Skip to main content
. 2019 Jan 20;19(2):410. doi: 10.3390/s19020410

Table 8.

Detection errors (ACERs) of various face-PAD methods using a subset of the CASIA dataset according to the quality and type of presentation attack samples (unit: %).

Detection Method Quality of the Presentation Attack Samples Type of Presentation Attack Samples
Low Quality Dataset Normal Quality Dataset High Quality Dataset Wrap-Photo Dataset Cut-Photo Dataset Video Access Dataset
Baseline Method [13] 13.0 13.0 26.0 16.0 6.0 24.0
IQA [18] 31.7 22.2 5.6 26.1 18.3 34.4
LBP-TOP [24] 10.0 12.0 13.0 6.0 12.0 10.0
LBP + Fisher Score + SVM [22] 7.2 8.8 14.4 12.0 10.0 14.7
Patch-based Classification [18] 5.26 6.00 5.30 5.78 5.49 5.02
LBP of Color Texture Image [19] 7.8 10.1 6.4 7.5 5.4 8.4
CNN + MLBP [27] 1.834 3.950 2.210 2.054 0.545 4.835
Proposed Method (FLF) 2.096 3.354 1.484 1.886 0.425 1.611
Proposed method (SLF) 1.417 0.040 1.085 2.005 0.428 1.423