them to abstract features that are little affected by
the characteristics of detail of texture information in images. Second, as shown in Table 2, we utilize
a batch normalization layer in addition, to normalize the extracted features to reduce the overfitting
problem and the difference between the training and testing images. As a result, we extract a sequence
of normalized 1024-dimensional feature vectors of an image sequence and use them as the input of
LSTM cell. In the final step of our design for the stacked CNN-RNN network, the output of the LSTM
cell is connected to the output of the network. Because the purpose of our study is presentation attack
detection, the output of our network has two neurons which will decide if the input image sequence
belongs to “real” or “presentation attack” class. As shown in Table 2, we also use dropout method to
reduce the overfitting problem that usually occurs with deep networks [44].

4.4. Handcrafted Image Feature Extraction Based on the MLBP Method

The deep features extracted by stacked CNN-RNN network, as mentioned in Section 4.3, are
obtained by a learning procedure using two main operations of convolution and fully-multiplication
using a large amount of training samples. However, there are several difficulties for this kind of deep
neural network in extracting the optimal image features. One main difficulty is the under-fitting or
over-fitting problems that generally occur with deep neural networks due to several reasons, such as
lack of training data, and a huge number of network parameters. Because of these difficulties, although
the deep neural network has been proven to be better than the conventional method for computer
vision systems, it cannot be considered that the image features extracted by this method are optimal.
Therefore, as suggested by several previous studies, our study extracts the handcrafted image features
using the MLBP method, beside the deep features extracted by stacked the CNN-RNN network to
obtain adequate information from the input image.

The local binary pattern was initially used as an image texture descriptor for image
classification [45,46] and human age estimation [47]. In our previous study, this method was successfully
used for face-PAD problem [27]. By definition, the local binary pattern method can be considered
as an encoding method that encodes a pixel in the image using its surrounding pixels, as shown in
Equation (13). As shown in Equation (13), the LBP method encodes a pixel into a sequence of P (bits)
using P surrounding pixels and an adaptive threshold function. This method offers an important
characteristic to the encoded image that the encoded image is invariant to the change of illumination.

LBPR,P = ∑P−1
i=0 2is(gi − gc)where s(x) =

{
1 i f x ≥ 0
0 i f x < 0

(13)

Another important characteristic of the LBP method is that an LBP code of each pixel in image
is sufficient to represent various micro-texture features such as edge, corner, blob, and line-end in
image. Based on these two characteristics, we accumulate the histogram of micro-texture features over
a given image, and use this histogram as an image texture features for face-PAD. The use of these
kinds of texture features offers two advantages for face-PAD. First, the extracted image features are
invariant to the change of illumination. Second, the histogram features can reflect the distribution
of micro-texture features on face image. For the face-PAD problem, whereas the real images contain
normal texture features, the presentation attack images can contain additional abnormal ones such as
dot noise, broken textures, or blurring caused by the imperfection of presentation attack process. As a
result, the distribution of micro-texture features is odd compared with those of real images.

To accumulate the histogram of micro-texture features, we first encode all the pixels in a given
image using the LBP operator, as shown in Equation (13) to obtain an encoded image. Then, its pixels
are classified into several categories according to specific kinds of micro-texture features, i.e., uniform
and non-uniform patterns, with a definition that the uniform patterns contain at most two transitions
from 0 to 1 (or 1 to 0), and the non-uniform pattern contains more than 2 transitions from 0 to 1 (or 1 to
0). Figure 5 shows the methodology of the LBP feature formation used in our study. In our experiment,

Sensors 2019, 19, 410 12 of 27

we extracted the LBP features for different levels of the radius (R) and resolution (P) of the LBP operator
to form a new feature, namely, multi-level LBP (MLBP), to capture rich texture information from each
face image. In detail, we used three possible values of R (1, 2, and 3) and three values of P (8, 12, and
16) in our experiment. Consequently, we obtained a feature vector of 3732-component for each face
image [27].

Sensors 2019, 18, x FOR PEER REVIEW 11 of 27

The deep features extracted by stacked CNN-RNN network, as mentioned in Section 4.3, are
obtained by a learning procedure using two main operations of convolution and fully-multiplication
using a large amount of training samples. However, there are several difficulties for this kind of
deep neural network in extracting the optimal image features. One main difficulty is the
under-fitting or over-fitting problems that generally occur with deep neural networks due to several
reasons, such as lack of training data, and a huge number of network parameters. Because of these
difficulties, although the deep neural network has been proven to be better than the conventional
method for computer vision systems, it cannot be considered that the image features extracted by
this method are optimal. Therefore, as suggested by several previous studies, our study extracts the
handcrafted image features using the MLBP method, beside the deep features extracted by stacked
the CNN-RNN network to obtain adequate information from the input image.

The local binary pattern was initially used as an image texture descriptor for image
classification [45,46] and human age estimation [47]. In our previous study, this method was
successfully used for face-PAD problem [27]. By definition, the local binary pattern method can be
considered as an encoding method that encodes a pixel in the image using its surrounding pixels, as
shown in Equation (13). As shown in Equation (13), the LBP method encodes a pixel into a sequence
of P (bits) using P surrounding pixels and an adaptive threshold function. This method offers an
important characteristic to the encoded image that the encoded image is invariant to the change
of illumination. 𝐿𝐵𝑃ோ, = ∑ 2𝑠ሺ𝑔 − 𝑔ሻିଵୀ where 𝑠ሺ𝑥ሻ = ൜ 1 𝑖𝑓 𝑥 00 𝑖𝑓 𝑥 ൏ 0 (13)

Another important characteristic of the LBP method is that an LBP code of each pixel in image is
sufficient to represent various micro-texture features such as edge, corner, blob, and line-end in
image. Based on these two characteristics, we accumulate the histogram of micro-texture features
over a given image, and use this histogram as an image texture features for face-PAD. The use of
these kinds of texture features offers two advantages for face-PAD. First, the extracted image
features are invariant to the change of illumination. Second, the histogram features can reflect the
distribution of micro-texture features on face image. For the face-PAD problem, whereas the real
images contain normal texture features, the presentation attack images can contain additional
abnormal ones such as dot noise, broken textures, or blurring caused by the imperfection of
presentation attack process. As a result, the distribution of micro-texture features is odd compared
with those of real images.

(a)

(b)

Figure 5. Handcrafted image feature extraction process using the MLBP method: (a) an input face
image from NUAA dataset [16]; (b) formation of the MLBP features of (a) (left: encoded LBP image;
right: LBP features).

4.5. Presentation Attack Detection Using SVM

Using the two feature extraction methods mentioned in Sections 4.3 and 4.4, we extract two
feature vectors for an input sequence of faces, i.e., a 1024-dimensional deep feature vector and
3732-dimensional handcrafted feature vector. As the final step of our proposed method, we employ
the SVM method to classify the input sequence into a real or presentation attack class using these
extracted feature vectors. For this purpose, our study utilizes two approaches for combining these
two feature vectors, i.e., the feature level fusion (FLF) and score level fusion (SLF) [27,39]. As the first
approach of feature level fusion, a concrete combined feature vector is formed by concatenating the
two individual vectors. As a result, we obtain a new feature vector, named the feature level fusion
vector, which is a 4756-dimensional vector. Because this new feature vector is a combination of the two
extracted feature vectors, it contains information associated with each feature vector. This combined
feature vector is used as the input to SVM for the purpose of classification. In Figure 6, we show the
graphical demonstration of this combination approach.

As the second combination approach, we first use the SVM method to classify the input sequence
into a real or presentation attack class using the individual feature vector (deep or handcrafted vector).
As the output of each classifier, we obtain an output value that represents the distance from the input
vector to the classifier. In our study, this value is considered a new concise feature that represents
the possibility of an input sequence belonging to real or presentation attack classes. As a result, we
obtain two output values for two feature vectors. These output values are then concatenated to form a
new 2-dimensional feature vector that is finally used as the input of additional SVM to classify the

Sensors 2019, 19, 410 13 of 27

input sequence face as real or presentation attack classes. The graphical flow chart of this approach is
depicted in Figure 7.Sensors 2019, 18, x FOR PEER REVIEW 13 of 27

Figure 6. Feature level fusion approach.

Figure 7. Score level fusion approach.

As mentioned above, our study utilizes the SVM method for classification. This up-to-date
classification method and has been widely used in many computer vision systems for classification
or regression purposes [48]. This method uses a training dataset to construct the best suitable
hyper-plane for separating two (or many) classes by maximizing the distance (called margin) from
the selected classifier to several nearest data samples (called support vectors). For complex problems
such as non-linear classification, the SVM method employs a special technique, called kernel
function, to transform data from a low dimension space to a higher dimension space, on which the
new data can be easily separated by a hyper-plane. By definition, the SVM constructs a hyper-plane
by selecting several support vectors, as shown in Equation (14). In this equation, xi and yi are the
selected support vectors and their corresponding labels (−1 or 1), ai and b are the parameters of the
SVM model, and K() is the kernel function, as mentioned above. In our experiments, we use three
common kernel functions, i.e. the linear kernel, radial basis function (RBF) kernel, and polynomial
kernel, as shown in Equations (15)–(17).

𝑓ሺ𝒙ሻ = 𝑎𝒊𝒚𝒊𝐾ሺ𝒙, 𝒙𝒊ሻ + 𝑏
ୀଵ (14)

Figure 6. Feature level fusion approach.

Sensors 2019, 18, x FOR PEER REVIEW 13 of 27

Figure 6. Feature level fusion approach.

Figure 7. Score level fusion approach.

As mentioned above, our study utilizes the SVM method for classification. This up-to-date
classification method and has been widely used in many computer vision systems for classification
or regression purposes [48]. This method uses a training dataset to construct the best suitable
hyper-plane for separating two (or many) classes by maximizing the distance (called margin) from
the selected classifier to several nearest data samples (called support vectors). For complex problems
such as non-linear classification, the SVM method employs a special technique, called kernel
function, to transform data from a low dimension space to a higher dimension space, on which the
new data can be easily separated by a hyper-plane. By definition, the SVM constructs a hyper-plane
by selecting several support vectors, as shown in Equation (14). In this equation, xi and yi are the
selected support vectors and their corresponding labels (−1 or 1), ai and b are the parameters of the
SVM model, and K() is the kernel function, as mentioned above. In our experiments, we use three
common kernel functions, i.e. the linear kernel, radial basis function (RBF) kernel, and polynomial
kernel, as shown in Equations (15)–(17).

𝑓ሺ𝒙ሻ = 𝑎𝒊𝒚𝒊𝐾ሺ𝒙, 𝒙𝒊ሻ + 𝑏
ୀଵ (14)

Figure 7. Score level fusion approach.

As mentioned above, our study utilizes the SVM method for classification. This up-to-date
classification method and has been widely used in many computer vision systems for classification or
regression purposes [48]. This method uses a training dataset to construct the best suitable hyper-plane
for separating two (or many) classes by maximizing the distance (called margin) from the selected
classifier to several nearest data samples (called support vectors). For complex problems such
as non-linear classification, the SVM method employs a special technique, called kernel function,
to transform data from a low dimension space to a higher dimension space, on which the new data
can be easily separated by a hyper-plane. By definition, the SVM constructs a hyper-plane by selecting
several support vectors, as shown in Equation (14). In this equation, xi and yi are the selected support
vectors and their corresponding labels (−1 or 1), ai and b are the parameters of the SVM model, and
K() is the kernel function, as mentioned above. In our experiments, we use three common kernel

Sensors 2019, 19, 410 14 of 27

functions, i.e., the linear kernel, radial basis function (RBF) kernel, and polynomial kernel, as shown in
Equations (15)–(17).

f (x) =
k

∑
i=1

aiyiK(x, xi) + b (14)

Linear kernel : K
(
xi, xj

)
= xi

Txj (15)

Radial basis function kernel : K
(
xi, xj

)
= e−γ‖xi−xj‖2

(16)

Polynomial kernel : K
(
xi, xj

)
=
(

γxi
Txj + coe f

)degree
(17)

To reduce the complexity of training the SVM model as well as reducing the effect of noise, our
study applies the principal component analysis (PCA) technique to reduce the dimension of input
features to the SVM [27,39]. In our experiment, the number of principal components is selected
based on the variance of projected data on all possible axes; that is, we select the number of principal
components such that the total variance of selected axes is greater than 99% of total variance of all
possible axes. For implementation, we use several python packages, including keras for implementing
the deep neural network [49], and sci-kit learn for implementing the PCA and SVM [50] techniques.

5. Experimental Results

5.1. Experiment Setups

Based on our design, the proposed method receives a sequence of face images to decide which
class that input sequence belongs to. In our experiment, we set the size of sequence (number of
images) to five images. In addition, we collect five images at the interval of 12 frames to form an image
sequence. This setup is selected to enable image collection with a large time difference, so that the
images in sequence exhibit a large difference, allowing our algorithm to work properly. As mentioned
in Section 4, our study focuses on extracting spatial and temporal information from sequence of images
for face-PAD. Therefore, the length of sequence plays an important role in the system performance.
With the short sequence length, the temporal information is low, but the long sequence length increases
the processing time and the effects of noise. We experimentally determined these optimal values (five
images) by considering both the effect of noise and processing time of face-PAD system.

As shown in Section 4, our proposed method combines the two kinds of image features for
face-PAD, i.e., the deep features extracted by a deep stack CNN-RNN network, and the MLBP
features. To train the stacked CNN-RNN network, we employed the stochastic gradient descent (SGD)
optimizer method. In addition, we initialized the network parameters of the CNN using a pre-trained
VGG-19-Net model, which was successfully trained on the ImageNet dataset [36,49]. This scheme has
been used in previous studies to initialize the network parameters well, reduce the training time, and
consequently make the network easier to train. In Table 3, the parameters of training procedure used
in our experiments are specified. Our algorithms were implemented using Python language, and all
the experiments including training and testing were performed in a desktop computer with Intel Core
i7 CPU (Intel Corporation, Santa Clara, CA, USA), working at 3.4 GHz, 64 GB of RAM memory, and
Titan X graphics processing unit (GPU) [51].

Table 3. Parameters of SGD method for training the stacked CNN-RNN network in our experiments.

Mini-Batch
Size

Initial
Learning Rate

Learning Rate
Drop Period

(Epochs)

Learning Rate
Drop Factor

Number of
Training
Epochs

Momentum

4 0.00001 2 0.1 9 0.9

Sensors 2019, 19, 410 15 of 27

To measure the performance of a PAD system, we followed the ISO/IEC30107-3 standard [52].
In detail, we use two metrics, namely, attack presentation classification error (APCER) and bona-fide
presentation classification error rate (BPCER), to measure the performance of our proposed method as
well as compare them with those reported by previous studies. By definition, the APCER is an error
that occurs when an attack presentation is falsely accepted as a bona fide (real) image; and BPCER is
the error rate that occurs when a bona-fide image is falsely rejected as the attack presentation image.
These two measurements have trade-off characteristics. Therefore, we use an average measurement of
the two, namely, the average classification error rate (ACER), to measure the overall performance of
PAD system, as shown in Equation (18).

ACER =
APCER + BPCER

2
(18)

The APCER and BPCER metrics are analogous to the two common error measurements of a
recognition system, namely, the false acceptance rate (FAR) and false rejection rate (FRR). However,
the APCER and BPCER are measured for each type of attack according to each presentation attack
instrument (PAI). As indicated in Equation (18), the low value of ACER indicates a small detection
error and consequently a high performance of a PAD system. In addition to the APCE, BPCER, and
ACER metrics, we also measure the half-total-error rate (HTER) by averaging the detection error
without considering the type of attack, for comparison with several previous studies.

5.2. Description of Datasets

To evaluate the performance of our proposed method as well as compare it with those produced
by previous studies, we use two open datasets, namely, the CASIA dataset [13], and Replay-mobile
dataset [14]. These datasets have been widely used for evaluating the performance of face-PAD
systems in previous studies. The CASIA dataset contains real and presentation attack attempts of
50 people with a large variation of the quality of face regions (low, normal, and high quality) using
three presentation attack instruments of wrap-photo, cut-photo, and video display. For each person,
three real access video files were collected according to three different quality of faces, and at each
level of the quality of face, three presentation attack video files were captured according to three PAIs
(wrap-photo, cut-photo, and video). Consequently, the CASIA dataset contains a total of 600 video
files (150 video files for real access, and 450 video files for presentation attack). Because this dataset is
open to research on face-PAD problem, it was pre-divided into two sub-sets of training and testing
datasets, from which the training dataset is used to learn the face-PAD classifier/detector, and the
testing dataset is used to measure the performance of classifier obtained using the training dataset.
In Table 4, we show the description of the CASIA dataset and its sub-datasets. Using the face detection
method mentioned in Section 4.2, we detected the face images for CASIA dataset from each video file.
In addition, we artificially applied the data augmentation method on training dataset to generalize
the training data, as shown in Table 4. This is a common method that helps to reduce the effect of the
overfitting problem caused by the lack of training data in deep learning networks.

The second dataset used in our study (Replay-mobile) was constructed for the purpose of detecting
a presentation attack for a mobile-based face recognition system [14]. This dataset contains a total
of 1190 video files of real and presentation attacks attempts of 40 people under different lighting
conditions using mobile devices (phone or tablet). Two presentation attack instruments were used,
i.e., print photo and video display. Among 1190 video files, 1030 video files are used for face-PAD,
whereas the other 160 video files of real access are used for measuring the performance of face
recognition system. For a fair comparison between different face-PAD methods, the Replay-mobile
dataset was pre-divided into three different datasets, namely, the training, validation, and testing
datasets, without overlap between the datasets. Among these sub-datasets, the training dataset is
used for training detection model, whereas the validation dataset is used to optimally select system

Sensors 2019, 19, 410 16 of 27

parameters that could not be obtained using the training data, and the testing dataset is used to
measure the performance of the detection system in general.

Table 4. Description of the CASIA dataset used in our study (unit: image sequences).

CASIA Dataset
Training Dataset (20 people) Testing Dataset (30 people)

Total

Real Access Presentation
Attack Real Access Presentation

Attack

Video 60 180 90 270 600
Image Sequence without Data Augmentation 10,940 34,148 16,029 49,694 110,811

Image Sequence with Data Augmentation 65,640 68,296 16,029 49,694 199,659

In Table 5, the description of the Replay-mobile dataset used in our study is shown. Similar to the
CASIA dataset, we utilized the face detection and alignment method presented in Section 4.2 to detect
faces from video files and form the image sequences for our detection system, as shown in Table 5.
In addition, we performed data augmentation on the training and validation datasets to generalize
them and to reduce the effect of overfitting problem on our stacked CNN-RNN model during training.
The above-mentioned datasets are large and have been widely used for face-PAD in previous studies.
Because of this reason, our study uses these datasets to evaluate the performance of our proposed
method, and compares it with various reported performances produced by previous studies.

Table 5. Description of the Replay-mobile dataset used in our study (unit: image sequences).

Replay-Mobile
Dataset

Training Dataset (12 people) Validation Dataset (16 people) Testing Dataset(12 people)
Total

Real Access Presentation
Attack Real Access Presentation

Attack Real Access Presentation
Attack

Video 120 192 160 256 110 192 1030
Image Sequence

without Data
Augmentation

35,087 56,875 47,003 75,911 32,169 56,612 303,657

Image Sequence with
Data Augmentation 105,261 113,750 141,009 151,822 32,169 56,612 600,623

5.3. Experimental Results

In this section, we present the experimental results using our proposed method in Section 4 with
two public datasets mentioned in Section 5.2 (the CASIA and Replay-mobile datasets)

5.3.1. Experiment Using the CASIA Dataset

In this experiment, we used the CASIA dataset to evaluate the detection performance of the
proposed method mentioned in Section 4. We considered that the CASIA dataset was made of three
different PAIs, i.e., wrap-photo, cut-photo, and video display, to simulate three possible attack methods
based on wrap-photo, cut-photo, or video display. First, we trained the stacked CNN-RNN network
mentioned in Section 4.3 using the training dataset. Because the CASIA dataset was pre-divided into
two sub-datasets (training and testing), we only used the augmented training dataset presented in
Table 4 for this experiment. The result of this experiment is shown in Figure 8. As seen from Figure 8,
the training of the stacked CNN-RNN network was successfully performed by causing the loss to
reduce to reach zero, and increasing the accuracy to reach 100%, with the increase of training epoch.

Sensors 2019, 19, 410 17 of 27

Sensors 2019, 18, x FOR PEER REVIEW 17 of 27

experiments using the method proposed by Nguyen et al. [27] in which the VGG-19 network
architecture was invoked for deep feature extraction. However, as shown in Table 2, our approach
uses a stacked CNN-RNN network to extract a 1024-dimiensional feature vector for each sequence of
image while the work by Nguyen et al. [27] used the original VGG-19 network to extract a
4096-dimensional feature vector of each input image. The use of original network architectures as
Nguyen et al. [27] in this experiment makes an unbalanced comparison because of the different size
of extracted image feature vectors. Therefore, we reduced the number of neurons in the last two
fully-connected layers of the VGG-19 network from 4096 to 1024 in our experiment. By using this
set-up, we extract a same-size feature vector for an input of each network, and therefore, we can
fairly compare the detection accuracy of the two network architectures. It can be inferred from Table
6 that the deep features outperform the MLBP features for the face-PAD problem. The face-PAD
system based on deep CNN-RNN features produced errors (ACER) of 1.458%, 0.858%, and 1.108%
for the use of wrap-photo, cut-photo, and video display, respectively. Because the wrap-photo
produced the worst APCER value compared with cut-photo and video access, the final error of
face-PAD system using deep CNN-RNN features is about 1.458%. As shown in the first row of Table
6, the face-PAD system based on deep features extracted only by CNN network [27] has an error of
3.373%. This error is much higher than the error produced by our face-PAD system based on deep
CNN-RNN features. Through this experimental result, we observed the positive influence of RNN
architecture over the CNN architecture for the face-PAD system.

Figure 8. Convergence graphs (accuracy and loss) of the training procedure on the CASIA dataset.

Using only the MLBP features, we obtained the ACERs of 9.738%, 10.181%, and 9.884% for the
use of wrap-photo, cut-photo, and video display, respectively. As a result, the overall error of the
face-PAD system using only the MLBP features is about 10.181%. This error is much higher than that
produced by the system that only uses deep CNN-RNN features (1.458% vs. 10.181%). As mentioned
in Section 4.4, our study uses the MLBP method to extract spatial image features besides the deep
features extracted by a stacked CNN-RNN network. By combining several LBP features at different
scales and resolutions, we can extract more powerful image features than the conventional LBP
method. Although the LBP method has been widely used for the face-PAD problem in previous
research [17,19,22], it is still a handcrafted image feature extraction method. Therefore, it just
captures limited aspects of the face-PAD problem. By definition, the LBP method is designed to
capture texture (spatial) features on face regions by accumulating histograms of uniform and
non-uniform micro-texture features such as edge, corner, blob, and flat regions. Because of this
design, the LBP method can be affected by noise and/or background regions. As a result, the
performance of LBP method is limited. As shown in a previous study conducted by
Benlamoudi et al. [22], the LBP method produced a PAD error of about 13.1% using the CASIA

Figure 8. Convergence graphs (accuracy and loss) of the training procedure on the CASIA dataset.

With the pre-trained stacked CNN-RNN model, we continued performing experiments with our
proposed method using the SVM on the extracted deep and handcrafted image features. Detailed
experimental results are provided in Table 6 to be used for the testing dataset. In this table, we
provided the experimental results for four system configurations, i.e., the face-PAD system only
using deep features extracted using the stacked CNN-RNN network, the face-PAD system only using
MLBP features, and our proposed approach using feature level fusion (FLF) and score level fusion
(SLF). As explained in Section 4.3, most of previous studies used CNN for deep feature extraction.
To demonstrate the influences of our architecture that uses RNN for image feature extraction instead
of using only CNN architecture, we also provided the detection performance of face-PAD system
that uses deep features by CNN in Table 6. For this purpose, we performed experiments using the
method proposed by Nguyen et al. [27] in which the VGG-19 network architecture was invoked for
deep feature extraction. However, as shown in Table 2, our approach uses a stacked CNN-RNN
network to extract a 1024-dimiensional feature vector for each sequence of image while the work by
Nguyen et al. [27] used the original VGG-19 network to extract a 4096-dimensional feature vector of
each input image. The use of original network architectures as Nguyen et al. [27] in this experiment
makes an unbalanced comparison because of the different size of extracted image feature vectors.
Therefore, we reduced the number of neurons in the last two fully-connected layers of the VGG-19
network from 4096 to 1024 in our experiment. By using this set-up, we extract a same-size feature
vector for an input of each network, and therefore, we can fairly compare the detection accuracy of the
two network architectures. It can be inferred from Table 6 that the deep features outperform the MLBP
features for the face-PAD problem. The face-PAD system based on deep CNN-RNN features produced
errors (ACER) of 1.458%, 0.858%, and 1.108% for the use of wrap-photo, cut-photo, and video display,
respectively. Because the wrap-photo produced the worst APCER value compared with cut-photo
and video access, the final error of face-PAD system using deep CNN-RNN features is about 1.458%.
As shown in the first row of Table 6, the face-PAD system based on deep features extracted only by
CNN network [27] has an error of 3.373%. This error is much higher than the error produced by our
face-PAD system based on deep CNN-RNN features. Through this experimental result, we observed
the positive influence of RNN architecture over the CNN architecture for the face-PAD system.

Sensors 2019, 19, 410 18 of 27

Table 6. Detection errors (APCER, BPCER, ACER, and HTER) of our proposed method with the CASIA
dataset using three types of PAI (unit: %).

PAI
Wrap-photo Access Cut-photo Access Video Display Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER HTER

Using CNN
Features [27] 3.975 2.770 3.373 0.643 2.770 1.7065 1.810 2.770 2.290 3.975 2.770 3.373 2.536

Using
CNN-RNN

Features
1.531 1.385 1.458 0.331 1.385 0.858 0.831 1.385 1.108 1.531 1.385 1.458 0.954

Using MLBP
Features 9.133 10.343 9.738 10.018 10.343 10.181 9.425 10.343 9.884 10.018 10.343 10.181 9.488

FLF 3.508 0.917 2.212 0.676 0.917 0.797 1.292 0.917 1.104 3.508 0.917 2.212 1.443

SLF 1.536 1.036 1.286 0.507 1.036 0.771 0.121 1.036 0.579 1.536 1.036 1.286 0.910

Using only the MLBP features, we obtained the ACERs of 9.738%, 10.181%, and 9.884% for the
use of wrap-photo, cut-photo, and video display, respectively. As a result, the overall error of the
face-PAD system using only the MLBP features is about 10.181%. This error is much higher than that
produced by the system that only uses deep CNN-RNN features (1.458% vs. 10.181%). As mentioned in
Section 4.4, our study uses the MLBP method to extract spatial image features besides the deep features
extracted by a stacked CNN-RNN network. By combining several LBP features at different scales and
resolutions, we can extract more powerful image features than the conventional LBP method. Although
the LBP method has been widely used for the face-PAD problem in previous research [17,19,22], it is
still a handcrafted image feature extraction method. Therefore, it just captures limited aspects of the
face-PAD problem. By definition, the LBP method is designed to capture texture (spatial) features on
face regions by accumulating histograms of uniform and non-uniform micro-texture features such as
edge, corner, blob, and flat regions. Because of this design, the LBP method can be affected by noise
and/or background regions. As a result, the performance of LBP method is limited. As shown in a
previous study conducted by Benlamoudi et al. [22], the LBP method produced a PAD error of about
13.1% using the CASIA dataset. In another study, Boulkenafet et al. [19] showed that the LBP features
extracted from color face images work better than LBP features extracted from gray-scale face images.
They showed a PAD error of about 6.2% with the CASIA dataset. These results are consistent with
that (9.488%) in our experiments shown in Table 6, and they confirm that although the LBP features
can be used for face-PAD, their performance is limited compared with the deep features. Although
the performance of the face-PAD system using MLBP features is worse than that of the system using
deep features, the use of both handcrafted and deep features of our study help enhance the detection
performance of the face-PAD system. As shown in the lower part of Table 6, the score level fusion
approach produced an overall error of about 1.286%, which is much smaller than 1.458% for the system
using only deep features or 10.181% for the system using only handcrafted features. In addition,
Table 6 shows the HTERs of 0.954%, 9.488%, and 0.910% for the face-PAD system that only uses deep
features, only MLBP features, and score level fusion approach, respectively. This result again confirms
that the combination of deep and handcrafted image features is sufficient to enhance the detection
accuracy of the face-PAD system. This phenomenon is reasonable because deep and handcrafted
feature extraction methods work on two different aspects (learning and non-learning). Therefore,
they can complement each other and consequently enhance the performance of a face-PAD system.
For demonstration, the detection error tradeoff (DETs) curves of the four system configurations used in
this experiment are shown in Figure 9. In this figure, we drew the change of APCER according to the
change of bona-fide presentation acceptance rate (BPAR). The BPAR is measured as (100 – BPCER) (%).
As a result, the shape of DET curves are obtained as presented in Figure 9, and the curve at the higher
position indicates better detection performance of the face-PAD system. As shown in this figure, the
score level fusion approach outperforms the other configuration.

Sensors 2019, 19, 410 19 of 27
Sensors 2019, 18, x FOR PEER REVIEW 19 of 27

Figure 9. DET curves of the face-PAD systems using various feature combination approaches with a
testing subset of the CASIA dataset.

In some previous studies which used the CASIA dataset for performance evaluation, the
detection performance was not only evaluated using the entire CASIA dataset, but also with several
subsets of this dataset to validate the detection performance according to the quality of faces and
type of attack samples [13,18,19,24,27]. Therefore, we performed similar experiments to evaluate the
detection performance of our proposed method as well as compare the results with previous
studies. For this purpose, we first divided the entire CASIA dataset into six subsets according to the
quality of face regions and the type of attack method. As a result, we obtained six new datasets, i.e.
“Low quality”, “Normal Quality”, “High Quality”, “Wrap-Photo”, “Cut-Photo”, and “Video
Display”. Detailed descriptions of these datasets are provided in Table 7. For each sub-dataset, the
training data and testing data are obtained by taking the corresponding data in the entire training
dataset and testing dataset, respectively. Therefore, the training and testing dataset of each
sub-dataset do not contain the overlapped data of the same people. Similar to the experiment with
the entire CASIA dataset, we used the training data of each sub-dataset to train the classification
model, and used the testing dataset to evaluate the detection performance. The detailed
experimental results of this experiment are provided in Table 8. As shown in this table, we obtained
the smallest detection errors (ACER) using our proposed method for all six sub-datasets. Among
the six sub-datasets, we obtained the smallest detection errors of 1.417%, 0.004%, 1.085%, and 1.423%
using the score level fusion approach for “Low Quality”, “Normal Quality”, “High Quality”, and
“Video Display” datasets, respectively. For the “Wrap-Photo” and “Cut-Photo” datasets, we
obtained the smallest errors of 1.886% and 0.425%, respectively, using the feature level fusion
approach. However, as shown in Table 8, the difference between the feature level fusion and score
level fusion for these two datasets is very small (0.119% for “Wrap-Photo” dataset and 0.003% for
“Cut-Photo” dataset). From this result, it can be concluded that the proposed method with the score
level fusion approach performs well with the CASIA dataset, and outperforms all previous studies
using the same dataset.

Table 7. Description of subsets of the CASIA dataset used in our study (unit: image sequences).

Dataset Name

Training Dataset
 (20 people)

Testing Dataset
(30 people)

Total
Real Access

Presentation
Attack

Real Access
Presentation

Attack

Low Quality Dataset 3140 11019 5298 16166 35623

Normal Quality Dataset 3223 11275 4949 16141 35588

Figure 9. DET curves of the face-PAD systems using various feature combination approaches with a
testing subset of the CASIA dataset.

In some previous studies which used the CASIA dataset for performance evaluation, the detection
performance was not only evaluated using the entire CASIA dataset, but also with several subsets
of this dataset to validate the detection performance according to the quality of faces and type of
attack samples [13,18,19,24,27]. Therefore, we performed similar experiments to evaluate the detection
performance of our proposed method as well as compare the results with previous studies. For this
purpose, we first divided the entire CASIA dataset into six subsets according to the quality of face
regions and the type of attack method. As a result, we obtained six new datasets, i.e., “Low quality”,
“Normal Quality”, “High Quality”, “Wrap-Photo”, “Cut-Photo”, and “Video Display”. Detailed
descriptions of these datasets are provided in Table 7. For each sub-dataset, the training data and
testing data are obtained by taking the corresponding data in the entire training dataset and testing
dataset, respectively. Therefore, the training and testing dataset of each sub-dataset do not contain
the overlapped data of the same people. Similar to the experiment with the entire CASIA dataset,
we used the training data of each sub-dataset to train the classification model, and used the testing
dataset to evaluate the detection performance. The detailed experimental results of this experiment
are provided in Table 8. As shown in this table, we obtained the smallest detection errors (ACER)
using our proposed method for all six sub-datasets. Among the six sub-datasets, we obtained the
smallest detection errors of 1.417%, 0.004%, 1.085%, and 1.423% using the score level fusion approach
for “Low Quality”, “Normal Quality”, “High Quality”, and “Video Display” datasets, respectively. For
the “Wrap-Photo” and “Cut-Photo” datasets, we obtained the smallest errors of 1.886% and 0.425%,
respectively, using the feature level fusion approach. However, as shown in Table 8, the difference
between the feature level fusion and score level fusion for these two datasets is very small (0.119% for
“Wrap-Photo” dataset and 0.003% for “Cut-Photo” dataset). From this result, it can be concluded that
the proposed method with the score level fusion approach performs well with the CASIA dataset, and
outperforms all previous studies using the same dataset.

Sensors 2019, 19, 410 20 of 27

Table 7. Description of subsets of the CASIA dataset used in our study (unit: image sequences).

Dataset Name
Training Dataset (20 people) Testing Dataset (30 people)

Total

Real Access Presentation
Attack Real Access Presentation

Attack

Low Quality Dataset 3140 11,019 5298 16,166 35,623
Normal Quality Dataset 3223 11,275 4949 16,141 35,588

High Quality Dataset 4577 11,854 5782 17,387 39,600
Wrap-Photo Dataset 10,940 12,871 16,029 19,271 59,111
Cut-Photo Dataset 10,940 9499 16,029 14,784 51,252

Video Display Dataset 10,940 11,778 16,029 15,639 54,386

Table 8. Detection errors (ACERs) of various face-PAD methods using a subset of the CASIA dataset
according to the quality and type of presentation attack samples (unit: %).

Detection Method
Quality of the Presentation Attack

Samples Type of Presentation Attack Samples

Low
Quality
Dataset

Normal
Quality
Dataset

High
Quality
Dataset

Wrap-Photo
Dataset

Cut-Photo
Dataset

Video
Access
Dataset

Baseline Method [13] 13.0 13.0 26.0 16.0 6.0 24.0
IQA [18] 31.7 22.2 5.6 26.1 18.3 34.4

LBP-TOP [24] 10.0 12.0 13.0 6.0 12.0 10.0
LBP + Fisher Score + SVM [22] 7.2 8.8 14.4 12.0 10.0 14.7
Patch-based Classification [18] 5.26 6.00 5.30 5.78 5.49 5.02

LBP of Color Texture Image [19] 7.8 10.1 6.4 7.5 5.4 8.4
CNN + MLBP [27] 1.834 3.950 2.210 2.054 0.545 4.835

Proposed Method (FLF) 2.096 3.354 1.484 1.886 0.425 1.611
Proposed method (SLF) 1.417 0.040 1.085 2.005 0.428 1.423

As the final experiment in this section, we performed a comparison between the detection
performances of our proposed method and those produced by previous studies. As shown in
Table 9, the baseline method produced presented a detection error of about 17.000% [13]. This error
decreased to 13.1%, 6.2%, 5.4% and 5.07% in later research [18,19,22,23]. In a recent study conducted
by Nguyen et al. [27], they presented an error of about 1.696%. Compared with all of these detection
accuracies, the proposed approach produced the lowest detection error. Based on this result, we
conclude that our proposed method is sufficient for PAD for the face recognition system, and it is the
state-of-the-art result obtained using the CASIA dataset.

Table 9. Comparison of detection error (ACER) of our proposed method with various previous studies
(unit: %).

Baseline
Method [13]

LBP +
Fisher Score
+ SVM [22]

LBP of Color
Texture Image [19]

Dynamic
Local Ternary
Pattern [23]

Patch-based
Classification

[18]

CNN +
MLBP [27]

Proposed
Method

17.000 13.100 6.200 5.400 5.070 1.696 1.286

5.3.2. Experiment Using the Replay-Mobile Dataset

As shown in our experiments in Section 5.3.1, our proposed method demonstrated a better
detection accuracy than other previous studies using the CASIA dataset. In our next experiment, we
use an additional public dataset, namely, Replay-mobile, to evaluate the detection performance of our
proposed method. The use of this additional dataset helps in the evaluation of the performance of
our proposed method under various working environments of the face recognition system. This is a
significantly large dataset that was collected for the purpose of detecting presentation attack face images
for mobile devices. In our experiments, we grouped the presentation attack images into two different
PAIs, i.e., matte-screen (photos and videos of people are displayed on a Philips 227ELH monitor,

Sensors 2019, 19, 410 21 of 27

Philips, Amsterdam, Netherlands), and print (hard-copies of high-resolution digital photographs of
people are printed on A4 matte paper). Different from the CASIA dataset, the Replay-mobile dataset
was pre-divided into three subsets of training, validation, and testing. In this experiment, we used
the training dataset to train the stacked CNN-RNN model for deep feature extraction, as well as the
SVM model for final classification. The threshold for classification of an input face sequence into real
or presentation attack classes is optimally selected using the validation dataset such that the real and
presentation attack data are best separated. Finally, the performance of the detection system with
actual data is evaluated using the testing dataset.

Similar to the experiments with the CASIA dataset, we first performed a training procedure to
train the stacked CNN-RNN network for the deep feature extraction model. Figure 10 shows the result
of this experiment. Because the Replay-mobile dataset also provides a validation set for validation
purposes, we also measured the accuracy and loss of this dataset; these results are shown in Figure 10.
The training procedure was successfully done using the training dataset by producing a classification
accuracy of 100%, and causing the loss value to reduce to 0. Using the validation dataset, a similar
result was obtained with a slightly lower performance than the case of using the training dataset.

Sensors 2019, 18, x FOR PEER REVIEW 21 of 27

extraction, as well as the SVM model for final classification. The threshold for classification of an
input face sequence into real or presentation attack classes is optimally selected using the validation
dataset such that the real and presentation attack data are best separated. Finally, the performance of
the detection system with actual data is evaluated using the testing dataset.

Similar to the experiments with the CASIA dataset, we first performed a training procedure to
train the stacked CNN-RNN network for the deep feature extraction model. Figure 10 shows the
result of this experiment. Because the Replay-mobile dataset also provides a validation set for
validation purposes, we also measured the accuracy and loss of this dataset; these results are shown
in Figure 10. The training procedure was successfully done using the training dataset by producing a
classification accuracy of 100%, and causing the loss value to reduce to 0. Using the validation
dataset, a similar result was obtained with a slightly lower performance than the case of using the
training dataset.

Figure 10. Convergence graphs (accuracy and loss) of the training procedure on the Replay-mobile
dataset.

Figure 10. Convergence graphs (accuracy and loss) of the training procedure on the Replay-mobile
dataset.

In Table 10, the detection performance of five face-PAD system configurations using the
Replay-mobile dataset is provided. In this table, the optimal threshold for real and presentation attack
classifications is selected at the equal error rate (EER) point of the validation set. As shown in this
table, the face-PAD system that only uses deep features extracted by our stacked CNN-RNN network
produced an EER of 0.002%, and the face-PAD system that only uses the deep features extracted by
CNN network [27] produced an error (EER) of 0.067% for the validation dataset. By applying the
classification model to the testing dataset, we obtained the final detection errors (ACER) of 0.015% and
0.0045% using the deep features extracted by our stacked CNN-RNN and CNN networks, respectively.
From these results, we can see that the RNN architecture is more efficient than the CNN architecture in
extracting distinguish information from input face images. Using only the MLBP features, we obtained
an EER of 4.659% for the validation dataset and a final ACER of 5.379% for the testing dataset. Similar
to the experiment with the CASIA dataset, the detection performance using handcrafted features
is worse than that produced using the deep features. However, the detection error was reduced to
0% for both validation and testing datasets using the feature level fusion approach. Using the score
level fusion approach, the detection performance was maintained the same as that produced by the
face-PAD system that only uses the deep features. However, as shown in Table 10, the error is very
small and was caused by a single incorrect image sequence from the total of 32169 real sequences. From

Sensors 2019, 19, 410 22 of 27

these results, we conclude that our proposed method performs well with the Replay-mobile dataset.
The important reason that our proposed method works better with the Replay-mobile dataset than the
CASIA dataset is that the CASIA dataset contains larger variation of a presentation attack scenario
than the Replay-mobile dataset. As mentioned in Section 5.2, the CASIA dataset contains presentation
attack images with three different quality of face images (low, normal, and high qualities), and three
attack materials (wrap-photo, cut-photo, and video display), whereas the Replay-mobile dataset only
contains the video display and print photo. Therefore, it is harder to detect presentation attack images
when using the CASIA dataset than the Replay-mobile dataset. Because the detection error produced
by this experiment was almost 0.000%, we do not show the DET curve for these experiments.

Table 10. Detection errors (APCER, BPCER, ACER, and HTER) of our proposed method with the
Replay-mobile dataset using two types of PAI (unit: %).

PAI EER
Matte-Screen Attack Print Attack Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER HTER

Using CNN Features [27] 0.067 0.000 0.009 0.0045 0.000 0.009 0.0045 0.000 0.009 0.0045 0.0045
Using CNN-RNN Features 0.002 0.000 0.003 0.0015 0.000 0.003 0.0015 0.000 0.003 0.0015 0.0015
Using only MLBP features 4.659 8.820 1.937 5.379 2.451 1.937 2.194 8.820 1.937 5.379 5.684

FLF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SLF 0.000 0.000 0.003 0.0015 0.000 0.003 0.0015 0.000 0.003 0.0015 0.0015

To demonstrate the efficiency of our proposed method, we compared our detection result with that
of the baseline method. In the study conducted by Costa-Pazo et al. [14] (the author of Replay-mobile
dataset), they presented an HTER of about 7.8% and ACER of about 13.64% using the image quality
measurement (IQM) method, and an HTER of about 9.13% and ACER of about 9.53% using the
Gabor-jets feature extraction method. It can be clearly seen that the detection errors of our method
(0% using feature level fusion and 0.0015% using score level fusion approach) are much smaller than
the errors produced by the baseline method reported by Costa-Pazo el al. [14]. This comparison
demonstrates that our proposed method is sufficient for face-PAD and outperforms the previous
studies using the same working dataset.

Because the deep learning-based method normally needs to use a huge amount of data to
successfully train a network, it takes long time for the training procedure. The training time is mainly
dependent on two factors, i.e., the network architecture (the amount of trainable parameters and the
depth/wide of network) and the amount of training data. Using our proposed method and the CASIA
dataset that contains 133936 image sequences for training (with data augmentation), it takes about 5 h
per epoch. With the Replay-mobile dataset that contains 219011 training image sequences (with data
augmentation), it takes about 7 h per epoch for training our network. As shown in Table 3, we trained
the detection model using 9 epochs. Consequently, it takes about 45 h and 63 h for the CASIA and
Replay-mobile datasets, respectively.

5.3.3. Cross-Dataset Detection

In this experiment, we performed cross-dataset testing to evaluate the effect of difference in
the image capturing conditions and setup. For this purpose, we performed experiments for two
scenarios. In the first scenario, we trained the detection model using the CASIA dataset and validated
the detection performance using the Replay-mobile dataset. In the second scenario, we exchanged
the rule of the two datasets in the first experiment, i.e., we trained the detection model using the
Replay-mobile dataset, and validated the detection performance using the CASIA dataset.

As a result, we obtained the experimental results as shown in Tables 11 and 12, for the first and
second scenarios, respectively. For the first scenario, we obtained an HTER of 12.459% and ACER of
13.509% using the feature level fusion approach. Using the score level fusion approach, the errors
increased to an HTER of 20.632% and ACER of 23.589%. For the second scenario, the errors were
higher with an HTER of 42.785% and ACER of 48.466% using the feature level fusion approach, and an

Sensors 2019, 19, 410 23 of 27

HTER of 46.201% and ACER of 51.037% using the score level fusion approach, as shown in Table 12.
These detection errors are very high compared to those reported in Sections 5.3.1 and 5.3.2. Based
on these results, we conclude that the cross-dataset classification is still challenging and needs to be
addressed in future work. In addition, the detection model trained on the CASIA dataset performs
better than that trained on the Replay-mobile dataset. The reason is that the CASIA dataset contains
more general attack methods than the Replay-mobile dataset, as mentioned in Section 5.2. As a result,
the classification model trained on CASIA dataset works as a more general case compared to the model
trained on Replay-mobile dataset. This result suggests that we can obtain an efficient face-PAD model
by collecting maximum data that can simulate all possible kinds of attacking methods.

Table 11. Detection results (APCER, BPCER, ACER, and HTER) of cross-dataset testing (Trained with
CASIA; Tested with Replay-mobile) (unit: %).

PAI
Matte-Screen Attack Print Attack Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER HTER

FLF 4.304 22.714 13.509 0.039 22.714 11.377 4.304 22.714 13.509 12.459
SLF 12.838 34.341 23.589 0.822 34.341 17.581 12.838 34.341 23.589 20.632

Table 12. Detection results (APCER, BPCER, ACER, and HTER) of cross-dataset testing (Trained with
Replay-mobile; Tested with CASIA) (unit: %).

PAI
Wrap-photo Attack Cut-photo Attack Video Attack Overall

APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER HTER

FLF 65.451 14.499 39.975 82.434 14.499 48.466 67.255 14.499 40.877 82.434 14.499 48.466 42.785
SLF 77.510 13.039 45.275 89.035 13.039 51.037 72.505 13.039 42.772 89.035 13.039 51.037 46.201

As the final experiment, we compared the detection performance of our proposed method with a
previous study conducted by Peng et al. [53] for cross-dataset testing. In the study by Peng et al. [53],
they used two methods for image feature extraction, i.e., a combination of LBP and the guided scale
LBP (GS-LBP) and local guided binary pattern (LGBP). A detailed comparison is provided in Table 13.
As shown in this table, the study by Peng et al. produced errors of 41.25% and 51.29% for the use of
LBP+GS-LBP and the LGBP feature extraction methods, respectively, in the case of using the CASIA
dataset for training and Replay-mobile dataset for testing. Using our proposed method, we obtained
an error of 12.459%, which is much smaller than that produced in the study by Peng et al. [53].
For the second case of using the Replay-mobile dataset for training and CASIA dataset for testing, our
proposed method produced an error of 42.785%. Although this error is very high, it is still lower than
48.59% and 50.04% produced by the study by Peng et al. for the case of using LBP+GS-LBP and LGBP,
respectively. In addition, we performed experiments for the face-PAD system based on deep features
extracted by the CNN method to evaluate the influence of stacked CNN-RNN architecture on learning
temporal information over the CNN architecture with the cross-dataset. Using the deep image features
extracted by the CNN method [27], we obtained an error rate (HTER) of 21.496% for the case of using
the CASIA dataset for training and the Replay-mobile dataset for testing. In the opposite way, we
obtained an error of 34.530% for the case of using the Replay-mobile dataset for training and the CASIA
dataset for testing. As shown in Table 13, our proposed method outperforms the face-PAD system
based on CNN [27] in the case of using the CASIA dataset for training and the Replay-mobile dataset
for testing with an error of 12.459% versus 21.496%. However, the error produced by our method is
higher than that of the CNN-based method. The reason for this is that the CASIA dataset contains
more general presentation attack methods than the Replay-mobile dataset. Therefore, although the
detection model works well on the Replay-mobile dataset, it performs poorly in the CASIA dataset.
Through these comparisons, we conclude that our proposed method outperforms the previous work
conducted by Peng et al. [53] for the cross-dataset setup. In addition, we see that we should collect

Sensors 2019, 19, 410 24 of 27

data from as many as possible presentation attack methods for training to ensure the PAD performance
in the cross-dataset testing scenario.

Table 13. Comparison of detection error (HTER) produced by our proposed method with the previous
study by Peng et al. for the cross-dataset setup (unit: %).

Detection Method Trained with Tested with HTER

Using LBP + GS-LBP [53] CASIA Replay-mobile 41.25
Replay-mobile CASIA 48.59

Using LGBP [53] CASIA Replay-mobile 51.29
Replay-mobile CASIA 50.04

Using CNN [27] CASIA Replay-mobile 21.496
Replay-mobile CASIA 34.530

Our Proposed Method CASIA Replay-mobile 12.459
Replay-mobile CASIA 42.785

6. Conclusions

In this study, we proposed a new approach for detecting presentation attack face images to
enhance the security level of a face recognition system. The main idea of our study was the use of a
very deep stacked CNN-RNN network to learn the discrimination features from a sequence of face
images. The success of this network is offered by the use of a deep CNN network to efficiently learn
and extract texture features of face images, and an LSTM (a special kind of RNN) to learn the temporal
information from a sequence of face images. In addition, we confirmed that the combination of deep
and handcrafted image features is sufficient for enhancing the performance of the detection system.
Through our intensive experiments with two public datasets, i.e., the CASIA and Replay-mobile, we
demonstrated a state-of-the-art detection performance compared with previous studies. We obtained
an error rate of 1.286% using the CASIA dataset that contains 600 video files, and an error of 0.000%
using the Replay-mobile dataset that contains 1030 video files of real and presentation attacks.

Author Contributions: D.T.N. and K.R.P. designed and implemented the overall system, wrote the code,
performed experiments, and wrote this paper. T.D.P. and M.B.L. helped with part of the experiments and
provided comments during experiments.

Acknowledgments: This research was supported by the National Research Foundation of Korea (NRF) grant
funded by the Korea government (Ministry of Science and ICT) (NRF-2017R1C1B5074062), by the Basic Science
Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education
(NRF-2018R1D1A1B07041921), and by the Bio & Medical Technology Development Program of the NRF funded
by the Korean government, MSIT (NRF-2016M3A9E1915855).

Conflicts of Interest: The authors declare no conflict of interest

References

1. Jain, A.K.; Ross, A.; Prabhakar, S. An introduction to biometric recognition. IEEE Trans. Circuits Syst.
Video Technol. 2004, 14, 4–20. [CrossRef]

2. Nguyen, D.T.; Yoon, H.S.; Pham, D.T.; Park, K.R. Spoof detection for finger-vein recognition system using
NIR camera. Sensors 2017, 17, 2261. [CrossRef]

3. Lee, W.O.; Kim, Y.G.; Hong, H.G.; Park, K.R. Face recognition system for set-top box-based intelligent TV.
Sensors 2014, 14, 21726–21749. [CrossRef] [PubMed]

4. Nguyen, D.T.; Park, Y.H.; Lee, H.C.; Shin, K.Y.; Kang, B.J.; Park, K.R. Combining touched fingerprint and
finger-vein of a finger, and its usability evaluation. Adv. Sci. Lett. 2012, 5, 85–95. [CrossRef]

5. Pham, D.T.; Park, Y.H.; Nguyen, D.T.; Kwon, S.Y.; Park, K.R. Nonintrusive finger-vein recognition system
using NIR image sensor and accuracy analyses according to various factors. Sensors 2015, 15, 16866–16894.
[CrossRef] [PubMed]

http://dx.doi.org/10.1109/TCSVT.2003.818349
http://dx.doi.org/10.3390/s17102261
http://dx.doi.org/10.3390/s141121726
http://www.ncbi.nlm.nih.gov/pubmed/25412214
http://dx.doi.org/10.1166/asl.2012.2177
http://dx.doi.org/10.3390/s150716866
http://www.ncbi.nlm.nih.gov/pubmed/26184214

Sensors 2019, 19, 410 25 of 27

6. Nguyen, K.; Fookes, C.; Ross, A.; Sridharan, S. Iris recognition with off-the-shelf CNN features: A deep
learning perspective. IEEE Access 2017, 6, 18848–18855. [CrossRef]

7. Kim, D.; Jung, Y.; Toh, K.-A.; Son, B.; Kim, J. An empirical study on iris recognition in a mobile phone.
Expert Syst. Appl. 2016, 54, 328–339. [CrossRef]

8. Nam, G.P; Kang, B.J.; Park, K.R. Robustness of face recognition to variations of illumination on mobile
devices based on SVM. KSII Trans. Internet Inf. Syst. 2010, 4, 25–44. [CrossRef]

9. Kim, Y.G.; Lee, W.O.; Kim, K.W.; Hong, H.G.; Park, K.R. Performance enhancement of face recognition in
smart TV using symmetrical fuzz-based quality assessment. Symmetry 2015, 7, 1475–1518. [CrossRef]

10. Taigman, Y.; Yang, M.; Ranzato, M.A.; Wolf, L. DeepFace: Closing the gap to human-level performance
in face verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 23–28 June 2014; pp. 1701–1708.

11. Soltanpour, S.; Boufama, B.; Jonathan Wu, Q.M. A survey of local feature methods for 3D face recognition.
Pattern Recognit. 2017, 72, 391–406. [CrossRef]

12. Zhao, J.; Han, J.; Shao, L. Unconstrained face recognition using a set-to-set distance measure on deep learned
features. IEEE Trans. Circuits Syst. Video Technol. 2017, 28, 2679–2689. [CrossRef]

13. Zhang, Z.; Yan, J.; Liu, S.; Lei, Z.; Yi, D.; Li, S.Z. A face anti-spoofing database with diverse attack. In Proceedings
of the 5th International Conference on Biometric, New Delhi, India, 29 March–1 April 2012.

14. Costa-Pazo, A.; Bhattacharjee, S.; Vazquez-Fernandez, E.; Marcel, S. The replay-mobile face presentation
attack database. In Proceedings of the International Conference on the Biometrics Special Interest Group,
Darmstadt, Germary, 21–23 September 2016.

15. Kim, S.; Ban, Y.; Lee, S. Face liveness detection using defocus. Sensors 2015, 15, 1537–1563. [CrossRef]
[PubMed]

16. Tan, X.; Li, Y.; Liu, J.; Jiang, L. Face liveness detection from a single image with sparse low rank bilinear
discriminative model. In Proceedings of the 11th European Conference on Computer Vision, Crete, Greece,
5–11 September 2010.

17. Maatta, J.; Hadid, A.; Pietikainen, M. Face spoofing detection from single image using micro-texture analysis.
In Proceedings of the International Joint Conference on Biometric, Washington, DC, USA, 11–13 October
2011.

18. Akhtar, Z.; Foresti, G.L. Face spoof attack recognition using discriminative image patches. J. Electr. Comput.
Eng. 2016, 2016, 4721849. [CrossRef]

19. Boulkenafet, Z.; Komulainen, J.; Hadid, A. Face anti-spoofing based on color texture analysis. In Proceedings
of the IEEE International Conference on Image Processing, Quebec City, QC, Canada, 27–30 September 2015.

20. De Souza, G.B.; Da Silva Santos, D.F.; Pires, R.G.; Marana, A.N.; Papa, J.P. Deep texture features for robust
face spoofing detection. IEEE Trans. Circuits Syst. II-Express 2017, 64, 1397–1401. [CrossRef]

21. Galbally, J.; Marcel, S. Face anti-spoofing based on general image quality assessment. In Proceedings of the
22nd International Conference on Pattern Recognition, Stockholm, Sweden, 24–28 August 2014.

22. Benlamoudi, A.; Samai, D.; Ouafi, A.; Bekhouche, S.E.; Taleb-Ahmed, A.; Hadid, A. Face spoofing detection
using local binary patterns and Fisher score. In Proceedings of the 3rd International Conference on Control,
Engineering and Information Technology, Tlemcen, Algeria, 25–27 May 2015.

23. Parveen, S.; Ahmad, S.M.S.; Abbas, N.H.; Adnan, W.A.W.; Hanafi, M.; Naeem, N. Face liveness detection
using dynamic local ternary pattern (DLTP). Computers 2016, 5, 10. [CrossRef]

24. Freitas Pereira, T.; Komulainen, J.; Anjos, A.; De Martino, J.M.; Hadid, A.; Pietikainen, M.; Marcel, S. Face
liveness detection using dynamic texture. EURASIP J. Image Video Process. 2014, 2014, 2. [CrossRef]

25. Wasnik, P.; Raja, K.B.; Raghavendra, R.; Busch, C. Presentation attack detection in face biometric systems
using raw sensor data from smartphones. In Proceedings of the 12th International Conference on Signal
Image Technology and Internet-based Systems, Naples, Italy, 28 November–1 December 2016.

26. Menotti, D.; Chiachia, G.; Pinto, A.; Schwartz, W.R.; Pedrini, H.; Falcao, A.X.; Rocha, A. Deep representation
for iris, face and fingerprint spoofing detection. IEEE Trans. Inf. Forensic Secur. 2015, 10, 864–879. [CrossRef]

27. Nguyen, D.T.; Pham, D.T.; Baek, N.R.; Park, K.R. Combining deep and handcrafted image features for
presentation attack detection in face recognition systems using visible-light camera sensors. Sensors 2018, 18,
699. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/ACCESS.2017.2784352
http://dx.doi.org/10.1016/j.eswa.2016.01.050
http://dx.doi.org/10.3837/tiis.2010.01.002
http://dx.doi.org/10.3390/sym7031475
http://dx.doi.org/10.1016/j.patcog.2017.08.003
http://dx.doi.org/10.1109/TCSVT.2017.2710120
http://dx.doi.org/10.3390/s150101537
http://www.ncbi.nlm.nih.gov/pubmed/25594594
http://dx.doi.org/10.1155/2016/4721849
http://dx.doi.org/10.1109/TCSII.2017.2764460
http://dx.doi.org/10.3390/computers5020010
http://dx.doi.org/10.1186/1687-5281-2014-2
http://dx.doi.org/10.1109/TIFS.2015.2398817
http://dx.doi.org/10.3390/s18030699
http://www.ncbi.nlm.nih.gov/pubmed/29495417

Sensors 2019, 19, 410 26 of 27

28. Xu, Z.; Li, S.; Deng, W. Learning temporal features using LSTM-CNN architecture for face anti-spoofing.
In Proceedings of the 3rd Asian Conference on Pattern Recognition, Kuala Lumpur, Malaysia, 3–6 November
2015; pp. 141–145.

29. Mostafa, E.; Hammoud, R.; Ali, A.; Farag, A. Face recognition in low resolution thermal images. Comput. Vis.
Image Underst. 2013, 117, 1689–1694. [CrossRef]

30. Saleb, Y.; Edirisinghe, E. Novel approach to enhance face recognition using depth maps. In Proceedings of
the International Conference on Systems, Signals and Image Processing, Bratislava, Slovakia, 23–25 May
2016.

31. Dongguk Face Presentation Attack Detection Algorithms by Spatial and Temporal Information (DFPAD-STI).
Available online: http://dm.dgu.edu/link.html (accessed on 10 December 2018).

32. Kazemi, V.; Sullivan, J. One millisecond face alignment with an ensemble of regression trees. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014.

33. Viola, P.; Jones, M.J. Robust real-time object detection. Int. J. Comput. Vis. 2004, 57, 137–154. [CrossRef]
34. Qin, H.; Yan, J.; Li, X.; Hu, X. Joint training of cascaded CNN for face detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 3456–3465.

35. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection.
arXiv, 2016; arXiv:1506.02640v5.

36. Simonyan, K.; Zisserman, A. Very deep convolutional neural networks for large-scale image recognition.
In Proceedings of the International Conference on Learning Representations, Kunming, China, 25–27 September
2013.

37. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016.

38. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Boston, MA, USA, 7–12 June 2015.

39. Nguyen, D.T.; Kim, K.W.; Hong, H.G.; Koo, J.H.; Kim, M.C.; Park, K.R. Gender recognition from human-body
images using visible-light and thermal camera videos based on a convolutional neural network for image
feature extraction. Sensors 2017, 17, 637. [CrossRef] [PubMed]

40. Salehinejad, H.; Sankar, S.; Barfett, J.; Colak, E.; Valaee, S. Recent advances in recurrent neural network.
arXiv, 2017; arXiv:1801.01078v3.

41. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
42. Liu, D.; Ye, M.; Li, X.; Zhang, F.; Lin, L. Memory-based gait recognition. In Proceedings of the British Machine

Vision Conference, York, UK, 19–22 September 2016; pp. 82.1–82.12.
43. Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; Xie, X. Co-occurrence feature learning for skeleton based

action recognition using regularized deep LSTM networks. In Proceedings of the 30th AAAI Conference on
Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 3697–3703.

44. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent
neural networks from over-fitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

45. Ojala, T.; Pietikainen, M.; Maenpaa, T. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

46. Cho, S.R.; Nam, G.P.; Shin, K.Y.; Nguyen, D.T.; Pham, D.T.; Lee, E.C.; Park, K.R. Periocular-based biometrics
robust to eye rotation based on polar coordinates. Multimed. Tools Appl. 2017, 76, 11177–11197. [CrossRef]

47. Nguyen, D.T.; Park, K.R. Enhanced age estimation by considering the areas of non-skin and the non-uniform
illumination of visible light camera sensor. Expert Syst. Appl. 2016, 66, 302–322. [CrossRef]

48. Chang, C.-C.; Lin, C.-J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol.
2011, 2, 27. [CrossRef]

49. Keras Library for Deep Learning. Available online: https://keras.io/ (accessed on 10 December 2018).
50. Scikit-Learn Library for Machine Learning. Available online: https://scikit-learn.org/stable/ (accessed on

10 December 2018).
51. NVIDIA TitanX. Available online: https://www.nvidia.com/en-us/geforce/products/10series/titan-x-

pascal/ (accessed on 10 December 2018).

http://dx.doi.org/10.1016/j.cviu.2013.07.010
http://dm.dgu.edu/link.html
http://dx.doi.org/10.1023/B:VISI.0000013087.49260.fb
http://dx.doi.org/10.3390/s17030637
http://www.ncbi.nlm.nih.gov/pubmed/28335510
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1007/s11042-015-3052-0
http://dx.doi.org/10.1016/j.eswa.2016.09.024
http://dx.doi.org/10.1145/1961189.1961199
https://keras.io/
https://scikit-learn.org/stable/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/

Sensors 2019, 19, 410 27 of 27

52. ISO/IEC JTC1 SC37 Biometrics. ISO/IEC WD 30107–3: 2014 Information Technology—Presentation
Attack Detection-Part 3: Testing and Reporting and Classification of Attacks; International Organization for
Standardization: Geneva, Switzerland, 2014.

53. Peng, F.; Qin, L.; Long, M. Face presentation attack detection using guided scale texture. Multimed. Tools
Appl. 2018, 77, 8883–8909. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11042-017-4780-0
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Contributions
	Proposed Method
	Overall Design of Proposed Method
	Face Detection, Alignment, and Face Region Image Extraction
	Stacked CNN-RNN Architecture for Learning Temporal Information from Successive Images
	Handcrafted Image Feature Extraction Based on the MLBP Method
	Presentation Attack Detection Using SVM

	Experimental Results
	Experiment Setups
	Description of Datasets
	Experimental Results
	Experiment Using the CASIA Dataset
	Experiment Using the Replay-Mobile Dataset
	Cross-Dataset Detection

	Conclusions
	References

