Skip to main content
. 2019 Jan 20;19(2):410. doi: 10.3390/s19020410

Table 2.

Detailed description of architecture of the stacked CNN-RNN network in our study.

Repeat Times Layer Type Padding Size Stride Filter Size Number of Filters (Neurons) Size of Feature Maps Number of Parameters
1 Input Layer n/a n/a n/a n/a 5 × 224 × 224 × 3 0
2 Convolution 1 × 1 1 × 1 3 × 3 64 5 × 224 × 224 × 64 38,720
ReLU n/a n/a n/a n/a 5 × 224 × 224 × 64 0
1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 112 × 112 × 64 0
2 Convolution 1 × 1 1 × 1 3 × 3 128 5 × 112 × 112 × 128 221,440
ReLU n/a n/a n/a n/a 5 × 112 × 112 × 128 0
1 Max Pooling n/a 2 × 2 2 × 2 1 5 ×56×56× 128 0
4 Convolution 1 × 1 1 × 1 3 × 3 256 5 ×56×56× 256 2,065,408
ReLU n/a n/a n/a n/a 5 × 56 × 56 × 256 0
1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 28 × 28 ×256 0
4 Convolution 1 × 1 1 × 1 3 × 3 512 5 × 28 × 28 × 512 8,259,584
ReLU n/a n/a n/a n/a 5 × 28 × 28 × 512 0
1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 14 × 14 × 512 0
4 Convolution 1 × 1 1 × 1 3 × 3 512 5 × 14 × 14 × 512 9,439,232
ReLU n/a n/a n/a n/a 5 × 14 × 14 × 512 0
1 Max Pooling n/a 2 × 2 2 × 2 1 5 × 7 × 7 × 512 0
1 Global Average Pooling n/a n/a n/a 1 5 × 512 0
1 Fully Connected Layer n/a n/a n/a 1024 5 × 1024 525,312
1 Batch Normalization n/a n/a n/a n/a 5 × 1024 4096
1 ReLU n/a n/a n/a n/a 5 × 1024 0
1 LSTM n/a n/a n/a n/a 1024 8,392,704
1 Dropout n/a n/a n/a n/a 1024 0
1 Fully Connected Layer n/a n/a n/a 2 2 2050
Total number of parameters: 28,948,546
Total number of trainable parameters: 28,946,498
Total number of non-trainable parameters: 2048