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Abstract: According to the World Health Organization, the exacerbated use of antibiotics worldwide
is increasing multi-resistant infections, especially in the last decade. Xanthones are a class of
compounds receiving great interest in drug discovery and development that can be found as natural
products or obtained by synthesis. Many derivatives of xanthones are chiral and associated with
relevant biological activities, including antimicrobial. The aim of this review is to compile information
about chiral derivatives of xanthones from natural sources and their synthesized examples with
antimicrobial activity.
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1. Introduction

According to the Center for Disease Control and Prevention, almost half of all antibiotics
prescribed in outpatient clinics are unnecessary [1,2], where the overuse of antibiotics is one of the
causes of increasing bacterial resistance [3]. Additionally, the unregulated availability of antibiotics in a
community frequently leads to ill-advised self-medication. For example, in certain countries of Africa
and Asia, the use of non-prescription antimicrobials is quite frequent, which leads to unnecessary and
inadequate consumption, dose, and treatment periods [3]. These behaviors prompt microorganism
adaptation rather than treating infections [4], pointing towards an alarming increase of infections
triggered by resistant strains. Therefore, treatments tend to be more expensive and with lower
efficiency. Infections caused by strains with no response to antibiotics, such as vancomycin-resistant
Enterococcus (VRE) and methicillin-resistant Staphylococcus aureaus (MRSA) are becoming more frequent
and fatal [1]. Consequently, research for new antimicrobial agents to fight these pathogens remains a
challenge [1]. Frequently, the marked antibiotics interfere with bacterial biosynthesis, which is easily
mutated, leading to a loss of activity and development of new resistant strains [5]. Therefore, it is
important to develop new antimicrobial agents using different strategies to minimize mutations or
other mechanisms of resistance [5].

Xanthones (9H-xanthen-9-one) comprise a family of O-heterocycle symmetrical compounds with a
dibenzo-γ-pyrone scaffold (Figure 1). The interest of this structure in drug development comes from the
wide range of different substitutions that can generate a diverse library of compounds able to modulate
several biological responses, and as such, is a privileged structure for drug development [6–8].
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to modulate several biological responses, and as such, is a privileged structure for drug development 
[6–8]. 

 
Figure 1. Xanthone scaffold. 

According to their structures, xanthone derivatives can exhibit a variety of different activities 
such as antioxidant [9–11], vasorelaxant [12], anti-ulcer [13], anti-inflammatory [14], antiallergic [15], 
cytotoxic [16,17], antimicrobial [8,18–21], antiviral [17,22], antiplatelets [23], antiarrhythmic and 
antihypertensive [24], anesthetic [25], among others [8,26–29]. Their large spectrum of biological 
activities leads researchers all over the globe to isolate and/or synthesize new xanthone derivatives 
for medicinal research purposes [30–32]. Xanthone derivatives can be isolated from fungi, lichen, 
higher plants, and other organisms and/or sources from terrestrial and marine environments [33–35], 
or obtained by synthesis [8,29,36]. Among the natural and synthetic xanthone derivatives, many 
examples present a chiral moiety and enantioselectivity in the biological response. 

This review reunites the natural and synthetic chiral derivatives of xanthones (CDXs) with 
relevant antimicrobial activities. The described configuration of the stereogenic centers, the specific 
rotation, the enantiomeric ratio, and the enantioselectivity are presented in accordance to the source 
of the work. 

2. Natural Chiral Derivatives of Xanthones 

Natural products usually are complex structures with multiple stereogenic centers and a wide 
spectrum of biological activities [26,37,38]. The bulk of the plant extracts with pharmacological 
activity was established due to their traditional health care use in tribes and indigenous population 
[9,39–41]. Natural xanthone derivatives offer a wide range of biological activities with established 
pharmacological purposes [42]. One of the most studied xanthones found in nature is α-mangostin, 
isolated from tropical fruits of Garcinia mangostana. These fruits have been used for many decades in 
folk medicine to treat diarrhea, skin infections, and chronic wounds in Southeast Asia [10,43]. Several 
studies have been reported about its anticancer and antimicrobial activities, among others 
[10,14,16,27,43–46]. The xanthone α-mangostin is not chiral, but many chiral derivatives were isolated 
and presented interesting antimicrobial activity along with other similar structures. 

In order to verify the structure–activity relationship (SAR) of natural CDXs with common 
chemical groups, such as furan, pyran, hydroxy side chains, and others, the CDXs and antimicrobial 
activity were reunited in different topics. 

2.1. Natural CDXs with Furan Groups 

Furan derivatives can be found in natural products or synthesized, being associated to a wide 
range of biological and pharmacological activities [47]. Several natural CDXs with furan groups were 
isolated and few of them presented antimicrobial activities (Table 1). 

Table 1. Antimicrobial activity of natural CDXs with furan groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

1N 

Mangostanin 

 

Mycobacterium tuberculosis H37Ra (25 µM) 

Figure 1. Xanthone scaffold.

According to their structures, xanthone derivatives can exhibit a variety of different activities
such as antioxidant [9–11], vasorelaxant [12], anti-ulcer [13], anti-inflammatory [14], antiallergic [15],
cytotoxic [16,17], antimicrobial [8,18–21], antiviral [17,22], antiplatelets [23], antiarrhythmic and
antihypertensive [24], anesthetic [25], among others [8,26–29]. Their large spectrum of biological
activities leads researchers all over the globe to isolate and/or synthesize new xanthone derivatives
for medicinal research purposes [30–32]. Xanthone derivatives can be isolated from fungi, lichen,
higher plants, and other organisms and/or sources from terrestrial and marine environments [33–35],
or obtained by synthesis [8,29,36]. Among the natural and synthetic xanthone derivatives,
many examples present a chiral moiety and enantioselectivity in the biological response.

This review reunites the natural and synthetic chiral derivatives of xanthones (CDXs) with relevant
antimicrobial activities. The described configuration of the stereogenic centers, the specific rotation,
the enantiomeric ratio, and the enantioselectivity are presented in accordance to the source of the work.

2. Natural Chiral Derivatives of Xanthones

Natural products usually are complex structures with multiple stereogenic centers and a wide
spectrum of biological activities [26,37,38]. The bulk of the plant extracts with pharmacological
activity was established due to their traditional health care use in tribes and indigenous
population [9,39–41]. Natural xanthone derivatives offer a wide range of biological activities with
established pharmacological purposes [42]. One of the most studied xanthones found in nature is
α-mangostin, isolated from tropical fruits of Garcinia mangostana. These fruits have been used for
many decades in folk medicine to treat diarrhea, skin infections, and chronic wounds in Southeast
Asia [10,43]. Several studies have been reported about its anticancer and antimicrobial activities,
among others [10,14,16,27,43–46]. The xanthone α-mangostin is not chiral, but many chiral derivatives
were isolated and presented interesting antimicrobial activity along with other similar structures.

In order to verify the structure–activity relationship (SAR) of natural CDXs with common chemical
groups, such as furan, pyran, hydroxy side chains, and others, the CDXs and antimicrobial activity
were reunited in different topics.

2.1. Natural CDXs with Furan Groups

Furan derivatives can be found in natural products or synthesized, being associated to a wide
range of biological and pharmacological activities [47]. Several natural CDXs with furan groups were
isolated and few of them presented antimicrobial activities (Table 1).

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46].
Fukai et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N,
and 4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N).

According to Table 1, all the referred structures presented interesting antimicrobial activity.
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi
and Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against
Gram-negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described
only for formoxanthone-C [51].
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Table 1. Antimicrobial activity of natural CDXs with furan groups.

No. Name/Structure Antimicrobial Activity (MIC)

1N

Mangostanin
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According to their structures, xanthone derivatives can exhibit a variety of different activities 
such as antioxidant [9–11], vasorelaxant [12], anti-ulcer [13], anti-inflammatory [14], antiallergic [15], 
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2. Natural Chiral Derivatives of Xanthones

Natural products usually are complex structures with multiple stereogenic centers and a wide 
spectrum of biological activities [26,37,38]. The bulk of the plant extracts with pharmacological 
activity was established due to their traditional health care use in tribes and indigenous population 
[9,39–41]. Natural xanthone derivatives offer a wide range of biological activities with established 
pharmacological purposes [42]. One of the most studied xanthones found in nature is α-mangostin, 
isolated from tropical fruits of Garcinia mangostana. These fruits have been used for many decades in 
folk medicine to treat diarrhea, skin infections, and chronic wounds in Southeast Asia [10,43]. Several 
studies have been reported about its anticancer and antimicrobial activities, among others 
[10,14,16,27,43–46]. The xanthone α-mangostin is not chiral, but many chiral derivatives were isolated 
and presented interesting antimicrobial activity along with other similar structures. 

In order to verify the structure–activity relationship (SAR) of natural CDXs with common 
chemical groups, such as furan, pyran, hydroxy side chains, and others, the CDXs and antimicrobial 
activity were reunited in different topics. 

2.1. Natural CDXs with Furan Groups 

Furan derivatives can be found in natural products or synthesized, being associated to a wide 
range of biological and pharmacological activities [47]. Several natural CDXs with furan groups were 
isolated and few of them presented antimicrobial activities (Table 1). 

Table 1. Antimicrobial activity of natural CDXs with furan groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

1N 

 

Mycobacterium tuberculosis H37Ra (25 µM) Mycobacterium tuberculosis H37Ra (25 µM)

2N

Toxyloxanthone-C
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2N 

 Candida albicans (25 µM); Candida glabrata (8 µM); Aspergillus 
fumigatus (8 µM); Aspergilus nidulans (8 µM); Cryptococcus 

neoformans (8 µM); Bacillus substilis PCI-219 (3.13 µM); MSSA 
JMC-2874 (6.25 µM); MRSA (6.25 µM); Micrococcus Luteus 

(12.5 µM) 

3N 

 

B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM); 
MRSA (12.5 µM); M. luteus (12.5 µM) 

4N 

 B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis 

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL); E. faecalis 
(VanB) (>25 µg/mL); Enterococcus gallinarum (VanC) (>25 

µg/mL) 

5N 

 

B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis 
(18.7 µM); Salmonella Typhi (4.6 µM) 

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46]. Fukai 
et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N, and 
4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N). 

According to Table 1, all the referred structures presented interesting antimicrobial activity. 
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi and 
Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against Gram-
negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described only for 
formoxanthone-C [51]. 

2.2. Natural CDXs with Pyran Groups 

Many pyran derivative compounds with biological properties can be found in nature [53]. Few 
authors have been exploring their antimicrobial activity among other pharmacological properties 
[54]. In many natural structures, the xanthone scaffold is merged with pyran group that contains a 
stereogenic center (*). CDXs with pyran groups were isolated from many different species and 
displayed antimicrobial activities (Table 2). 

Table 2. Antimicrobial activity of natural CDXs with pyran groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

6N M. tuberculosis H37Ra (200 µg/mL)

7N M. tuberculosis H37Ra (25 µM) 

8N Calozeyloxanthone 
17 MRSA strains and 25 MSSA strains (range 4.1–8.1 

µg/mL) 

Candida albicans (25 µM); Candida glabrata (8 µM);
Aspergillus fumigatus (8 µM); Aspergilus nidulans (8 µM);
Cryptococcus neoformans (8 µM); Bacillus substilis PCI-219
(3.13 µM); MSSA JMC-2874 (6.25 µM); MRSA (6.25 µM);

Micrococcus Luteus (12.5 µM)

3N

Gerontoxanthone-G

Molecules 2019, 24, x FOR PEER REVIEW 3 of 28 

2N 

Candida albicans (25 µM); Candida glabrata (8 µM); Aspergillus 
fumigatus (8 µM); Aspergilus nidulans (8 µM); Cryptococcus 

neoformans (8 µM); Bacillus substilis PCI-219 (3.13 µM); MSSA 
JMC-2874 (6.25 µM); MRSA (6.25 µM); Micrococcus Luteus 

(12.5 µM) 

3N 
B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM); 

MRSA (12.5 µM); M. luteus (12.5 µM) 

4N 

B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis 

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL); E. faecalis 
(VanB) (>25 µg/mL); Enterococcus gallinarum (VanC) (>25 

µg/mL) 

5N 
B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis 

(18.7 µM); Salmonella Typhi (4.6 µM) 

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46]. Fukai 
et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N, and 
4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N). 

According to Table 1, all the referred structures presented interesting antimicrobial activity. 
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi and 
Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against Gram-
negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described only for 
formoxanthone-C [51]. 

2.2. Natural CDXs with Pyran Groups 

Many pyran derivative compounds with biological properties can be found in nature [53]. Few 
authors have been exploring their antimicrobial activity among other pharmacological properties 
[54]. In many natural structures, the xanthone scaffold is merged with pyran group that contains a 
stereogenic center (*). CDXs with pyran groups were isolated from many different species and 
displayed antimicrobial activities (Table 2). 

Table 2. Antimicrobial activity of natural CDXs with pyran groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

6N M. tuberculosis H37Ra (200 µg/mL)

7N M. tuberculosis H37Ra (25 µM) 

8N Calozeyloxanthone 
17 MRSA strains and 25 MSSA strains (range 4.1–8.1 

µg/mL) 

B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM);
MRSA (12.5 µM); M. luteus (12.5 µM)

4N

Gerontoxanthone-A
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2N 

 Candida albicans (25 µM); Candida glabrata (8 µM); Aspergillus 
fumigatus (8 µM); Aspergilus nidulans (8 µM); Cryptococcus 

neoformans (8 µM); Bacillus substilis PCI-219 (3.13 µM); MSSA 
JMC-2874 (6.25 µM); MRSA (6.25 µM); Micrococcus Luteus 

(12.5 µM) 

3N 

 

B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM); 
MRSA (12.5 µM); M. luteus (12.5 µM) 

4N 

 B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis 

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL); E. faecalis 
(VanB) (>25 µg/mL); Enterococcus gallinarum (VanC) (>25 

µg/mL) 

5N 

 

B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis 
(18.7 µM); Salmonella Typhi (4.6 µM) 

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46]. Fukai 
et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N, and 
4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N). 

According to Table 1, all the referred structures presented interesting antimicrobial activity. 
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi and 
Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against Gram-
negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described only for 
formoxanthone-C [51]. 

2.2. Natural CDXs with Pyran Groups 

Many pyran derivative compounds with biological properties can be found in nature [53]. Few 
authors have been exploring their antimicrobial activity among other pharmacological properties 
[54]. In many natural structures, the xanthone scaffold is merged with pyran group that contains a 
stereogenic center (*). CDXs with pyran groups were isolated from many different species and 
displayed antimicrobial activities (Table 2). 

Table 2. Antimicrobial activity of natural CDXs with pyran groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

6N M. tuberculosis H37Ra (200 µg/mL)

7N M. tuberculosis H37Ra (25 µM) 

8N Calozeyloxanthone 
17 MRSA strains and 25 MSSA strains (range 4.1–8.1 

µg/mL) 

B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL);
E. faecalis (VanB) (>25 µg/mL);

Enterococcus gallinarum (VanC) (>25 µg/mL)

5N

Formoxanthone-C
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2N 

 Candida albicans (25 µM); Candida glabrata (8 µM); Aspergillus 
fumigatus (8 µM); Aspergilus nidulans (8 µM); Cryptococcus 

neoformans (8 µM); Bacillus substilis PCI-219 (3.13 µM); MSSA 
JMC-2874 (6.25 µM); MRSA (6.25 µM); Micrococcus Luteus 

(12.5 µM) 

3N 

 

B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM); 
MRSA (12.5 µM); M. luteus (12.5 µM) 

4N 

 B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis 

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL); E. faecalis 
(VanB) (>25 µg/mL); Enterococcus gallinarum (VanC) (>25 

µg/mL) 

5N 

 

B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis 
(18.7 µM); Salmonella Typhi (4.6 µM) 

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46]. Fukai 
et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N, and 
4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N). 

According to Table 1, all the referred structures presented interesting antimicrobial activity. 
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi and 
Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against Gram-
negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described only for 
formoxanthone-C [51]. 

2.2. Natural CDXs with Pyran Groups 

Many pyran derivative compounds with biological properties can be found in nature [53]. Few 
authors have been exploring their antimicrobial activity among other pharmacological properties 
[54]. In many natural structures, the xanthone scaffold is merged with pyran group that contains a 
stereogenic center (*). CDXs with pyran groups were isolated from many different species and 
displayed antimicrobial activities (Table 2). 

Table 2. Antimicrobial activity of natural CDXs with pyran groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

6N M. tuberculosis H37Ra (200 µg/mL)

7N M. tuberculosis H37Ra (25 µM) 

8N Calozeyloxanthone 
17 MRSA strains and 25 MSSA strains (range 4.1–8.1 

µg/mL) 

B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis
(18.7 µM); Salmonella Typhi (4.6 µM)

MIC: Minimum inhibitory concentration; MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus;
* Stereogenic center.

2.2. Natural CDXs with Pyran Groups

Many pyran derivative compounds with biological properties can be found in nature [53].
Few authors have been exploring their antimicrobial activity among other pharmacological
properties [54]. In many natural structures, the xanthone scaffold is merged with pyran group that
contains a stereogenic center (*). CDXs with pyran groups were isolated from many different species
and displayed antimicrobial activities (Table 2).

Table 2. Antimicrobial activity of natural CDXs with pyran groups.

No. Name/Structure Antimicrobial Activity (MIC)

6N

Mangostanol
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2N 

Candida albicans (25 µM); Candida glabrata (8 µM); Aspergillus 
fumigatus (8 µM); Aspergilus nidulans (8 µM); Cryptococcus 

neoformans (8 µM); Bacillus substilis PCI-219 (3.13 µM); MSSA 
JMC-2874 (6.25 µM); MRSA (6.25 µM); Micrococcus Luteus 

(12.5 µM) 

3N 
B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM); 

MRSA (12.5 µM); M. luteus (12.5 µM) 

4N 

B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis 

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL); E. faecalis 
(VanB) (>25 µg/mL); Enterococcus gallinarum (VanC) (>25 

µg/mL) 

5N 
B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis 

(18.7 µM); Salmonella Typhi (4.6 µM) 

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46]. Fukai 
et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N, and 
4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N). 

According to Table 1, all the referred structures presented interesting antimicrobial activity. 
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi and 
Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against Gram-
negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described only for 
formoxanthone-C [51]. 

2.2. Natural CDXs with Pyran Groups 

Many pyran derivative compounds with biological properties can be found in nature [53]. Few 
authors have been exploring their antimicrobial activity among other pharmacological properties 
[54]. In many natural structures, the xanthone scaffold is merged with pyran group that contains a 
stereogenic center (*). CDXs with pyran groups were isolated from many different species and 
displayed antimicrobial activities (Table 2). 

Table 2. Antimicrobial activity of natural CDXs with pyran groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

6N M. tuberculosis H37Ra (200 µg/mL)

7N M. tuberculosis H37Ra (25 µM) 

8N Calozeyloxanthone 
17 MRSA strains and 25 MSSA strains (range 4.1–8.1 

µg/mL) 

M. tuberculosis H37Ra (200 µg/mL)

7N

Tovophyllin-B
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2N 

Candida albicans (25 µM); Candida glabrata (8 µM); Aspergillus 
fumigatus (8 µM); Aspergilus nidulans (8 µM); Cryptococcus 

neoformans (8 µM); Bacillus substilis PCI-219 (3.13 µM); MSSA 
JMC-2874 (6.25 µM); MRSA (6.25 µM); Micrococcus Luteus 

(12.5 µM) 

3N 
B. subtilis PCI-219 (12.5 µM); MSSA JMC-2874 (12.5 µM); 

MRSA (12.5 µM); M. luteus (12.5 µM) 

4N 

B. subtilis PCI-219 (<25 µM); MSSA JMC-2874 (<25 µM);
MRSA (<25 µM); M. luteus (<25 µM); Enterococcus faecalis 

(VSE) (>25 µg/mL); E. faecalis (VanA) (>25 µg/mL); E. faecalis 
(VanB) (>25 µg/mL); Enterococcus gallinarum (VanC) (>25 

µg/mL) 

5N 
B. Substilis (4.6 µM); S. aureus (2.3 µM); Streptococcus faecalis 

(18.7 µM); Salmonella Typhi (4.6 µM) 

Mangostanin (1N) was isolated by Nilar et al. [48] and studied by Suksamrarn et al. [46]. Fukai 
et al. [49,50] focused on Cudrania cochinchinensis and C. fruticosa and isolated compounds 2N, 3N, and 
4N. Boonsri et al. [51] explored the roots of Cratoxylum formosum to obtain formoxanthone-C (5N). 

According to Table 1, all the referred structures presented interesting antimicrobial activity. 
Toxyloxanthone-C (2N) and formoxanthone-C (5N) displayed strong activity against fungi and 
Gram-positive bacteria [21,49,51,52], while formoxanthone-C (5N) was also active against Gram-
negative bacteria (S. typhi) [51]. The configuration of the stereogenic center was described only for 
formoxanthone-C [51]. 

2.2. Natural CDXs with Pyran Groups 

Many pyran derivative compounds with biological properties can be found in nature [53]. Few 
authors have been exploring their antimicrobial activity among other pharmacological properties 
[54]. In many natural structures, the xanthone scaffold is merged with pyran group that contains a 
stereogenic center (*). CDXs with pyran groups were isolated from many different species and 
displayed antimicrobial activities (Table 2). 

Table 2. Antimicrobial activity of natural CDXs with pyran groups. 

No. Name/Structure Antimicrobial Activity (MIC) 

6N M. tuberculosis H37Ra (200 µg/mL)

7N M. tuberculosis H37Ra (25 µM) 

8N Calozeyloxanthone 
17 MRSA strains and 25 MSSA strains (range 4.1–8.1 

µg/mL) 

M. tuberculosis H37Ra (25 µM)
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Table 2. Cont.

No. Name/Structure Antimicrobial Activity (MIC)

8N

Calozeyloxanthone
Molecules 2019, 24, x FOR PEER REVIEW 4 of 28 

9N 

 
Escherichia coli (625 µg/mL), Klebsiella pneumoniae (625 
µg/mL), Proteus vulgaris (312.5 µg/mL), S. typhi (625 

µg/mL), S. faecalis (625 µg/mL), C. albicans (312.5 µg/mL), 
C. krusei (312.25 µg/mL)

10N M. tuberculosis H37Ra (12.5 µM) 

11N 

 

MRSA-SK1 (128 µg/mL); S. aureus (inactive); E. coli (128 
µg/mL); Salmonella typhimurium (128 µg/mL) 

Suksamrarn et al. [46] isolated mangostanol (6N) and tovophyllin-B (7N) from G. mangostana. 
Dharmaratne et al. [55] isolated calozeyloxanthone (8N) from Calophyllum monii and C. lankensis, 
while smeathxanthone B (9N) was isolated from G. smeathmannii by Komguem et al. [41]. Namdaung 
et al. [56] and Makmur et al. [57] investigated artoindonesianin-C (10N), found in Artocarpus rigidus, 
and Siridechakorn et al. [53] studied cowagarcinone D (11N) in G. Cowa. 

Calozeyloxanthone (8N) revealed an interesting activity against many strains of MRSA and 
MSSA [55], and tovophyllin-B (7N) and artoindonesianin-C (10N) presented activity against 
mycobacterial strain [46,56] (Table 2). Regarding the structural similarity, these compounds (7N, 8N, 
and 10N), unlike the others of this group, contain two cycle units that contribute toward increasing 
the lipophilicity, which is a determinant factor to improve antimicrobial activity [46]. 

The specific rotations of the compounds smeathxanthone B (9N), [𝛼]ଶଶ +30.3° (c 0.02 MeOH), 
and artoindonesianin-C (10N), [𝛼]ଶସ 0° (c 0.16, CHCl3), were reported [41,57]. 

2.3. Natural CDXs with Hydroxy Side Chains 

Oxygenated and prenylated xanthones have been investigated as new drugs due to their 
pharmacological properties [58], such as antimalarial [59] and antimicrobial activities [60], among 
others. Besides these xanthones, only a few structures are found in nature containing hydroxy group 
in the lateral chains, and some of them displayed interesting antimicrobial activities (Table 3). 

Table 3. Antimicrobial activity of natural CDXs with hydroxy side chains. 

No. Name/Structure Antimicrobial Activity (MIC) 

12N 

Fuscaxanthone I 

Helicobacter pylori ATCC 43504 (30.5 µM); H. pylori 
DMST 20165 (15.2 µM); H. pylori HP40 (122.0 µM) 

13N  A. fumigatus (32 µM); C. albicans (inactive)

17 MRSA strains and 25 MSSA strains (range 4.1–8.1 µg/mL)

9N

Smeathxanthone B
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9N 

 
Escherichia coli (625 µg/mL), Klebsiella pneumoniae (625 
µg/mL), Proteus vulgaris (312.5 µg/mL), S. typhi (625 

µg/mL), S. faecalis (625 µg/mL), C. albicans (312.5 µg/mL), 
C. krusei (312.25 µg/mL)

10N M. tuberculosis H37Ra (12.5 µM) 

11N 

 

MRSA-SK1 (128 µg/mL); S. aureus (inactive); E. coli (128 
µg/mL); Salmonella typhimurium (128 µg/mL) 

Suksamrarn et al. [46] isolated mangostanol (6N) and tovophyllin-B (7N) from G. mangostana. 
Dharmaratne et al. [55] isolated calozeyloxanthone (8N) from Calophyllum monii and C. lankensis, 
while smeathxanthone B (9N) was isolated from G. smeathmannii by Komguem et al. [41]. Namdaung 
et al. [56] and Makmur et al. [57] investigated artoindonesianin-C (10N), found in Artocarpus rigidus, 
and Siridechakorn et al. [53] studied cowagarcinone D (11N) in G. Cowa. 

Calozeyloxanthone (8N) revealed an interesting activity against many strains of MRSA and 
MSSA [55], and tovophyllin-B (7N) and artoindonesianin-C (10N) presented activity against 
mycobacterial strain [46,56] (Table 2). Regarding the structural similarity, these compounds (7N, 8N, 
and 10N), unlike the others of this group, contain two cycle units that contribute toward increasing 
the lipophilicity, which is a determinant factor to improve antimicrobial activity [46]. 

The specific rotations of the compounds smeathxanthone B (9N), [𝛼]ଶଶ +30.3° (c 0.02 MeOH), 
and artoindonesianin-C (10N), [𝛼]ଶସ 0° (c 0.16, CHCl3), were reported [41,57]. 

2.3. Natural CDXs with Hydroxy Side Chains 

Oxygenated and prenylated xanthones have been investigated as new drugs due to their 
pharmacological properties [58], such as antimalarial [59] and antimicrobial activities [60], among 
others. Besides these xanthones, only a few structures are found in nature containing hydroxy group 
in the lateral chains, and some of them displayed interesting antimicrobial activities (Table 3). 

Table 3. Antimicrobial activity of natural CDXs with hydroxy side chains. 

No. Name/Structure Antimicrobial Activity (MIC) 

12N 

Fuscaxanthone I 

Helicobacter pylori ATCC 43504 (30.5 µM); H. pylori 
DMST 20165 (15.2 µM); H. pylori HP40 (122.0 µM) 

13N  A. fumigatus (32 µM); C. albicans (inactive)

Escherichia coli (625 µg/mL), Klebsiella pneumoniae
(625 µg/mL), Proteus vulgaris (312.5 µg/mL), S. typhi

(625 µg/mL), S. faecalis (625 µg/mL), C. albicans
(312.5 µg/mL), C. krusei (312.25 µg/mL)

10N

Artoindonesianin-C
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9N 

 
Escherichia coli (625 µg/mL), Klebsiella pneumoniae (625 
µg/mL), Proteus vulgaris (312.5 µg/mL), S. typhi (625 

µg/mL), S. faecalis (625 µg/mL), C. albicans (312.5 µg/mL), 
C. krusei (312.25 µg/mL)

10N M. tuberculosis H37Ra (12.5 µM) 

11N 

 

MRSA-SK1 (128 µg/mL); S. aureus (inactive); E. coli (128 
µg/mL); Salmonella typhimurium (128 µg/mL) 

Suksamrarn et al. [46] isolated mangostanol (6N) and tovophyllin-B (7N) from G. mangostana. 
Dharmaratne et al. [55] isolated calozeyloxanthone (8N) from Calophyllum monii and C. lankensis, 
while smeathxanthone B (9N) was isolated from G. smeathmannii by Komguem et al. [41]. Namdaung 
et al. [56] and Makmur et al. [57] investigated artoindonesianin-C (10N), found in Artocarpus rigidus, 
and Siridechakorn et al. [53] studied cowagarcinone D (11N) in G. Cowa. 

Calozeyloxanthone (8N) revealed an interesting activity against many strains of MRSA and 
MSSA [55], and tovophyllin-B (7N) and artoindonesianin-C (10N) presented activity against 
mycobacterial strain [46,56] (Table 2). Regarding the structural similarity, these compounds (7N, 8N, 
and 10N), unlike the others of this group, contain two cycle units that contribute toward increasing 
the lipophilicity, which is a determinant factor to improve antimicrobial activity [46]. 

The specific rotations of the compounds smeathxanthone B (9N), [𝛼]ଶଶ +30.3° (c 0.02 MeOH), 
and artoindonesianin-C (10N), [𝛼]ଶସ 0° (c 0.16, CHCl3), were reported [41,57]. 

2.3. Natural CDXs with Hydroxy Side Chains 

Oxygenated and prenylated xanthones have been investigated as new drugs due to their 
pharmacological properties [58], such as antimalarial [59] and antimicrobial activities [60], among 
others. Besides these xanthones, only a few structures are found in nature containing hydroxy group 
in the lateral chains, and some of them displayed interesting antimicrobial activities (Table 3). 

Table 3. Antimicrobial activity of natural CDXs with hydroxy side chains. 

No. Name/Structure Antimicrobial Activity (MIC) 

12N 

Fuscaxanthone I 

Helicobacter pylori ATCC 43504 (30.5 µM); H. pylori 
DMST 20165 (15.2 µM); H. pylori HP40 (122.0 µM) 

13N  A. fumigatus (32 µM); C. albicans (inactive)

M. tuberculosis H37Ra (12.5 µM)

11N

Cowagarcinone-D
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9N 

 
Escherichia coli (625 µg/mL), Klebsiella pneumoniae (625 
µg/mL), Proteus vulgaris (312.5 µg/mL), S. typhi (625 

µg/mL), S. faecalis (625 µg/mL), C. albicans (312.5 µg/mL), 
C. krusei (312.25 µg/mL)

10N M. tuberculosis H37Ra (12.5 µM) 

11N 

 

MRSA-SK1 (128 µg/mL); S. aureus (inactive); E. coli (128 
µg/mL); Salmonella typhimurium (128 µg/mL) 

Suksamrarn et al. [46] isolated mangostanol (6N) and tovophyllin-B (7N) from G. mangostana. 
Dharmaratne et al. [55] isolated calozeyloxanthone (8N) from Calophyllum monii and C. lankensis, 
while smeathxanthone B (9N) was isolated from G. smeathmannii by Komguem et al. [41]. Namdaung 
et al. [56] and Makmur et al. [57] investigated artoindonesianin-C (10N), found in Artocarpus rigidus, 
and Siridechakorn et al. [53] studied cowagarcinone D (11N) in G. Cowa. 

Calozeyloxanthone (8N) revealed an interesting activity against many strains of MRSA and 
MSSA [55], and tovophyllin-B (7N) and artoindonesianin-C (10N) presented activity against 
mycobacterial strain [46,56] (Table 2). Regarding the structural similarity, these compounds (7N, 8N, 
and 10N), unlike the others of this group, contain two cycle units that contribute toward increasing 
the lipophilicity, which is a determinant factor to improve antimicrobial activity [46]. 

The specific rotations of the compounds smeathxanthone B (9N), [𝛼]ଶଶ +30.3° (c 0.02 MeOH), 
and artoindonesianin-C (10N), [𝛼]ଶସ 0° (c 0.16, CHCl3), were reported [41,57]. 

2.3. Natural CDXs with Hydroxy Side Chains 

Oxygenated and prenylated xanthones have been investigated as new drugs due to their 
pharmacological properties [58], such as antimalarial [59] and antimicrobial activities [60], among 
others. Besides these xanthones, only a few structures are found in nature containing hydroxy group 
in the lateral chains, and some of them displayed interesting antimicrobial activities (Table 3). 

Table 3. Antimicrobial activity of natural CDXs with hydroxy side chains. 

No. Name/Structure Antimicrobial Activity (MIC) 

12N 

Fuscaxanthone I 

Helicobacter pylori ATCC 43504 (30.5 µM); H. pylori 
DMST 20165 (15.2 µM); H. pylori HP40 (122.0 µM) 

13N  A. fumigatus (32 µM); C. albicans (inactive)

MRSA-SK1 (128 µg/mL); S. aureus (inactive); E. coli
(128 µg/mL); Salmonella typhimurium (128 µg/mL)

MIC: Minimum inhibitory concentration; MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus;
* Stereogenic center.

Suksamrarn et al. [46] isolated mangostanol (6N) and tovophyllin-B (7N) from G. mangostana.
Dharmaratne et al. [55] isolated calozeyloxanthone (8N) from Calophyllum monii and C. lankensis,
while smeathxanthone B (9N) was isolated from G. smeathmannii by Komguem et al. [41].
Namdaung et al. [56] and Makmur et al. [57] investigated artoindonesianin-C (10N), found in Artocarpus
rigidus, and Siridechakorn et al. [53] studied cowagarcinone D (11N) in G. Cowa.

Calozeyloxanthone (8N) revealed an interesting activity against many strains of MRSA and
MSSA [55], and tovophyllin-B (7N) and artoindonesianin-C (10N) presented activity against
mycobacterial strain [46,56] (Table 2). Regarding the structural similarity, these compounds (7N,
8N, and 10N), unlike the others of this group, contain two cycle units that contribute toward increasing
the lipophilicity, which is a determinant factor to improve antimicrobial activity [46].

The specific rotations of the compounds smeathxanthone B (9N), [α]22
D +30.3◦ (c 0.02 MeOH),

and artoindonesianin-C (10N), [α]24
D 0◦ (c 0.16, CHCl3), were reported [41,57].

2.3. Natural CDXs with Hydroxy Side Chains

Oxygenated and prenylated xanthones have been investigated as new drugs due to their
pharmacological properties [58], such as antimalarial [59] and antimicrobial activities [60],
among others. Besides these xanthones, only a few structures are found in nature containing hydroxy
group in the lateral chains, and some of them displayed interesting antimicrobial activities (Table 3).

Fuscaxanthone I (12N) was isolated from G. fusca and presented anti-H. pylori activity [61].
Caledol (13N) and dicaledol (14N) were isolated from C. caledonicum, and both presented antifungal
activity against A. fumigates [62]. Antimycobacterial activity was exhibited by mangostenol (15N),
isolated from G. Mangostana, which was evaluated against M. tuberculosis [45,46].
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Table 3. Antimicrobial activity of natural CDXs with hydroxy side chains.

No. Name/Structure Antimicrobial Activity (MIC)

12N

Fuscaxanthone I
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9N 

 
Escherichia coli (625 µg/mL), Klebsiella pneumoniae (625 
µg/mL), Proteus vulgaris (312.5 µg/mL), S. typhi (625 

µg/mL), S. faecalis (625 µg/mL), C. albicans (312.5 µg/mL), 
C. krusei (312.25 µg/mL)

10N M. tuberculosis H37Ra (12.5 µM) 

11N 

 

MRSA-SK1 (128 µg/mL); S. aureus (inactive); E. coli (128 
µg/mL); Salmonella typhimurium (128 µg/mL) 

Suksamrarn et al. [46] isolated mangostanol (6N) and tovophyllin-B (7N) from G. mangostana. 
Dharmaratne et al. [55] isolated calozeyloxanthone (8N) from Calophyllum monii and C. lankensis, 
while smeathxanthone B (9N) was isolated from G. smeathmannii by Komguem et al. [41]. Namdaung 
et al. [56] and Makmur et al. [57] investigated artoindonesianin-C (10N), found in Artocarpus rigidus, 
and Siridechakorn et al. [53] studied cowagarcinone D (11N) in G. Cowa. 

Calozeyloxanthone (8N) revealed an interesting activity against many strains of MRSA and 
MSSA [55], and tovophyllin-B (7N) and artoindonesianin-C (10N) presented activity against 
mycobacterial strain [46,56] (Table 2). Regarding the structural similarity, these compounds (7N, 8N, 
and 10N), unlike the others of this group, contain two cycle units that contribute toward increasing 
the lipophilicity, which is a determinant factor to improve antimicrobial activity [46]. 

The specific rotations of the compounds smeathxanthone B (9N), [𝛼]ଶଶ +30.3° (c 0.02 MeOH), 
and artoindonesianin-C (10N), [𝛼]ଶସ 0° (c 0.16, CHCl3), were reported [41,57]. 

2.3. Natural CDXs with Hydroxy Side Chains 

Oxygenated and prenylated xanthones have been investigated as new drugs due to their 
pharmacological properties [58], such as antimalarial [59] and antimicrobial activities [60], among 
others. Besides these xanthones, only a few structures are found in nature containing hydroxy group 
in the lateral chains, and some of them displayed interesting antimicrobial activities (Table 3). 

Table 3. Antimicrobial activity of natural CDXs with hydroxy side chains. 

No. Name/Structure Antimicrobial Activity (MIC) 

12N 

Fuscaxanthone I 

Helicobacter pylori ATCC 43504 (30.5 µM); H. pylori 
DMST 20165 (15.2 µM); H. pylori HP40 (122.0 µM) 

13N  A. fumigatus (32 µM); C. albicans (inactive)

Helicobacter pylori ATCC 43504 (30.5 µM);
H. pylori DMST 20165 (15.2 µM);

H. pylori HP40 (122.0 µM)

13N

Caledol
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14N 

 

A. fumigatus (1 µM); C. albicans (inactive)

15N 

 

M. tuberculosis H37Ra (100 µM) 

 

Fuscaxanthone I (12N) was isolated from G. fusca and presented anti-H. pylori activity [61]. 
Caledol (13N) and dicaledol (14N) were isolated from C. caledonicum, and both presented antifungal 
activity against A. fumigates [62]. Antimycobacterial activity was exhibited by mangostenol (15N), 
isolated from G. Mangostana, which was evaluated against M. tuberculosis [45,46]. 

The specific rotation was reported only for fuscaxanthone-I (12N) and mangostenol (15N): [𝛼ଶ] 
−9.5° (c 0.20, CH3COCH3) and [𝛼ଷଵ] −20° (c 0.10, MeOH), respectively [61,63]. Neither absolute nor
relative configurations were reported.

2.4. Natural Caged Xanthones 

Another important type of CDXs are the caged xanthones, where one of the aromatic rings of 
the xanthone scaffold lost the aromaticity to form a bicyclic ring resulting in multiple stereogenic 
centers. 

Caged xanthones are a class of compounds known by their uses in traditional medicine and 
strong antimicrobial activity [64–66], among others [17,67,68]. However, these xanthone derivatives 
are more often investigated as antitumor agents than antimicrobial due to their potent cytotoxicity 
activity against various cultured mammalian cancer and drug-resistant cell lines at low 
concentrations [69–74]. 

A few caged xanthones with antimicrobial activity were reported (Table 4). 

Table 4. Antimicrobial activity of natural caged xanthones: scortechinones and prenylated. 

No. Name/Structure [𝛂]𝐃𝟐𝟗(c) a Antimicrobial Activity (MIC) 

16N 

 

+18° (0.028) 
S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL); 

MRSA (128 µg/mL) 

17N 

 

−105° (0.095) 
S. aureus (8 µg/mL); S aureus SK1 (2 µg/mL); MRSA

(2 µg/mL) 

18N Scortechinone C −107° (0.014) 
S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL); 

MRSA (32 µg/mL) 

A. fumigatus (32 µM); C. albicans (inactive)

14N

Dicaledol
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14N 

 

A. fumigatus (1 µM); C. albicans (inactive)

15N 

 

M. tuberculosis H37Ra (100 µM) 

 

Fuscaxanthone I (12N) was isolated from G. fusca and presented anti-H. pylori activity [61]. 
Caledol (13N) and dicaledol (14N) were isolated from C. caledonicum, and both presented antifungal 
activity against A. fumigates [62]. Antimycobacterial activity was exhibited by mangostenol (15N), 
isolated from G. Mangostana, which was evaluated against M. tuberculosis [45,46]. 

The specific rotation was reported only for fuscaxanthone-I (12N) and mangostenol (15N): [𝛼ଶ] 
−9.5° (c 0.20, CH3COCH3) and [𝛼ଷଵ] −20° (c 0.10, MeOH), respectively [61,63]. Neither absolute nor
relative configurations were reported.

2.4. Natural Caged Xanthones 

Another important type of CDXs are the caged xanthones, where one of the aromatic rings of 
the xanthone scaffold lost the aromaticity to form a bicyclic ring resulting in multiple stereogenic 
centers. 

Caged xanthones are a class of compounds known by their uses in traditional medicine and 
strong antimicrobial activity [64–66], among others [17,67,68]. However, these xanthone derivatives 
are more often investigated as antitumor agents than antimicrobial due to their potent cytotoxicity 
activity against various cultured mammalian cancer and drug-resistant cell lines at low 
concentrations [69–74]. 

A few caged xanthones with antimicrobial activity were reported (Table 4). 

Table 4. Antimicrobial activity of natural caged xanthones: scortechinones and prenylated. 

No. Name/Structure [𝛂]𝐃𝟐𝟗(c) a Antimicrobial Activity (MIC) 

16N 

 

+18° (0.028) 
S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL); 

MRSA (128 µg/mL) 

17N 

 

−105° (0.095) 
S. aureus (8 µg/mL); S aureus SK1 (2 µg/mL); MRSA

(2 µg/mL) 

18N Scortechinone C −107° (0.014) 
S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL); 

MRSA (32 µg/mL) 

A. fumigatus (1 µM); C. albicans (inactive)

15N

Mangostenol
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14N 

 

A. fumigatus (1 µM); C. albicans (inactive)

15N 

 

M. tuberculosis H37Ra (100 µM) 

 

Fuscaxanthone I (12N) was isolated from G. fusca and presented anti-H. pylori activity [61]. 
Caledol (13N) and dicaledol (14N) were isolated from C. caledonicum, and both presented antifungal 
activity against A. fumigates [62]. Antimycobacterial activity was exhibited by mangostenol (15N), 
isolated from G. Mangostana, which was evaluated against M. tuberculosis [45,46]. 

The specific rotation was reported only for fuscaxanthone-I (12N) and mangostenol (15N): [𝛼ଶ] 
−9.5° (c 0.20, CH3COCH3) and [𝛼ଷଵ] −20° (c 0.10, MeOH), respectively [61,63]. Neither absolute nor
relative configurations were reported.

2.4. Natural Caged Xanthones 

Another important type of CDXs are the caged xanthones, where one of the aromatic rings of 
the xanthone scaffold lost the aromaticity to form a bicyclic ring resulting in multiple stereogenic 
centers. 

Caged xanthones are a class of compounds known by their uses in traditional medicine and 
strong antimicrobial activity [64–66], among others [17,67,68]. However, these xanthone derivatives 
are more often investigated as antitumor agents than antimicrobial due to their potent cytotoxicity 
activity against various cultured mammalian cancer and drug-resistant cell lines at low 
concentrations [69–74]. 

A few caged xanthones with antimicrobial activity were reported (Table 4). 

Table 4. Antimicrobial activity of natural caged xanthones: scortechinones and prenylated. 

No. Name/Structure [𝛂]𝐃𝟐𝟗(c) a Antimicrobial Activity (MIC) 

16N 

 

+18° (0.028) 
S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL); 

MRSA (128 µg/mL) 

17N 

 

−105° (0.095) 
S. aureus (8 µg/mL); S aureus SK1 (2 µg/mL); MRSA

(2 µg/mL) 

18N Scortechinone C −107° (0.014) 
S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL); 

MRSA (32 µg/mL) 

M. tuberculosis H37Ra (100 µM)

MIC: Minimum inhibitory concentration; * Stereogenic center.

The specific rotation was reported only for fuscaxanthone-I (12N) and mangostenol (15N): [α26
D ]

−9.5◦ (c 0.20, CH3COCH3) and [α31
D ] −20◦ (c 0.10, MeOH), respectively [61,63]. Neither absolute nor

relative configurations were reported.

2.4. Natural Caged Xanthones

Another important type of CDXs are the caged xanthones, where one of the aromatic rings of the
xanthone scaffold lost the aromaticity to form a bicyclic ring resulting in multiple stereogenic centers.

Caged xanthones are a class of compounds known by their uses in traditional medicine and strong
antimicrobial activity [64–66], among others [17,67,68]. However, these xanthone derivatives are more
often investigated as antitumor agents than antimicrobial due to their potent cytotoxicity activity
against various cultured mammalian cancer and drug-resistant cell lines at low concentrations [69–74].

A few caged xanthones with antimicrobial activity were reported (Table 4).

Table 4. Antimicrobial activity of natural caged xanthones: scortechinones and prenylated.

No. Name/Structure [α]29
D (c) a Antimicrobial Activity (MIC)

16N

Scortechinone A

Molecules 2019, 24, x FOR PEER REVIEW 5 of 28 

14N 

 

A. fumigatus (1 µM); C. albicans (inactive)

15N 

 

M. tuberculosis H37Ra (100 µM) 

 

Fuscaxanthone I (12N) was isolated from G. fusca and presented anti-H. pylori activity [61]. 
Caledol (13N) and dicaledol (14N) were isolated from C. caledonicum, and both presented antifungal 
activity against A. fumigates [62]. Antimycobacterial activity was exhibited by mangostenol (15N), 
isolated from G. Mangostana, which was evaluated against M. tuberculosis [45,46]. 

The specific rotation was reported only for fuscaxanthone-I (12N) and mangostenol (15N): [𝛼ଶ] 
−9.5° (c 0.20, CH3COCH3) and [𝛼ଷଵ] −20° (c 0.10, MeOH), respectively [61,63]. Neither absolute nor
relative configurations were reported.

2.4. Natural Caged Xanthones 

Another important type of CDXs are the caged xanthones, where one of the aromatic rings of 
the xanthone scaffold lost the aromaticity to form a bicyclic ring resulting in multiple stereogenic 
centers. 

Caged xanthones are a class of compounds known by their uses in traditional medicine and 
strong antimicrobial activity [64–66], among others [17,67,68]. However, these xanthone derivatives 
are more often investigated as antitumor agents than antimicrobial due to their potent cytotoxicity 
activity against various cultured mammalian cancer and drug-resistant cell lines at low 
concentrations [69–74]. 

A few caged xanthones with antimicrobial activity were reported (Table 4). 

Table 4. Antimicrobial activity of natural caged xanthones: scortechinones and prenylated. 

No. Name/Structure [𝛂]𝐃𝟐𝟗(c) a Antimicrobial Activity (MIC) 

16N 

 

+18° (0.028) 
S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL); 

MRSA (128 µg/mL) 

17N 

 

−105° (0.095) 
S. aureus (8 µg/mL); S aureus SK1 (2 µg/mL); MRSA

(2 µg/mL) 

18N Scortechinone C −107° (0.014) 
S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL); 

MRSA (32 µg/mL) 

+18◦ (0.028) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL);
MRSA (128 µg/mL)
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Table 4. Cont.

No. Name/Structure [α]29
D (c) a Antimicrobial Activity (MIC)

17N

Scortechinone B

Molecules 2019, 24, x FOR PEER REVIEW 5 of 28 

14N 

 

A. fumigatus (1 µM); C. albicans (inactive)

15N 

 

M. tuberculosis H37Ra (100 µM) 

 

Fuscaxanthone I (12N) was isolated from G. fusca and presented anti-H. pylori activity [61]. 
Caledol (13N) and dicaledol (14N) were isolated from C. caledonicum, and both presented antifungal 
activity against A. fumigates [62]. Antimycobacterial activity was exhibited by mangostenol (15N), 
isolated from G. Mangostana, which was evaluated against M. tuberculosis [45,46]. 

The specific rotation was reported only for fuscaxanthone-I (12N) and mangostenol (15N): [𝛼ଶ] 
−9.5° (c 0.20, CH3COCH3) and [𝛼ଷଵ] −20° (c 0.10, MeOH), respectively [61,63]. Neither absolute nor
relative configurations were reported.

2.4. Natural Caged Xanthones 

Another important type of CDXs are the caged xanthones, where one of the aromatic rings of 
the xanthone scaffold lost the aromaticity to form a bicyclic ring resulting in multiple stereogenic 
centers. 

Caged xanthones are a class of compounds known by their uses in traditional medicine and 
strong antimicrobial activity [64–66], among others [17,67,68]. However, these xanthone derivatives 
are more often investigated as antitumor agents than antimicrobial due to their potent cytotoxicity 
activity against various cultured mammalian cancer and drug-resistant cell lines at low 
concentrations [69–74]. 

A few caged xanthones with antimicrobial activity were reported (Table 4). 

Table 4. Antimicrobial activity of natural caged xanthones: scortechinones and prenylated. 

No. Name/Structure [𝛂]𝐃𝟐𝟗(c) a Antimicrobial Activity (MIC) 

16N 

 

+18° (0.028) 
S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL); 

MRSA (128 µg/mL) 

17N 

 

−105° (0.095) 
S. aureus (8 µg/mL); S aureus SK1 (2 µg/mL); MRSA

(2 µg/mL) 

18N Scortechinone C −107° (0.014) 
S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL); 

MRSA (32 µg/mL) 

−105◦ (0.095) S. aureus (8 µg/mL);
S aureus SK1 (2 µg/mL); MRSA (2 µg/mL)

18N

Scortechinone C
Molecules 2019, 24, x FOR PEER REVIEW 6 of 28 

19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

−107◦ (0.014) S. aureus (32 µg/mL);
S aureus SK1 (32 µg/mL); MRSA (32 µg/mL)

19N

Scortechinone D
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O +222◦ (0.018) S. aureus (>256 µg/mL);
S aureus SK1 (>256 µg/mL)

20N

Scortechinone E
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

−240◦ (0.025) S. aureus (>256 µg/mL);
S aureus SK1 (>256 µg/mL)

21N

Scortechinone F
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

−333◦ (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N

Scortechinone G
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

−95◦ (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N

Scortechinone H
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

−120◦ (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N

Scortechinone I
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

+43◦ (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)
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Table 4. Cont.

No. Name/Structure [α]29
D (c) a Antimicrobial Activity (MIC)

25N

Scortechinone J
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

−200◦ (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N

Scortechinone K
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19N +222° (0.018) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

20N 

 

−240° (0.025) S. aureus (>256 µg/mL); S aureus SK1 (>256 µg/mL)

21N 

 

−333° (0.015) S. aureus (16 µg/mL); S aureus SK1 (4 µg/mL)

22N 

 

−95° (0.021) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

23N 

 

−120° (0.025) S. aureus (>64 µg/mL); S aureus SK1 (4 µg/mL)

24N +43° (0.023) S. aureus (8 µg/mL); S aureus SK1 (8 µg/mL)

25N 

 

−200° (0.015) S. aureus (32 µg/mL); S aureus SK1 (8 µg/mL)

26N 

 

+48° (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N  −176° (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

O

O

O
O

OH
H3CO

O

+48◦ (0.021) S. aureus (128 µg/mL); S aureus SK1 (128 µg/mL)

27N

Scortechinone L
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

−176◦ (0.017) S. aureus (>64 µg/mL); S aureus SK1 (>64 µg/mL)

28N

Scortechinone M
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

−353◦ (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N

Scortechinone N
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

−263◦ (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N

Scortechinone O
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

+77◦ (0.013) S. aureus (>128 µg/mL);
S aureus SK1 (>128 µg/mL)

31N

Scortechinone P
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

+83◦ (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)
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Table 4. Cont.

No. Name/Structure [α]29
D (c) a Antimicrobial Activity (MIC)

32N

2-isoprenylforbesione
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

MRSA USA300 SF8300 (7.20 mm b; >400 µM);
MSSA ATCC 25923 (7.56 mm b; 400 µM)

33N

Deoxygamboginin
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

MRSA USA300 SF8300 (6 mm b);
MSSA ATCC 25923 (6 mm b)

34N

Hanburin
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28N 

 

−353° (0.017) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

29N 

 

−263° (0.019) S. aureus (32 µg/mL); S aureus SK1 (32 µg/mL)

30N 

 

+77° (0.013) S. aureus (>128 µg/mL); S aureus SK1 (>128 µg/mL)

31N 

 

+83° (0.012) S. aureus (32 µg/mL); S aureus SK1 (16 µg/mL)

32N 
MRSA USA300 SF8300 (7.20 mm b; >400 µM); 

MSSA ATCC 25923 (7.56 mm b; 400 µM) 

33N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

34N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

35N Forbesione
MRSA USA300 SF8300 (7.97 mm b; >400 µM); 

MSSA ATCC 25923 (7.86 mm b, 200 µM) 

O

O

O
O

COOH

OH
H3CO

O

HO *

MRSA USA300 SF8300 (6 mm b); MSSA ATCC
25923 (6 mm b)

35N

Forbesione
Molecules 2019, 24, x FOR PEER REVIEW 8 of 28 

36N 

 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 
25923 (6 mm b) 

MIC: Minimum inhibitory concentration; MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-
sensitive S. aureus; a Specific rotation measured in methanol; b The antimicrobial studies were 
determined using the disc diffusion method, where the inhibitory growth zones inhibition caused by 
the tested compounds is expressed in millimeters. 

Rukachaisirikul et al. [65,75] described the scortechinone structures (16–31N) and Reutrakul et 
al. [17,64] reported the prenylated caged xanthones (32–36N). The specific rotations were measured 
and the configuration of the stereogenic centers were defined for all of the scortechinones structures 
(16–31N) [65,66,75,76] (Table 4). According to the antimicrobial assays, scortechinones B (17N) and C 
(18N) stand out due to their promising antibacterial activity against MRSA [75]. It is important to 
highlight that some compounds are epimers of each other, as for example scortechinone L (27N) and 
scortechinone A (16N) in carbon C-15, being the activity of L (27N) higher than the activity of A (16N), 
with MIC values of >64 and 128 µg/mL, respectively [65]. This result emphasizes the relevance of the 
stereochemistry in the development of new antimicrobial agents. 

According to Table 4, prenylated caged xanthones (32–36N) showed little or no activity against 
MRSA and MSSA strains [17,64]. 

Additionally, Sukpondma et al. [66] found out that the crude methanol extract from the fruits of 
Garcinia hanburyi was significantly active against MRSA. This discovery led to exploring the 
antimicrobial activity of the compounds 37–41N present in this extract. These compounds embody a 
pyran group, which leads to an increase of their activity. Reutrakul et al. [17,64] also reported the 
antimicrobial properties of some caged xanthones with pyran group (42–44N) (Table 5). 

Table 5. Antimicrobial activity of natural caged xanthones with pyran group. 

No. Name/Structure [𝛂]𝐃𝟐𝟖(c) a Antimicrobial Activity (MIC or Zone of Growth) 

37N 

 

−62° (0.09) MRSA (200 µM) 

38N 

 

−44° (0.11) MRSA (200 µM) 

39N 

 

−600° (0.04) MRSA (200 µM) 

MRSA USA300 SF8300 (7.97 mm b; >400 µM);
MSSA ATCC 25923 (7.86 mm b, 200 µM)

36N

Dihydroisomorellin
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(16–31N) [65,66,75,76] (Table 4). According to the antimicrobial assays, scortechinones B (17N) and C 
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scortechinone A (16N) in carbon C-15, being the activity of L (27N) higher than the activity of A (16N), 
with MIC values of >64 and 128 µg/mL, respectively [65]. This result emphasizes the relevance of the 
stereochemistry in the development of new antimicrobial agents. 

According to Table 4, prenylated caged xanthones (32–36N) showed little or no activity against 
MRSA and MSSA strains [17,64]. 

Additionally, Sukpondma et al. [66] found out that the crude methanol extract from the fruits of 
Garcinia hanburyi was significantly active against MRSA. This discovery led to exploring the 
antimicrobial activity of the compounds 37–41N present in this extract. These compounds embody a 
pyran group, which leads to an increase of their activity. Reutrakul et al. [17,64] also reported the 
antimicrobial properties of some caged xanthones with pyran group (42–44N) (Table 5). 

Table 5. Antimicrobial activity of natural caged xanthones with pyran group. 

No. Name/Structure [𝛂]𝐃𝟐𝟖(c) a Antimicrobial Activity (MIC or Zone of Growth) 

37N 

 

−62° (0.09) MRSA (200 µM) 

38N 

 

−44° (0.11) MRSA (200 µM) 

39N 

 

−600° (0.04) MRSA (200 µM) 

MRSA USA300 SF8300 (6 mm b);
MSSA ATCC 25923 (6 mm b)

MIC: Minimum inhibitory concentration; MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus;
a Specific rotation measured in methanol; b The antimicrobial studies were determined using the disc diffusion
method, where the inhibitory growth zones inhibition caused by the tested compounds is expressed in millimeters.

Rukachaisirikul et al. [65,75] described the scortechinone structures (16–31N) and
Reutrakul et al. [17,64] reported the prenylated caged xanthones (32–36N). The specific rotations were
measured and the configuration of the stereogenic centers were defined for all of the scortechinones
structures (16–31N) [65,66,75,76] (Table 4). According to the antimicrobial assays, scortechinones B
(17N) and C (18N) stand out due to their promising antibacterial activity against MRSA [75]. It is
important to highlight that some compounds are epimers of each other, as for example scortechinone
L (27N) and scortechinone A (16N) in carbon C-15, being the activity of L (27N) higher than the activity
of A (16N), with MIC values of >64 and 128 µg/mL, respectively [65]. This result emphasizes the
relevance of the stereochemistry in the development of new antimicrobial agents.

According to Table 4, prenylated caged xanthones (32–36N) showed little or no activity against
MRSA and MSSA strains [17,64].

Additionally, Sukpondma et al. [66] found out that the crude methanol extract from the fruits
of Garcinia hanburyi was significantly active against MRSA. This discovery led to exploring the
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antimicrobial activity of the compounds 37–41N present in this extract. These compounds embody
a pyran group, which leads to an increase of their activity. Reutrakul et al. [17,64] also reported the
antimicrobial properties of some caged xanthones with pyran group (42–44N) (Table 5).

Table 5. Antimicrobial activity of natural caged xanthones with pyran group.

No. Name/Structure [α]28
D (c) a Antimicrobial Activity (MIC or Zone of Growth)

37N

Hanburinone
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Garcinia hanburyi was significantly active against MRSA. This discovery led to exploring the 
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pyran group, which leads to an increase of their activity. Reutrakul et al. [17,64] also reported the 
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Table 5. Antimicrobial activity of natural caged xanthones with pyran group. 

No. Name/Structure [𝛂]𝐃𝟐𝟖(c) a Antimicrobial Activity (MIC or Zone of Growth) 

37N 

 

−62° (0.09) MRSA (200 µM) 

38N 

 

−44° (0.11) MRSA (200 µM) 

39N 

 

−600° (0.04) MRSA (200 µM) 

−62◦ (0.09) MRSA (200 µM)

38N

Isomoreollin B
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No. Name/Structure [𝛂]𝐃𝟐𝟖(c) a Antimicrobial Activity (MIC or Zone of Growth) 

37N 

 

−62° (0.09) MRSA (200 µM) 

38N 

 

−44° (0.11) MRSA (200 µM) 

39N 

 

−600° (0.04) MRSA (200 µM) 

−44◦ (0.11) MRSA (200 µM)

39N

Morellin
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Table 5. Antimicrobial activity of natural caged xanthones with pyran group. 

No. Name/Structure [𝛂]𝐃𝟐𝟖(c) a Antimicrobial Activity (MIC or Zone of Growth) 

37N 

 

−62° (0.09) MRSA (200 µM) 

38N 

 

−44° (0.11) MRSA (200 µM) 

39N 

 

−600° (0.04) MRSA (200 µM) −600◦ (0.04) MRSA (200 µM)

40N

Moreollic acid
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MRSA USA300 SF8300 (8.57 mm b); MSSA ATCC 
25923 (7.75 mm b) 

44N 

 

[α]ୈଶ(0.17) = 
−714.1° 

MRSA USA300 SF8300 (17.29 mm b; 25 µM); MSSA 
ATCC 25923 (16.59 mm b; 12.5 µM) 

Comparing the structures and activities from compounds 37N to 44N (Table 5), the moreollic 
acid (40N) and morellic acid (41N) presented higher activity than the others [64,66]. This suggested 
that antimicrobial activity comes from the simultaneous presence of a carboxylic group in the 
prenylated chain in C-8 (according to xanthone scaffold, Figure 1) and another prenyl chain (C-1) 
[66]. The same conclusion was found by Chaiyakunvat et al. [64] who reported that morelic acid (41N) 
and gambogic acid (44N) revealed the greatest activities. Only a few examples measured the specific 
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The stereochemistry of the natural caged xanthones is represented in all the structures but their 
absolute configuration was only described and determined by Ren et al. [71,77] for structures 41 and 
44N, gambogic and morellic acid, respectively. 

2.5. Other Natural CDXs 

Antimicrobial activity of natural CDXs such as kielcorins or structures with glycoside and 
peptide groups, were also reported. In this subsection, natural CDXs with diverse chemical nature 
are presented (Table 6). 

−39◦ (0.22) MRSA (25 µM)

41N

Morellic acid
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Antimicrobial activity of natural CDXs such as kielcorins or structures with glycoside and 
peptide groups, were also reported. In this subsection, natural CDXs with diverse chemical nature 
are presented (Table 6). 

−541◦ (0.19) MRSA (25 µM); MRSA USA300 SF8300 (19.52 mmb; 12.5 µM);
MSSA ATCC 25923 (19.23 mm b; 12.5 µM)

42N

Deoxymorellin
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Comparing the structures and activities from compounds 37N to 44N (Table 5), the moreollic 
acid (40N) and morellic acid (41N) presented higher activity than the others [64,66]. This suggested 
that antimicrobial activity comes from the simultaneous presence of a carboxylic group in the 
prenylated chain in C-8 (according to xanthone scaffold, Figure 1) and another prenyl chain (C-1) 
[66]. The same conclusion was found by Chaiyakunvat et al. [64] who reported that morelic acid (41N) 
and gambogic acid (44N) revealed the greatest activities. Only a few examples measured the specific 
rotations. 

The stereochemistry of the natural caged xanthones is represented in all the structures but their 
absolute configuration was only described and determined by Ren et al. [71,77] for structures 41 and 
44N, gambogic and morellic acid, respectively. 

2.5. Other Natural CDXs 

Antimicrobial activity of natural CDXs such as kielcorins or structures with glycoside and 
peptide groups, were also reported. In this subsection, natural CDXs with diverse chemical nature 
are presented (Table 6). 

MRSA USA300 SF8300 (6 mm b); MSSA ATCC 25923 (6 mm b)

43N

Isomorellinol
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−714.1° 

MRSA USA300 SF8300 (17.29 mm b; 25 µM); MSSA 
ATCC 25923 (16.59 mm b; 12.5 µM) 

Comparing the structures and activities from compounds 37N to 44N (Table 5), the moreollic 
acid (40N) and morellic acid (41N) presented higher activity than the others [64,66]. This suggested 
that antimicrobial activity comes from the simultaneous presence of a carboxylic group in the 
prenylated chain in C-8 (according to xanthone scaffold, Figure 1) and another prenyl chain (C-1) 
[66]. The same conclusion was found by Chaiyakunvat et al. [64] who reported that morelic acid (41N) 
and gambogic acid (44N) revealed the greatest activities. Only a few examples measured the specific 
rotations. 

The stereochemistry of the natural caged xanthones is represented in all the structures but their 
absolute configuration was only described and determined by Ren et al. [71,77] for structures 41 and 
44N, gambogic and morellic acid, respectively. 

2.5. Other Natural CDXs 

Antimicrobial activity of natural CDXs such as kielcorins or structures with glycoside and 
peptide groups, were also reported. In this subsection, natural CDXs with diverse chemical nature 
are presented (Table 6). 

MRSA USA300 SF8300 (8.57 mm b);
MSSA ATCC 25923 (7.75 mm b)

44N

Gambogic acid
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[α]ୈଶ(0.17) = 
−714.1° 

MRSA USA300 SF8300 (17.29 mm b; 25 µM); MSSA 
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Comparing the structures and activities from compounds 37N to 44N (Table 5), the moreollic 
acid (40N) and morellic acid (41N) presented higher activity than the others [64,66]. This suggested 
that antimicrobial activity comes from the simultaneous presence of a carboxylic group in the 
prenylated chain in C-8 (according to xanthone scaffold, Figure 1) and another prenyl chain (C-1) 
[66]. The same conclusion was found by Chaiyakunvat et al. [64] who reported that morelic acid (41N) 
and gambogic acid (44N) revealed the greatest activities. Only a few examples measured the specific 
rotations. 

The stereochemistry of the natural caged xanthones is represented in all the structures but their 
absolute configuration was only described and determined by Ren et al. [71,77] for structures 41 and 
44N, gambogic and morellic acid, respectively. 

2.5. Other Natural CDXs 

Antimicrobial activity of natural CDXs such as kielcorins or structures with glycoside and 
peptide groups, were also reported. In this subsection, natural CDXs with diverse chemical nature 
are presented (Table 6). 

[α]20
D (0.17) = −714.1◦

MRSA USA300 SF8300 (17.29 mm b; 25 µM);
MSSA ATCC 25923 (16.59 mm b; 12.5 µM)

MIC: Minimum inhibitory concentration; MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus;
a Specific rotation measured in CHCl3; b The antimicrobial studies were determined using the disc diffusion method,
where the inhibitory growth zones’ inhibition caused by the tested compounds is expressed in millimeters.
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Comparing the structures and activities from compounds 37N to 44N (Table 5), the moreollic acid
(40N) and morellic acid (41N) presented higher activity than the others [64,66]. This suggested that
antimicrobial activity comes from the simultaneous presence of a carboxylic group in the prenylated
chain in C-8 (according to xanthone scaffold, Figure 1) and another prenyl chain (C-1) [66]. The same
conclusion was found by Chaiyakunvat et al. [64] who reported that morelic acid (41N) and gambogic
acid (44N) revealed the greatest activities. Only a few examples measured the specific rotations.

The stereochemistry of the natural caged xanthones is represented in all the structures but their
absolute configuration was only described and determined by Ren et al. [71,77] for structures 41 and
44N, gambogic and morellic acid, respectively.

2.5. Other Natural CDXs

Antimicrobial activity of natural CDXs such as kielcorins or structures with glycoside and peptide
groups, were also reported. In this subsection, natural CDXs with diverse chemical nature are presented
(Table 6).

Table 6. Antimicrobial activity of other natural CDXs.

No. Name/Structure Antimicrobial Activity (MIC or Zone of Growth)

45N

Kielcorin
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No. Name/Structure Antimicrobial Activity (MIC or Zone of Growth) 

45N 

S. aureus-1199B (>512 mg/L); MRSA XU212 (>512
mg/L); S. aureus ATCC 25923 (>512 mg/L); MRSA 

RN4220 (>512 mg/L); EMRSA-15 (>512 mg/L); 
EMRSA-16 (>512 mg/L) 

46N 

 

Bacillus pumilus (18 mm b); B. cereus (15 mm b); 
Salmonella enterica serotype Virchow (22 mm b); 

Pseudomonas aeruginosa (0 mm b); Aspergillus flavus (0 
mm b; 12 mm c); Thermoascus aurantiacus (0 mm b; 18 
mm c); B. cereus (40 µg/mL); Mariniluteicoccus flavus 

(40 µg/mL); Listeria monocytogenes (40 µg/mL); E. coli 
(40 µg/mL); Enterobacter cloacae (40 µg/mL); P. 

aeruginosa (40 µg/mL); S. typhimurium (40 µg/mL); 
Penicillium funiculosum (40 µg/mL); Penicillium 
ochrochloron (40 µg/mL); Trichoderma viride (40 

µg/mL); A. fumigatos (20 µg/mL); A. niger (40 µg/mL); 
A. flavus (40 µg/mL); A. versicolor (20 µg/mL); C. 

albicans (40 µg/mL) 

47N 

 

S. aureus (10.5 µM); B. subtilis (0.7 µM); Kocuria
rhizophila (10.5 µM) 

48N 

 

E. faecalis JH212 (10 µM); S. aureus NCTC 8325 (13
µM) 

49N 

 

2strains of MRSA (3.9 µg/mL); 2 strains of Vibrio 
vulnificus (15.6 µg/mL); Vibrio rotiferianus (15.6 

µg/mL); Vibrio campbellii (31.2 µg/mL) 

Coqueiro et al. [78] explored the benefits of Kielmeyera variabilis, a tree used in folk medicine to 
treat several tropical diseases, which is known to harbor active compounds against MRSA, such as 
kielcorin (45N). Another example is mangiferin (46N), which comprises a glycoside structure and its 
pharmacological and biological benefits have been studied for many years [7,79]. In USA, mangiferin 
can be found in Vimang®, an antioxidant commercialized aqueous extract of M. indica and G. 
mangostana commonly known to improve human health [7,80]. In addition, mangiferin has been 
tested as an antiviral treatment [81,82]. 

[α]25
D = −70.0◦ (0.01) a

S. aureus-1199B (>512 mg/L); MRSA XU212 (>512 mg/L); S. aureus ATCC
25923 (>512 mg/L); MRSA RN4220 (>512 mg/L); EMRSA-15 (>512 mg/L);

EMRSA-16 (>512 mg/L)

46N

Mangiferin
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D = +72.0◦ (0.5) a

S. aureus (10.5 µM); B. subtilis (0.7 µM); Kocuria rhizophila (10.5 µM)

48N

Microluside-A
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Garmoxanthone
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2strains of MRSA (3.9 µg/mL); 2 strains of Vibrio vulnificus (15.6 µg/mL);
Vibrio rotiferianus (15.6 µg/mL); Vibrio campbellii (31.2 µg/mL)

a Specific rotation measured in methanol; b The antimicrobial studies were performed by disc diffusion method,
where the inhibitory growth zones inhibition caused by the tested compounds in 15% concentration and
c compounds at 30% concentration are expressed in millimeters.
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Coqueiro et al. [78] explored the benefits of Kielmeyera variabilis, a tree used in folk medicine to
treat several tropical diseases, which is known to harbor active compounds against MRSA, such as
kielcorin (45N). Another example is mangiferin (46N), which comprises a glycoside structure and
its pharmacological and biological benefits have been studied for many years [7,79]. In USA,
mangiferin can be found in Vimang®, an antioxidant commercialized aqueous extract of M. indica and
G. mangostana commonly known to improve human health [7,80]. In addition, mangiferin has been
tested as an antiviral treatment [81,82].

Recent studies concern pharmacological properties of mangiferin, such as antipyretic [80]
and antimicrobial [79] properties, leading Sigh et al. [79] to explore other derivatives (Table 6).
The promising results led the group to develop mangiferin analogues with antimicrobial activity [79,80],
which are described in Section 3.2 (Mangiferin Analogues).

In another study, Siler et al. [83] analyzed extracts of Centaurium species with antibacterial agents
for food preservation. According to this report, mangiferin (46N) was considered a good hit structure
in antimicrobial drug development [83].

Moon et al.’s studies [84] in Streptomyces strains resulted in the discovery of a new secondary
metabolite, buanmycin (47N), a pentacyclic xanthone with one stereogenic center determined as
(S)-enantiomer. The antimicrobial potential of these marine strains was explored against S. aureus,
B. subtilis, and K. rhizophila (Table 6).

Microluside A (48N) is a glycosylated disubstituted xanthone. It was isolated by Eltamany et al. [85]
from the broth culture of Micrococcus sp. EG45, a species presented in the Red Sea sponge: Spheciospongia
vagabunda (Table 6).

Wang et al. [86] isolated the first dimer xanthone derivative from the bark of G. mangostana,
garmoxanthone (49N), which announced the strong activity against two strains of MRSA (Table 6).

3. Synthetic CDXs

Synthetic derivatives are especially important structures, not only for performing SAR studies,
but also to develop new compounds, to increase the chemical diversity, and to increase the biological
activities. The majority of synthetic CDXs are inspired in natural xanthone derivatives, to take
advantage of their already reported biological properties, and to attempt to improve their biological
response [7,31,87].

Despite the fact that natural compounds possess pharmacological applications, their structures
are limited to their production, and sometimes, comprise high levels of complexity, making them
difficult to extract and purify, and even harder to synthesize. SAR studies are meant to determine
the important moieties of natural compounds in order to improve their pharmacological/biological
properties with smaller and simple molecules [88–90].

The synthesis of small molecules is, normally, an easier procedure being less time-consuming
than the processes of extraction, purification, and identification, as well as being economically
viable. Additionally, synthesis on a gram scale can be easier to achieve than isolation from natural
sources [36,89,90]. Besides, the enantioselectivity in biological assays can be explored because
both enantiomers can be obtained via enantioselective synthesis or racemic approach, with further
separation of the enantiomers [29,89,91,92].

Throughout this section, the synthetic CDXs, as well as their antimicrobial activity, were compiled
according to their structures.

3.1. Muchimangins Analogues

Muchimangins are benzophenone-xanthone hybrid polyketides isolated from the roots of
Securidaca longepedunculata, and are used in traditional Congolese medicine [93]. Among these
structures, muchimangin B has been known to induce an apoptotic-like cell death in human pancreatic
cancer cells [94]. Kodama et al. [93] synthesized five new muchimangins analogues to develop new
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antimicrobial agents (Table 7). The compounds presented inhibitory activity against S. aureus and
B. Subtilis [93].

Table 7. Antimicrobial activity of muchimangins analogues.

No. Structure [α]24
D (c) a Antimicrobial Activity (MIC)

1S
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± S. aureus (>100 µM);
B. subtilis (>100.0 µM)

MIC: Minimum inhibitory concentration; a Specific rotation measured in CHCl3; * Stereogenic center;
Enantioselectivity is represented by: “±” racemate; “-“ levorotatory; “+” dextrorotatory.

According to the results displayed in Table 7, the enantioselectivity of antimicrobial activity was
explored for compounds 1–3S, being the racemate and both enantiomers evaluated against S. aureus
and B. subtilis. Enantioselectivity was evident in compound 3S, with the dextro enantiomer being
more active against S. aureus than the levo enantiomer and the racemate. Compounds 4S and 5S were
assayed as racemates which haven’t displayed any activity against these strains [93].

The SAR studies suggested that the presence of a hydroxy group at C-6 was important for the
growth inhibitory activity against both strains, S. aureus and B. subtilis. Besides that, these results
exposed the importance of enantioselectivity studies for the development of antimicrobial agents [93].

3.2. Mangiferin Analogues

Singh et al. [79], inspired by the large range of pharmacological activities of mangiferin (45N),
synthesized new mangiferin analogues (6–11S) and screened their antimicrobial activity (Table 8) [79].
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Table 8. Antimicrobial activity of mangiferin analogues.
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According to antimicrobial results, mangiferin (45N) and analogues revealed powerful activity in
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On the other hand, all tested compounds revealed poor growth inhibition of P. aeruginosa and low
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3.3. Amino Acid Xanthone Derivatives

Inspired by natural xanthone properties, and by Dahiya and collaborators [95] work of
iodoquinazolinones and nitroimidazoles conjugated with amino acids which presented strong
antimicrobial activity, led Chen et al. [96] to synthesize xanthone derivatives with conjugated L-amino
acids (Table 9).



Molecules 2019, 24, 314 14 of 29

Table 9. Antimicrobial activity of amino acid xanthone derivatives.

Molecules 2019, 24, x FOR PEER REVIEW 13 of 28 

Table 8. Antimicrobial activity of mangiferin analogues. 

No. R Antimicrobial Activity (Inhibitory Growth Zones) 

45N H (Mangiferin) 
B. pumilus (18 mm); B. cereus (15 mm); S. virchow (22 mm); P. aeruginosa (0 mm);

A. flavus (0 mm; 12 mm *); T. aurantiacus (0 mm; 18 mm *)

6S 
B. pumilus (16 mm); B. cereus (12 mm); S. virchow (19 mm); P. aeruginosa (0 mm; 

10 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 14 mm *) 

7S 
B. pumilus (15 mm); B. cereus (12 mm); S. virchow (20 mm); P. aeruginosa (0 mm; 

8 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 13 mm *) 

8S 
B. pumilus (17 mm); B. cereus (15 mm); S. virchow (20 mm); P. aeruginosa (0 mm; 

10 mm *); A. flavus (0 mm; 14 mm *); T. aurantiacus (0 mm; 15 mm *) 

9S B. pumilus (18 mm); B. cereus (14 mm); S. virchow (20 mm); P. aeruginosa (0 mm; 
9 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 16 mm *) 

10S 
B. pumilus (17 mm); B. cereus (14 mm); S. virchow (19 mm); P. aeruginosa (0 mm; 

9 mm *); A. flavus (0 mm; 12 mm *); T. aurantiacus (0 mm; 14 mm *) 

11S 
B. pumilus (18 mm); B. cereus (13 mm); S. virchow (18 mm); P. aeruginosa (0 mm; 

10 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 15 mm *) 

According to antimicrobial results, mangiferin (45N) and analogues revealed powerful activity 
in the growth inhibition of S. virchow and significant antibacterial activity against B. pumilus and B. 
cereus. On the other hand, all tested compounds revealed poor growth inhibition of P. aeruginosa and 
low antifungal activity [79]. 

3.3. Amino Acid Xanthone Derivatives 

Inspired by natural xanthone properties, and by Dahiya and collaborators [95] work of 
iodoquinazolinones and nitroimidazoles conjugated with amino acids which presented strong 
antimicrobial activity, led Chen et al. [96] to synthesize xanthone derivatives with conjugated L-amino 
acids (Table 9). 

Table 9. Antimicrobial activity of amino acid xanthone derivatives. 

No.  Antimicrobial Activity (Inhibitory Growth Zones/MIC) 

12S 
S. aureus (6 mm-25 µg/mL); B. substilis (8 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (6 mm-25 µg/mL)

No. Structure/R Antimicrobial Activity (Inhibitory Growth Zones/MIC)

12S

Molecules 2019, 24, x FOR PEER REVIEW 13 of 28 

Table 8. Antimicrobial activity of mangiferin analogues. 

No. R Antimicrobial Activity (Inhibitory Growth Zones) 

45N H (Mangiferin) 
B. pumilus (18 mm); B. cereus (15 mm); S. virchow (22 mm); P. aeruginosa (0 mm);

A. flavus (0 mm; 12 mm *); T. aurantiacus (0 mm; 18 mm *)

6S 
B. pumilus (16 mm); B. cereus (12 mm); S. virchow (19 mm); P. aeruginosa (0 mm; 

10 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 14 mm *) 

7S 
B. pumilus (15 mm); B. cereus (12 mm); S. virchow (20 mm); P. aeruginosa (0 mm; 

8 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 13 mm *) 

8S 
B. pumilus (17 mm); B. cereus (15 mm); S. virchow (20 mm); P. aeruginosa (0 mm; 

10 mm *); A. flavus (0 mm; 14 mm *); T. aurantiacus (0 mm; 15 mm *) 

9S B. pumilus (18 mm); B. cereus (14 mm); S. virchow (20 mm); P. aeruginosa (0 mm; 
9 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 16 mm *) 

10S 
B. pumilus (17 mm); B. cereus (14 mm); S. virchow (19 mm); P. aeruginosa (0 mm; 

9 mm *); A. flavus (0 mm; 12 mm *); T. aurantiacus (0 mm; 14 mm *) 

11S 
B. pumilus (18 mm); B. cereus (13 mm); S. virchow (18 mm); P. aeruginosa (0 mm; 

10 mm *); A. flavus (0 mm; 11 mm *); T. aurantiacus (0 mm; 15 mm *) 

According to antimicrobial results, mangiferin (45N) and analogues revealed powerful activity 
in the growth inhibition of S. virchow and significant antibacterial activity against B. pumilus and B. 
cereus. On the other hand, all tested compounds revealed poor growth inhibition of P. aeruginosa and 
low antifungal activity [79]. 

3.3. Amino Acid Xanthone Derivatives 

Inspired by natural xanthone properties, and by Dahiya and collaborators [95] work of 
iodoquinazolinones and nitroimidazoles conjugated with amino acids which presented strong 
antimicrobial activity, led Chen et al. [96] to synthesize xanthone derivatives with conjugated L-amino 
acids (Table 9). 

Table 9. Antimicrobial activity of amino acid xanthone derivatives. 

No.  Antimicrobial Activity (Inhibitory Growth Zones/MIC) 

12S 
S. aureus (6 mm-25 µg/mL); B. substilis (8 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (6 mm-25 µg/mL)
S. aureus (6 mm-25 µg/mL); B. substilis (8 mm-25 µg/mL);
E. coli (17 mm-25 µg/mL); K. pneumonia (6 mm-25 µg/mL)

13S

Molecules 2019, 24, x FOR PEER REVIEW 14 of 28 

13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL);
E. coli (8 mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL);
E. coli (4 mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL);
E. coli (8 mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL);
E. coli (16 mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL);
E. coli (20 mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL);
E. coli (24 mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL);
E. coli (18 mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL);
E. coli (16 mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL);
E. coli (17 mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)
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Table 9. Cont.

No. Structure/R Antimicrobial Activity (Inhibitory Growth Zones/MIC)

22S
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL);
E. coli (15 mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL);
E. coli (11 mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL);
E. coli (8 mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL);
E. coli (10 mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL);
E. coli (20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL)
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13S 
S. aureus (10 mm-25µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (5 mm-25 µg/mL)

14S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (4

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

15S 
S. aureus (4 mm-25 µg/mL); B. substilis (7 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (7 mm-25 µg/mL)

16S 
S. aureus (18 mm-25 µg/mL); B. substilis (17 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (20 mm-25 µg/mL)

17S 
S. aureus (20 mm-25 µg/mL); B. substilis (20 mm-25 µg/mL); E. coli (20

mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

18S 
S. aureus (22 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (24

mm-25 µg/mL); K. pneumonia (22 mm-25 µg/mL)

19S S. aureus (20 mm-25 µg/mL); B. substilis (20mm-25 µg/mL); E. coli (18
mm-25 µg/mL); K. pneumonia (18 mm-25 µg/mL)

20S 
S. aureus (15 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (16

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

21S 
S. aureus (17mm-25 µg/mL); B. substilis (15mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (13 mm-25 µg/mL)

22S 
S. aureus (9 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (15

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

23S 
S. aureus (14 mm-25 µg/mL); B. substilis (10 mm-25 µg/mL); E. coli (11

mm-25 µg/mL); K. pneumonia (16 mm-25 µg/mL)

24S 
S. aureus (9 mm-25 µg/mL); B. substilis (13 mm-25 µg/mL); E. coli (8

mm-25 µg/mL); K. pneumonia (10 mm-25 µg/mL)

25S 
S. aureus (7 mm-25 µg/mL); B. substilis (11 mm-25 µg/mL); E. coli (10

mm-25 µg/mL); K. pneumonia (8 mm-25 µg/mL)

26S 
S. aureus (22 mm - 25 µg/mL); B. substilis (22 mm - 25 µg/mL); E. coli

(20 mm - 25 µg/mL); K. pneumonia (23 mm - 25 µg/mL) 

27S 
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL); E. coli (21

mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)
S. aureus (23 mm-25 µg/mL); B. substilis (23 mm-25 µg/mL);
E. coli (21 mm-25 µg/mL); K. pneumonia (21 mm-25 µg/mL)

28S
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28S 
S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL); E. coli (26

mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S 
S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL); E. coli (19

mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S 
S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S 
S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL); E. coli (20

mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

According to Table 9, the compounds with the best antimicrobial activity were the ones that 
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan 
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S 
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity 
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes 
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the 
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the 
bacterial membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the 
membrane’s essential properties, its disruption would lead to death without mutations resulting in 
loss of recognition by the antibiotics, leading to ineffective treatments [5]. 

3.4. α-Mangostin Analogues 

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and 
cationic groups that represent an effective component of the innate immune system against multiple 
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the 
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor 
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–
38S) (Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl 
groups, and conjugate the lipophilic side chains with basic amino acids. The aims of the work were 
to confirm the penetration of the lipophilic chains to enhance the membrane permeability and to 
examine the role of the cationic moieties by conjugating with basic amino acids (Table 10) [99]. 

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them 
to assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) 
[97]. 

Table 10. Antimicrobial activity of α-mangostin analogues. 

No. Structure/R Antimicrobial Activity (MIC) 

32S 
S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA 
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL);
E. coli (26 mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S
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28S 
S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL); E. coli (26

mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S 
S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL); E. coli (19

mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S 
S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S 
S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL); E. coli (20

mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

According to Table 9, the compounds with the best antimicrobial activity were the ones that 
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan 
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S 
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity 
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes 
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the 
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the 
bacterial membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the 
membrane’s essential properties, its disruption would lead to death without mutations resulting in 
loss of recognition by the antibiotics, leading to ineffective treatments [5]. 

3.4. α-Mangostin Analogues 

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and 
cationic groups that represent an effective component of the innate immune system against multiple 
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the 
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor 
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–
38S) (Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl 
groups, and conjugate the lipophilic side chains with basic amino acids. The aims of the work were 
to confirm the penetration of the lipophilic chains to enhance the membrane permeability and to 
examine the role of the cationic moieties by conjugating with basic amino acids (Table 10) [99]. 

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them 
to assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) 
[97]. 

Table 10. Antimicrobial activity of α-mangostin analogues. 

No. Structure/R Antimicrobial Activity (MIC) 

32S 
S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA 
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL);
E. coli (19 mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S
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28S 
S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL); E. coli (26

mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S 
S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL); E. coli (19

mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S 
S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S 
S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL); E. coli (20

mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

According to Table 9, the compounds with the best antimicrobial activity were the ones that 
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan 
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S 
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity 
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes 
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the 
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the 
bacterial membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the 
membrane’s essential properties, its disruption would lead to death without mutations resulting in 
loss of recognition by the antibiotics, leading to ineffective treatments [5]. 

3.4. α-Mangostin Analogues 

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and 
cationic groups that represent an effective component of the innate immune system against multiple 
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the 
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor 
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–
38S) (Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl 
groups, and conjugate the lipophilic side chains with basic amino acids. The aims of the work were 
to confirm the penetration of the lipophilic chains to enhance the membrane permeability and to 
examine the role of the cationic moieties by conjugating with basic amino acids (Table 10) [99]. 

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them 
to assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) 
[97]. 

Table 10. Antimicrobial activity of α-mangostin analogues. 

No. Structure/R Antimicrobial Activity (MIC) 

32S 
S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA 
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL);
E. coli (17 mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S
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28S 
S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL); E. coli (26

mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S 
S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL); E. coli (19

mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S 
S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S 
S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL); E. coli (20

mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

According to Table 9, the compounds with the best antimicrobial activity were the ones that 
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan 
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S 
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity 
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes 
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the 
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the 
bacterial membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the 
membrane’s essential properties, its disruption would lead to death without mutations resulting in 
loss of recognition by the antibiotics, leading to ineffective treatments [5]. 

3.4. α-Mangostin Analogues 

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and 
cationic groups that represent an effective component of the innate immune system against multiple 
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the 
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor 
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–
38S) (Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl 
groups, and conjugate the lipophilic side chains with basic amino acids. The aims of the work were 
to confirm the penetration of the lipophilic chains to enhance the membrane permeability and to 
examine the role of the cationic moieties by conjugating with basic amino acids (Table 10) [99]. 

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them 
to assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) 
[97]. 

Table 10. Antimicrobial activity of α-mangostin analogues. 

No. Structure/R Antimicrobial Activity (MIC) 

32S 
S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA 
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL);
E. coli (20 mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

The antimicrobial activity was performed in agar well diffusion method, in triplicate, being the results expressed as
the mean of the diameter of the inhibition zone in millimeter.

According to Table 9, the compounds with the best antimicrobial activity were the ones that
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the bacterial
membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the membrane’s essential
properties, its disruption would lead to death without mutations resulting in loss of recognition by the
antibiotics, leading to ineffective treatments [5].
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3.4. α-Mangostin Analogues

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and
cationic groups that represent an effective component of the innate immune system against multiple
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–38S)
(Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl groups,
and conjugate the lipophilic side chains with basic amino acids. The aims of the work were to confirm
the penetration of the lipophilic chains to enhance the membrane permeability and to examine the role
of the cationic moieties by conjugating with basic amino acids (Table 10) [99].

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them to
assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) [97].

Table 10. Antimicrobial activity of α-mangostin analogues.
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28S 
S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL); E. coli (26

mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S 
S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL); E. coli (19

mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S 
S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S 
S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL); E. coli (20

mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

According to Table 9, the compounds with the best antimicrobial activity were the ones that 
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan 
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S 
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity 
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes 
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the 
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the 
bacterial membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the 
membrane’s essential properties, its disruption would lead to death without mutations resulting in 
loss of recognition by the antibiotics, leading to ineffective treatments [5]. 

3.4. α-Mangostin Analogues 

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and 
cationic groups that represent an effective component of the innate immune system against multiple 
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the 
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor 
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–
38S) (Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl 
groups, and conjugate the lipophilic side chains with basic amino acids. The aims of the work were 
to confirm the penetration of the lipophilic chains to enhance the membrane permeability and to 
examine the role of the cationic moieties by conjugating with basic amino acids (Table 10) [99]. 

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them 
to assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) 
[97]. 

Table 10. Antimicrobial activity of α-mangostin analogues. 

No. Structure/R Antimicrobial Activity (MIC) 

32S 
S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA 
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

No. Structure/R Antimicrobial Activity (MIC)

32S
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28S 
S. aureus (24 mm-25 µg/mL); B. substilis (26 mm-25 µg/mL); E. coli (26

mm-25 µg/mL); K. pneumonia (23 mm-25 µg/mL)

29S 
S. aureus (20 mm-25 µg/mL); B. substilis (19 mm-25 µg/mL); E. coli (19

mm-25 µg/mL); K. pneumonia (15 mm-25 µg/mL)

30S 
S. aureus (17 mm-25 µg/mL); B. substilis (15 mm-25 µg/mL); E. coli (17

mm-25 µg/mL); K. pneumonia (17 mm-25 µg/mL)

31S 
S. aureus (20 mm-25 µg/mL); B. substilis (18 mm-25 µg/mL); E. coli (20

mm-25 µg.mL); K. pneumonia (18 mm-25 µg.mL)

According to Table 9, the compounds with the best antimicrobial activity were the ones that 
were conjugated with L-phenylalanine (16S and 26S), L-tyrosine (17S and 27S), and L-tryptophan 
(18S and 28S), followed by compounds conjugated with L-cysteine (19S and 29S), L-methionine (20S 
and 30S), and L-proline (21S and 31S). These compounds contain amino acids with high aromaticity 
and hydrophobicity, which makes them stable amphiphilic structures. The antimicrobial effect comes 
from the penetration of the amino acid hydrophobic chains in the bacterial membranes where the 
cationic moiety of the amino acids interacts with the membrane phospholipids disturbing the 
bacterial membrane. This is a strategy to develop new antimicrobial agents [96]. Due to the 
membrane’s essential properties, its disruption would lead to death without mutations resulting in 
loss of recognition by the antibiotics, leading to ineffective treatments [5]. 

3.4. α-Mangostin Analogues 

Cationic antimicrobial peptides (CAMPs) are amphipathic structures with hydrophobic and 
cationic groups that represent an effective component of the innate immune system against multiple 
microbes. These structures act by burring the hydrophobic moiety in the membranes core, while the 
cationic residues disrupt bacterial membrane [5,87,97,98]. Due to the manufacturing costs and poor 
stability of peptides, Koh et al. [99] developed small molecules with CAMPs essential moieties (32–
38S) (Table 10). The adopted strategy was to use the α-mangostin, a xanthone core with isoprenyl 
groups, and conjugate the lipophilic side chains with basic amino acids. The aims of the work were 
to confirm the penetration of the lipophilic chains to enhance the membrane permeability and to 
examine the role of the cationic moieties by conjugating with basic amino acids (Table 10) [99]. 

The same strategy was used to develop new anti-tuberculosis agents (39–44S), which led them 
to assay a few of the previous compounds (33S, 34S, and 36S) as antimycobacterial agents (Table 10) 
[97]. 

Table 10. Antimicrobial activity of α-mangostin analogues. 

No. Structure/R Antimicrobial Activity (MIC) 

32S 
S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA 
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

S. aureaus (6 µg/mL); MRSA DM21455 (12 µg/mL); MRSA
DM09809R (6 µg/mL); B. cereus ATCC 11778 (12 µg/mL)

33S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL);
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778
(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL);

M. bovis (>24.9 µg/mL)

34S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778

(2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL);

VISA (4 µg/mL); MRSA (10 strains) (2-4 µg/mL);
EMRSA (3 strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL);

MDR (2 µg/mL); Staphylococcus epidermidis (2 strains)
(2 µg/mL); VSE (3 strains) (2–4 µg/mL); VRE (5 strains)

(2–4 µg/mL); Streptococcus (4 strains) (4–8 µg/mL);
Corynebacterium jeikeium and L. monocytogenes (4–8 µg/mL)

35S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1 µg/mL);
MRSA DM09809R (6 µg/mL); B. cereus ATCC 11778

(6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis
(>11.1 µg/mL)
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Table 10. Cont.

No. Structure/R Antimicrobial Activity (MIC)

37S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

38S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL); MRSA
DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 µg/mL);
MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) (2 µM);

EMRSA (3 strains) (2 µM); teicoplanin-RI (2 µg/mL);
MDR (2 µM); S. epidermidis (2 strains) (2 µM); VSE (3 strains)
(2–4 µM); VRE (5 strains) (1–2 µM); Streptococcus (4 strains)

(2–8 µM); C. jeikeium and L. monocytogenes (2–4 µM)

39S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S

Molecules 2019, 24, x FOR PEER REVIEW 16 of 28 

33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S
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33S 

S. aureaus (>50 µg/mL); MRSA DM21455 (>50 µg/mL); 
MRSA DM09809R (>50 µg/mL); B. cereus ATCC 11778

(>50 µg/mL); Mycobacetrium smegmatis (>24.9 µg/mL); M.
bovis (>24.9 µg/mL) 

34S 

S. aureaus DM4001 (2 µg/mL); MRSA DM21455 (3
µg/mL); MRSA DM09809R (3 µg/mL); B. cereus ATCC 
11778 (2 µg/mL); M. smegmatis (>25.1 µg/mL); M. bovis 
(>25.1 µg/mL); MSSA (7 strains) (2–4 µg/mL); VISA (4 

µg/mL); MRSA (10 strains) (2-4 µg/mL); EMRSA (3 
strains) (2–4 µg/mL); teicoplanin-RI (2 µg/mL); MDR (2 
µg/mL); Staphylococcus epidermidis (2 strains) (2 µg/mL); 

VSE (3 strains) (2–4 µg/mL); VRE (5 strains) (2–4 µg/mL); 
Streptococcus (4 strains) (4–8 µg/mL); Corynebacterium 

jeikeium and L. monocytogenes (4–8 µg/mL) 

35S 
S. aureaus (6 µg/mL); MRSA DM21455 (6 µg/mL); MRSA
DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 µg/mL)

36S 

S. aureaus DM4001 (6 µg/mL); MRSA DM21455 (1
µg/mL); MRSA DM09809R (6 µg/mL); B. cereus ATCC 
11778 (6 µg/mL); M. smegmatis (>26.1 µg/mL); M. bovis 

(>11.1 µg/mL) 

37S 
S. aureaus (12 µg/mL); MRSA DM21455 (12 µg/mL); 

MRSA DM09809R (12 µg/mL). B. cereus ATCC 11778 (12 
µg/mL) 

38S 

S. aureaus (0.5 µg/mL); MRSA DM21455 (2 µg/mL);
MRSA DM09809R (3 µg/mL); B. cereus ATCC 11778 (3 

µg/mL); MSSA (7 strains) 2–4; VISA 2; MRSA (10 strains) 
(2 µM); EMRSA (3 strains) (2 µM); teicoplanin-RI (2 

µg/mL); MDR (2 µM); S. epidermidis (2 strains) (2 µM); 
VSE (3 strains) (2–4 µM); VRE (5 strains) (1–2 µM); 
Streptococcus (4 strains) (2–8 µM); C. jeikeium and L. 

monocytogenes (2–4 µM) 

39S M. smegmatis (>19.3 µg/mL); M. bovis (>19.3 µg/mL)

40S M. smegmatis (>21.8 µg/mL); M. bovis (>21.8 µg/mL)

41S M. smegmatis (>24.5 µg/mL); M. bovis (>24.5 µg/mL)

42S M. smegmatis (>21.8 µg/mL); M. bovis (>4.6 µg/mL)

43S M. smegmatis (>4.3 µg/mL); M. bovis (>4.3 µg/mL)

44S M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-
arginine (34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the 
structures 34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, 
which inspired further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, 

M. smegmatis (>19.9 µg/mL); M. bovis (>22.9 µg/mL)

MIC: Minimum inhibitory concentration; MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus;
EMRSA: Epidemic methicillin-resistant S. aureus; MDR: Multidrug-resistant bacteria; VRE: Vancomycin-resistant E.;
VSE: Vancomycin susceptible E.; * Stereogenic center.

In these studies, α-mangostin was conjugated with L-lysine (32S), L-histidine (33S), and L-arginine
(34–38S), being 38S double conjugated with L-arginine [99]. From the compiled results, the structures
34S, 36S, and 38S were the most promising due to their excellent antimicrobial activity, which inspired
further evaluation of compounds 34S and 38S in more strains of MSSA, MRSA, VRE, and others
(Table 10) [99]. These compounds revealed strong activity against Gram-positive bacteria- and
multidrug-resistant strains [99]. More recently, Koh et al. [100] tested these compounds in a panel
of Gram-negative pathogens: ten strains of P. aeruginosa, three strains of E. coli, and three strains of
K. pneumoniae (Table 10) [100].

According to the results, the small size might facilitate the penetration of the external bacterial
membrane, where the lipophilic chains in the form of isoprenyl enhance the penetration of the bulky
xanthone into the cytoplasmic membrane, and the cationic moiety to form an amphiphilic structure
to interact with microbe’s membrane, where the more dispersed the positive charge is, the more
disruption and selectivity occurs [99].

Nevertheless, in mycobacterial assays, the compounds 42S and 43S revealed potent
antimycobacterial activity, which leads to a new class of antimycobacterial agents with hitherto
unprecedented modes of action [97].
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3.5. Xanthone Derivatives with 2-Hydro-3-Amino and Piperazine Groups

Piperazine is a six-member heterocyclic with a broad spectrum of biological activities, which leads
research groups to develop new piperazine derivatives [101–103]. Besides these, piperazine
derivatives are reported as having antidepressant [104], anticancer [105], antimalarial [106] and diverse
antimicrobial activities [101,107], among others [108].

Chimenti et al. [109] reported strong anti-H. pylori activity of synthesized analogues of
N-substituted of 2-oxo-2H-1-benzopyran-3-carboxamides. Due to similar structural features of these
analogues with xanthone scaffold, Klesiewicz et al. [110] synthesized xanthone derivatives with
potential anti-H. pylori (Table 11). Regarding Klesiewicz et al.’s report [110], the compilation of the
results of the antimicrobial assays is described in Table 11.

Table 11. Anti-bacterial activity of xanthone derivatives with 2-hydro-3-amino and piperazine groups.
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No. Structure

Inhibitory Growth Zones [mm] a 

Other Strains 
Clarithromycin 

Resistant H. Pylori 
Strains 

Metronidazole 
Resistant H. Pylori 

Strains 

Double 
Resistant H. 

Pylori 
Strains 

45S 

 S. aureaus ATCC
25923-13; MRSA
14.002-23; E. coli 
ATCC 25922-8 

ATCC 700684-36 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-42 
HP 125/180-40 
HP 139/202-44 
HP 143/207-44 

HP 126/181-
40 

HP 106/154-
39 

46S 

 
S. aureaus ATCC
25923-11; MRSA

14.002-18 

ATCC 700684-32 
HP 132/194-34 
HP 115/168-26 

ATCC 43504-35 
HP 125/180-36 
HP 139/202-46 
HP 143/207-29 

HP 126/181-
40 

HP 106/154-
33 

47S 

 
S. aureaus ATCC
25923-15; MRSA
14.002-23; E. coli 
ATCC 25922-10 

ATCC 700684-34 
HP 132/194-42 
HP 115/168-46 

ATCC 43504-54 
HP 125/180-46 
HP 139/202-52 
HP 143/207-58 

HP 126/181-
50 

HP 106/154-
47 

48S 

 ATCC 700684-28 
HP 132/194-30 
HP 115/168-30 

ATCC 43504-21 
HP 125/180-28 
HP 139/202-38 
HP 143/207-36 

HP 126/181-
28 

HP 106/154-
26 

49S 

 S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli 

ATCC 2592-9 

ATCC 700684-35 
HP 132/194-42 
HP 115/168-38 

ATCC 43504-41 
HP 125/180-36 
HP 139/202-48 
HP 143/207-42 

HP 126/181-
48 

HP 106/154-
39 

No. Structure

Inhibitory Growth Zones [mm] a

Other Strains
Clarithromycin

Resistant
H. Pylori Strains

Metronidazole
Resistant

H. Pylori Strains

Double Resistant
H. Pylori Strains

45S

R1=R3=H; R2=Me
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No. Structure

Inhibitory Growth Zones [mm] a 

Other Strains 
Clarithromycin 

Resistant H. Pylori 
Strains 

Metronidazole 
Resistant H. Pylori 

Strains 

Double 
Resistant H. 

Pylori 
Strains 

45S 

 S. aureaus ATCC
25923-13; MRSA
14.002-23; E. coli 
ATCC 25922-8 

ATCC 700684-36 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-42 
HP 125/180-40 
HP 139/202-44 
HP 143/207-44 

HP 126/181-
40 

HP 106/154-
39 

46S 

 
S. aureaus ATCC
25923-11; MRSA

14.002-18 

ATCC 700684-32 
HP 132/194-34 
HP 115/168-26 

ATCC 43504-35 
HP 125/180-36 
HP 139/202-46 
HP 143/207-29 

HP 126/181-
40 

HP 106/154-
33 

47S 

 
S. aureaus ATCC
25923-15; MRSA
14.002-23; E. coli 
ATCC 25922-10 

ATCC 700684-34 
HP 132/194-42 
HP 115/168-46 

ATCC 43504-54 
HP 125/180-46 
HP 139/202-52 
HP 143/207-58 

HP 126/181-
50 

HP 106/154-
47 

48S 

 ATCC 700684-28 
HP 132/194-30 
HP 115/168-30 

ATCC 43504-21 
HP 125/180-28 
HP 139/202-38 
HP 143/207-36 

HP 126/181-
28 

HP 106/154-
26 

49S 

 S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli 

ATCC 2592-9 

ATCC 700684-35 
HP 132/194-42 
HP 115/168-38 

ATCC 43504-41 
HP 125/180-36 
HP 139/202-48 
HP 143/207-42 

HP 126/181-
48 

HP 106/154-
39 

S. aureaus ATCC
25923-13; MRSA
14.002-23; E. coli
ATCC 25922-8

ATCC 700684-36
HP 132/194-40
HP 115/168-40

ATCC 43504-42
HP 125/180-40
HP 139/202-44
HP 143/207-44

HP 126/181-40
HP 106/154-39

46S

R1=R3=H; R2=Me
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HP 139/202-46 
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S. aureaus ATCC
25923-15; MRSA
14.002-23; E. coli 
ATCC 25922-10 

ATCC 700684-34 
HP 132/194-42 
HP 115/168-46 

ATCC 43504-54 
HP 125/180-46 
HP 139/202-52 
HP 143/207-58 

HP 126/181-
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HP 106/154-
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48S 

 ATCC 700684-28 
HP 132/194-30 
HP 115/168-30 

ATCC 43504-21 
HP 125/180-28 
HP 139/202-38 
HP 143/207-36 

HP 126/181-
28 

HP 106/154-
26 

49S 

 S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli 

ATCC 2592-9 

ATCC 700684-35 
HP 132/194-42 
HP 115/168-38 

ATCC 43504-41 
HP 125/180-36 
HP 139/202-48 
HP 143/207-42 

HP 126/181-
48 

HP 106/154-
39 

S. aureaus ATCC
25923-11; MRSA

14.002-18

ATCC 700684-32
HP 132/194-34
HP 115/168-26

ATCC 43504-35
HP 125/180-36
HP 139/202-46
HP 143/207-29

HP 126/181-40
HP 106/154-33

47S

R1=R3=H; R2=Me
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Metronidazole 
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Resistant H. 
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25923-13; MRSA
14.002-23; E. coli 
ATCC 25922-8 
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S. aureaus ATCC
25923-11; MRSA
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ATCC 700684-32 
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HP 115/168-26 

ATCC 43504-35 
HP 125/180-36 
HP 139/202-46 
HP 143/207-29 

HP 126/181-
40 

HP 106/154-
33 

47S 

 
S. aureaus ATCC
25923-15; MRSA
14.002-23; E. coli 
ATCC 25922-10 

ATCC 700684-34 
HP 132/194-42 
HP 115/168-46 

ATCC 43504-54 
HP 125/180-46 
HP 139/202-52 
HP 143/207-58 

HP 126/181-
50 

HP 106/154-
47 

48S 

 ATCC 700684-28 
HP 132/194-30 
HP 115/168-30 

ATCC 43504-21 
HP 125/180-28 
HP 139/202-38 
HP 143/207-36 

HP 126/181-
28 

HP 106/154-
26 

49S 

 S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli 

ATCC 2592-9 

ATCC 700684-35 
HP 132/194-42 
HP 115/168-38 

ATCC 43504-41 
HP 125/180-36 
HP 139/202-48 
HP 143/207-42 

HP 126/181-
48 

HP 106/154-
39 

S. aureaus ATCC
25923-15; MRSA
14.002-23; E. coli
ATCC 25922-10

ATCC 700684-34
HP 132/194-42
HP 115/168-46

ATCC 43504-54
HP 125/180-46
HP 139/202-52
HP 143/207-58

HP 126/181-50
HP 106/154-47

48S

R1=R2=R3=H
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and others (Table 10) [99]. These compounds revealed strong activity against Gram-positive bacteria- 
and multidrug-resistant strains [99]. More recently, Koh et al. [100] tested these compounds in a panel 
of Gram-negative pathogens: ten strains of P. aeruginosa, three strains of E. coli, and three strains of 
K. pneumoniae (Table 10) [100].

According to the results, the small size might facilitate the penetration of the external bacterial
membrane, where the lipophilic chains in the form of isoprenyl enhance the penetration of the bulky 
xanthone into the cytoplasmic membrane, and the cationic moiety to form an amphiphilic structure 
to interact with microbe’s membrane, where the more dispersed the positive charge is, the more 
disruption and selectivity occurs [99]. 

Nevertheless, in mycobacterial assays, the compounds 42S and 43S revealed potent 
antimycobacterial activity, which leads to a new class of antimycobacterial agents with hitherto 
unprecedented modes of action [97]. 
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derivatives are reported as having antidepressant [104], anticancer [105], antimalarial [106] and 
diverse antimicrobial activities [101,107], among others [108]. 

Chimenti et al. [109] reported strong anti-H. pylori activity of synthesized analogues of N-
substituted of 2-oxo-2H-1-benzopyran-3-carboxamides. Due to similar structural features of these 
analogues with xanthone scaffold, Klesiewicz et al. [110] synthesized xanthone derivatives with 
potential anti-H. pylori (Table 11). Regarding Klesiewicz et al.’s report [110], the compilation of the 
results of the antimicrobial assays is described in Table 11. 

Table 11. Anti-bacterial activity of xanthone derivatives with 2-hydro-3-amino and piperazine groups. 

No. Structure

Inhibitory Growth Zones [mm] a 

Other Strains 
Clarithromycin 

Resistant H. Pylori 
Strains 

Metronidazole 
Resistant H. Pylori 

Strains 

Double 
Resistant H. 

Pylori 
Strains 

45S 

 S. aureaus ATCC
25923-13; MRSA
14.002-23; E. coli 
ATCC 25922-8 

ATCC 700684-36 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-42 
HP 125/180-40 
HP 139/202-44 
HP 143/207-44 

HP 126/181-
40 

HP 106/154-
39 

46S 

 
S. aureaus ATCC
25923-11; MRSA

14.002-18 

ATCC 700684-32 
HP 132/194-34 
HP 115/168-26 

ATCC 43504-35 
HP 125/180-36 
HP 139/202-46 
HP 143/207-29 
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25923-15; MRSA
14.002-23; E. coli 
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ATCC 700684-34 
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HP 115/168-46 
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HP 143/207-58 

HP 126/181-
50 

HP 106/154-
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48S 

 ATCC 700684-28 
HP 132/194-30 
HP 115/168-30 

ATCC 43504-21 
HP 125/180-28 
HP 139/202-38 
HP 143/207-36 

HP 126/181-
28 

HP 106/154-
26 

49S 

 S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli 

ATCC 2592-9 

ATCC 700684-35 
HP 132/194-42 
HP 115/168-38 

ATCC 43504-41 
HP 125/180-36 
HP 139/202-48 
HP 143/207-42 

HP 126/181-
48 

HP 106/154-
39 

ATCC 700684-28
HP 132/194-30
HP 115/168-30

ATCC 43504-21
HP 125/180-28
HP 139/202-38
HP 143/207-36

HP 126/181-28
HP 106/154-26

49S

R1=R2=R4=H
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and others (Table 10) [99]. These compounds revealed strong activity against Gram-positive bacteria- 
and multidrug-resistant strains [99]. More recently, Koh et al. [100] tested these compounds in a panel 
of Gram-negative pathogens: ten strains of P. aeruginosa, three strains of E. coli, and three strains of 
K. pneumoniae (Table 10) [100].

According to the results, the small size might facilitate the penetration of the external bacterial
membrane, where the lipophilic chains in the form of isoprenyl enhance the penetration of the bulky 
xanthone into the cytoplasmic membrane, and the cationic moiety to form an amphiphilic structure 
to interact with microbe’s membrane, where the more dispersed the positive charge is, the more 
disruption and selectivity occurs [99]. 

Nevertheless, in mycobacterial assays, the compounds 42S and 43S revealed potent 
antimycobacterial activity, which leads to a new class of antimycobacterial agents with hitherto 
unprecedented modes of action [97]. 

3.5. Xanthone Derivatives with 2-Hydro-3-Amino and Piperazine Groups 

Piperazine is a six-member heterocyclic with a broad spectrum of biological activities, which 
leads research groups to develop new piperazine derivatives [101–103]. Besides these, piperazine 
derivatives are reported as having antidepressant [104], anticancer [105], antimalarial [106] and 
diverse antimicrobial activities [101,107], among others [108]. 

Chimenti et al. [109] reported strong anti-H. pylori activity of synthesized analogues of N-
substituted of 2-oxo-2H-1-benzopyran-3-carboxamides. Due to similar structural features of these 
analogues with xanthone scaffold, Klesiewicz et al. [110] synthesized xanthone derivatives with 
potential anti-H. pylori (Table 11). Regarding Klesiewicz et al.’s report [110], the compilation of the 
results of the antimicrobial assays is described in Table 11. 

Table 11. Anti-bacterial activity of xanthone derivatives with 2-hydro-3-amino and piperazine groups. 

No. Structure

Inhibitory Growth Zones [mm] a 

Other Strains 
Clarithromycin 

Resistant H. Pylori 
Strains 

Metronidazole 
Resistant H. Pylori 

Strains 

Double 
Resistant H. 

Pylori 
Strains 

45S 

 S. aureaus ATCC
25923-13; MRSA
14.002-23; E. coli 
ATCC 25922-8 

ATCC 700684-36 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-42 
HP 125/180-40 
HP 139/202-44 
HP 143/207-44 

HP 126/181-
40 

HP 106/154-
39 

46S 

 
S. aureaus ATCC
25923-11; MRSA

14.002-18 

ATCC 700684-32 
HP 132/194-34 
HP 115/168-26 

ATCC 43504-35 
HP 125/180-36 
HP 139/202-46 
HP 143/207-29 

HP 126/181-
40 

HP 106/154-
33 

47S 

 
S. aureaus ATCC
25923-15; MRSA
14.002-23; E. coli 
ATCC 25922-10 

ATCC 700684-34 
HP 132/194-42 
HP 115/168-46 

ATCC 43504-54 
HP 125/180-46 
HP 139/202-52 
HP 143/207-58 

HP 126/181-
50 

HP 106/154-
47 

48S 

 ATCC 700684-28 
HP 132/194-30 
HP 115/168-30 

ATCC 43504-21 
HP 125/180-28 
HP 139/202-38 
HP 143/207-36 

HP 126/181-
28 

HP 106/154-
26 

49S 

 S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli 

ATCC 2592-9 

ATCC 700684-35 
HP 132/194-42 
HP 115/168-38 

ATCC 43504-41 
HP 125/180-36 
HP 139/202-48 
HP 143/207-42 

HP 126/181-
48 

HP 106/154-
39 

S. aureaus ATCC
25923-12; MRSA
14.002-15; E. coli

ATCC 2592-9

ATCC 700684-35
HP 132/194-42
HP 115/168-38

ATCC 43504-41
HP 125/180-36
HP 139/202-48
HP 143/207-42

HP 126/181-48
HP 106/154-39

50S

R1=R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

ATCC 700684-24
HP 132/194-22
HP 115/168-17

ATCC 43504-11
HP 125/180-17
HP 139/202-26
HP 143/207-22

HP 126/181-23
HP 106/154-16

51S

R1=R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-12; MRSA

14.002-11

ATCC 700684-34
HP 132/194-32
HP 115/168-31

ATCC 43504-36
HP 125/180-40
HP 139/202-40
HP 143/207-32

HP 126/181-34
HP 106/154-31

52S

R1=R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

ATCC 700684-20
HP 132/194-16
HP 115/168-25

ATCC 43504-19
HP 125/180-20
HP 139/202-20
HP 143/207-22

HP 126/181-20
HP 106/154-21

53S

R1=R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

ATCC 700684-27
HP 132/194-29
HP 115/168-34

ATCC 43504-28
HP 125/180-32
HP 139/202-38
HP 143/207-32

HP 126/181-38
HP 106/154-31
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Table 11. Cont.

No. Structure

Inhibitory Growth Zones [mm] a

Other Strains
Clarithromycin

Resistant
H. Pylori Strains

Metronidazole
Resistant

H. Pylori Strains

Double Resistant
H. Pylori Strains

54S

R1=R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

ATCC 700684-25
HP 132/194-30
HP 115/168-33

ATCC 43504-23
HP 125/180-35
HP 139/202-32
HP 143/207-36

HP 126/181-36
HP 106/154-34

55S

R1=R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-9; MRSA

14.002-11

ATCC 700684-38
HP 132/194-48
HP 115/168-44

ATCC 43504-39
HP 125/180-50
HP 139/202-54
HP 143/207-50

HP 126/181-56
HP 106/154-45

56S

R1=Cl; R2=R4=H
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ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-10; MRSA

14.002-16

ATCC 700684-34
HP 132/194-40
HP 115/168-40

ATCC 43504-37
HP 125/180-40
HP 139/202-40
HP 143/207-48

HP 126/181-45
HP 106/154-40

57S

R1=Cl; R2=R4=H
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ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-12; MRSA

14.002-13

ATCC 700684-26
HP 132/194-22
HP 115/168-25

ATCC 43504-25
HP 125/180-32
HP 139/202-28
HP 143/207-23

HP 126/181-25
HP 106/154 -21

58S

R1=Cl; R2=R4=H
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50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 

 

ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli
ATCC 25922-9

ATCC 700684-35
HP 132/194-44
HP 115/168-46

ATCC 43504-50
HP 125/180-42
HP 139/202-40
HP 143/207-50

HP 126/181-26
HP 106/154-30

59S

R1=Cl; R2=R4=H
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ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
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S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 
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ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
HP 125/180-20 
HP 139/202-20 
HP 143/207-22 

HP 126/181-
20 

HP 106/154-
21 

53S 

 
ATCC 700684-27 

HP 132/194-29 
HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 
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ATCC 700684-25 
HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli
ATCC 25922-9

ATCC 700684-34
HP 132/194-36
HP 115/168-38

ATCC 43504-28
HP 125/180-32
HP 139/202-32
HP 143/207-33

HP 126/181-41
HP 106/154-35

60S

R1=Cl; R2=R4=H
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25923-10; MRSA

14.002-16 
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HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 
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25923-12; MRSA

14.002-13 
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21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S.aureaus ATCC
25923-12; MRSA

14.002-15

ATCC 700684-23
HP 132/194-19
HP 115/168-24

ATCC 43504-15
HP 125/180-18
HP 139/202-31
HP 143/207-26

HP 126/181-20
HP 106/154-19

61S

R1=Cl; R2=R4=H

Molecules 2019, 24, x FOR PEER REVIEW 18 of 28 

50S 

 
ATCC 700684-24 

HP 132/194-22 
HP 115/168-17 

ATCC 43504-11 
HP 125/180-17 
HP 139/202-26 
HP 143/207-22 

HP 126/181-
23 

HP 106/154-
16 

51S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-11 

ATCC 700684-34 
HP 132/194-32 
HP 115/168-31 

ATCC 43504-36 
HP 125/180-40 
HP 139/202-40 
HP 143/207-32 

HP 126/181-
34 

HP 106/154-
31 

52S 

 

ATCC 700684-20 
HP 132/194-16 
HP 115/168-25 
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HP 115/168-34 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-38 
HP 143/207-32 

HP 126/181-
38 

HP 106/154-
31 

54S 
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HP 132/194-30 
HP 115/168-33 

ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
36 

HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
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14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
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S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 
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HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
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HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
259-16; MRSA

14.002-16

ATCC 700684-30
HP 132/194-32
HP 115/168-28

ATCC 43504-24
HP 125/180-28
HP 139/202-36
HP 143/207-40

HP 126/181-26
HP 106/154-26

62S

R1=Cl; R2=R4=H
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S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 
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56 
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45 

56S 
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25923-10; MRSA

14.002-16 
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HP 132/194-40 
HP 115/168-40 
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HP 143/207-48 
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45 
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57S 

 
S. aureaus ATCC
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14.002-13 
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HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
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HP 143/207-23 
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25 

HP 106/154 -
21 
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 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 
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HP 132/194-44 
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ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 
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HP 106/154-
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ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 
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41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

ATCC 700684-22
HP 132/194-24
HP 115/168-27

ATCC 43504-24
HP 125/180-27
HP 139/202-26
HP 143/207-24

HP 126/181-25
HP 106/154-24

63S

R1=Cl; R2=R4=H
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HP 126/181-
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HP 132/194-16 
HP 115/168-25 

ATCC 43504-19 
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HP 125/180-32 
HP 139/202-38 
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HP 106/154-
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HP 132/194-30 
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ATCC 43504-23 
HP 125/180-35 
HP 139/202-32 
HP 143/207-36 

HP 126/181-
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HP 106/154-
34 

55S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-11 

ATCC 700684-38 
HP 132/194-48 
HP 115/168-44 

ATCC 43504-39 
HP 125/180-50 
HP 139/202-54 
HP 143/207-50 

HP 126/181-
56 

HP 106/154-
45 

56S 

 
S. aureaus ATCC
25923-10; MRSA

14.002-16 

ATCC 700684-34 
HP 132/194-40 
HP 115/168-40 

ATCC 43504-37 
HP 125/180-40 
HP 139/202-40 
HP 143/207-48 

HP 126/181-
45 

HP 106/154-
40 

57S 

 
S. aureaus ATCC
25923-12; MRSA

14.002-13 

ATCC 700684-26 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-25 
HP 125/180-32 
HP 139/202-28 
HP 143/207-23 

HP 126/181-
25 

HP 106/154 -
21 

58S 

 S. aureaus ATCC
25923-16; MRSA
14.002-16; E. coli 
ATCC 25922-9 

ATCC 700684-35 
HP 132/194-44 
HP 115/168-46 

ATCC 43504-50 
HP 125/180-42 
HP 139/202-40 
HP 143/207-50 

HP 126/181-
26 

HP 106/154-
30 

59S 

 S. aureaus ATCC
25923-17; MRSA
14.002-15; E. coli 
ATCC 25922-9 

ATCC 700684-34 
HP 132/194-36 
HP 115/168-38 

ATCC 43504-28 
HP 125/180-32 
HP 139/202-32 
HP 143/207-33 

HP 126/181-
41 

HP 106/154-
35 

60S 

 
S.aureaus ATCC
25923-12; MRSA

14.002-15 

ATCC 700684-23 
HP 132/194-19 
HP 115/168-24 

ATCC 43504-15 
HP 125/180-18 
HP 139/202-31 
HP 143/207-26 

HP 126/181-
20 

HP 106/154-
19 

61S 

 
S. aureaus ATCC
259-16; MRSA 

14.002-16 

ATCC 700684-30 
HP 132/194-32 
HP 115/168-28 

ATCC 43504-24 
HP 125/180-28 
HP 139/202-36 
HP 143/207-40 

HP 126/181-
26 

HP 106/154-
26 

62S 

 ATCC 700684-22 
HP 132/194-24 
HP 115/168-27 

ATCC 43504-24 
HP 125/180-27 
HP 139/202-26 
HP 143/207-24 

HP 126/181-
25 

HP 106/154-
24 

63S 

 
S. aureaus ATCC
25923-9; MRSA 

14.002-9 

ATCC 700684-19 
HP 132/194-22 
HP 115/168-25 

ATCC 43504-22 
HP 125/180-29 
HP 139/202-30 
HP 143/207-25 

HP 126/181-
27 

HP 106/154-
25 

S. aureaus ATCC
25923-9; MRSA

14.002-9

ATCC 700684-19
HP 132/194-22
HP 115/168-25

ATCC 43504-22
HP 125/180-29
HP 139/202-30
HP 143/207-25

HP 126/181-27
HP 106/154-25

a The antimicrobial studies were determined using a disc diffusion method, where values correspond to the
means of the zones of growth inhibition caused by the tested compounds in 1% concentration in millimeters [110];
* Stereogenic center.

According to Table 11, the SAR analysis showed that the presence of two hydroxy groups in the
amine moiety led to a decrease of activity. This suggested that the activity of the compounds was not
only determined by the hydrophilic character but also by the structure and spherical conformation
determined by the side chains [110]. Neither configuration of the stereogenic centers nor specific
rotations were reported.

3.6. Derivatives of Caged Xanthones

In order to carry on the studies of caged xanthones, Chaiyakunvat et al. [64] synthesized some
compounds (64–75S) inspired by the natural structures with antimicrobial activity previously reported
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(Table 12). First, they synthesized compound 75S that corresponds to the methylated morellic acid
(36N) (with MIC of 25 µg/mL against MRSA strains). Then, they synthesized morrelic acid derivatives
(64–75S) comprising amino acid moieties, Table 12.

Table 12. Antimicrobial activity of derivatives of caged xanthones.

No. Structure Antimicrobial Activity (MIC or Inhibitory Growth Zones *)

64S
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25923 (13.08 mm; 50 µM) 

73S 
MRSA USA300 SF8300 (8.21 mm); MSSA ATCC 25923 (6.89 

mm) 

74S 
MRSA USA300 SF8300 (9.09 mm); MSSA ATCC 25923 (7.50 

mm) 

75S 
MRSA USA300 SF8300 (6 mm; 25 µM); MSSA ATCC 25923 (6 

mm; 12.5 µM) 

O

O

O
O

OH

O
O

NH

COOH

O

N
H

Trt

MRSA USA300 SF8300 (18.34 mm; 25 µM);
MSSA ATCC 25923 (16.52 mm; 25 µM)
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Table 12. Cont.

No. Structure Antimicrobial Activity (MIC or Inhibitory Growth Zones *)
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mm) 

71S 
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25923 (15.91 mm; 25 µM) 
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25923 (13.08 mm; 50 µM) 
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mm) 
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69S 
MRSA USA300 SF8300 (18.34 mm; 25 µM); MSSA ATCC 

25923 (16.52 mm; 25 µM) 

70S 
MRSA USA300 SF8300 (6.28 mm); MSSA ATCC 25923 (6.09 

mm) 

71S 
MRSA USA300 SF8300 (19.35 mm; 25 µM); MSSA ATCC 

25923 (15.91 mm; 25 µM) 

72S 
MRSA USA300 SF8300 (15.91 mm; 100 µM); MSSA ATCC 

25923 (13.08 mm; 50 µM) 

73S 
MRSA USA300 SF8300 (8.21 mm); MSSA ATCC 25923 (6.89 

mm) 

74S 
MRSA USA300 SF8300 (9.09 mm); MSSA ATCC 25923 (7.50 

mm) 

75S 
MRSA USA300 SF8300 (6 mm; 25 µM); MSSA ATCC 25923 (6 

mm; 12.5 µM) 

O

O

O
O

OH

O
O

NH

COOH

O

N
H

Trt

MRSA USA300 SF8300 (6 mm; 25 µM);
MSSA ATCC 25923 (6 mm; 12.5 µM)

* The antimicrobial studies were determined by disc diffusion method; MIC: Minimum inhibitory concentration;
MRSA: Methicillin-resistant S. aureus; MSSA: Methicillin-sensitive S. aureus.

As reported in Table 12, the morellic acid derivatives with more inhibition bacterial growth
were the ones with amino acids containing hydrophobic side chain (64S, 65S, 69S, 71S, and 72S) [64].
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This state is in agreement with the previous report where the antimicrobial activity was higher in the
structures with the hydrophobic and/or aromatic amino acids [64,99]. The configuration of stereogenic
centers are presented but specific rotations and absolute configuration were not reported.

3.7. Xanthone Derivatives of C-2-Substituted

Szkaradek et al. [18,111] developed interesting studies about antimycobacterial activity using
xanthones. They started by the development of new 2-xanthone derivatives with structural moieties
with well-known antimycotic properties such as the allyl (76S) and morpholine (77S) groups [18]
(Table 13). Then, synthesized xanthone derivatives C2-substituted to generate new anti-tuberculosis
agents (78–88S) [111] (Table 13).

Table 13. Antimicrobial activity of xanthone derivatives of C-2-substituted.
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a C. lusitaniae (8 mm); T. mentagrophytes (18 mm); S. aureus (9 mm); 

E.faecalis (9 mm)

77S 

 

a T. mentagrophytes (12 mm) 

78S 

 

M. tuberculosis H37Rv (>2.5% with 35% inhibition)

79S 

 

M. tuberculosis H37Rv (>2.5% with 32% inhibition)

80S 

 

M. tuberculosis H37Rv (>2.5% with 35% inhibition)

81S 

 

M. tuberculosis H37Rv (>2.5% with 34% inhibition)
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M. tuberculosis H37Rv (>2.5% with 63% inhibition)
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M. tuberculosis H37Rv (>2.5% with 3% inhibition)
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78S 
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a C. lusitaniae (8 mm); T. mentagrophytes (18 mm); S. aureus (9 mm); 

E.faecalis (9 mm)

77S 

 

a T. mentagrophytes (12 mm) 

78S 
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M. tuberculosis H37Rv (>2.5% with 63% inhibition)
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Table 13. Cont.

No. Structure Antimicrobial Activity (Inhibitory Growth Zones or MIC)
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with well-known antimycotic properties such as the allyl (76S) and morpholine (77S) groups [18] 
(Table 13). Then, synthesized xanthone derivatives C2-substituted to generate new anti-tuberculosis 
agents (78–88S) [111] (Table 13). 

Table 13. Antimicrobial activity of xanthone derivatives of C-2-substituted. 

No. Structure Antimicrobial Activity (Inhibitory Growth Zones or MIC) 

76S 

 
a C. lusitaniae (8 mm); T. mentagrophytes (18 mm); S. aureus (9 mm); 

E.faecalis (9 mm)

77S 

 

a T. mentagrophytes (12 mm) 

78S 

 

M. tuberculosis H37Rv (>2.5% with 35% inhibition)

79S 

 

M. tuberculosis H37Rv (>2.5% with 32% inhibition)

80S 

 

M. tuberculosis H37Rv (>2.5% with 35% inhibition)

81S 

 

M. tuberculosis H37Rv (>2.5% with 34% inhibition)
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M. tuberculosis H37Rv (>2.5% with 63% inhibition)
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M. tuberculosis H37Rv (>2.5% with 25% inhibition)
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M. tuberculosis H37Rv (>2.5% with 14% inhibition)
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M. tuberculosis H37Rv (<2.5% with 94% inhibition)
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M. tuberculosis H37Rv (>2.5% with 24% inhibition)
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MIC: Minimum inhibitory concentration; a The antimicrobial studies were determined using a disc 
diffusion method, where the inhibitory growth zones showed inhibition at 1% concentration against 
representative strains of microorganisms C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. neoformans, 
A. fumigatus, T. mentagrophytes, S. aureus, E. faecalis, E. coli, K. pneumonia, and P. aeruginosa; only the
strains with activity were expressed; * Stereogenic center.

Szkaradek et al. [18,111] considered that the activity increased with the enlarged size of the 
lateral chain, due to the mycobacterial membrane containing lipids, which makes the hydrophobic 
side chains easier to penetrate. According to Table 13, compound 86S possessed the most promising 
activity [111]. In this work, the stereochemistry was also ignored. 

4. Conclusions and Future Perspectives

Among many of natural CDXs, a few compounds where highlighted due to their interesting 
antimicrobial activity. Mangostanin (1N), toxyloxanthone C (2N), formoxanthone-C (5N), 
scortechinone B (17N), and scortechinone I (24N) displayed strong activity against fungus and Gram-
positive bacteria, with formoxanthone-C (5N) also being active against Gram-negative bacteria. 
Geronthoxanthones G and A (3 and 4N) also presented interesting activities and should be explored 
along with SAR studies in order to synthesize new analogues. 

The synthetic CDXs were inspired by natural scaffolds with potential antimicrobial activity. The 
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M. tuberculosis H37Rv (>2.5% with 59% inhibition)

MIC: Minimum inhibitory concentration; a The antimicrobial studies were determined using a disc diffusion
method, where the inhibitory growth zones showed inhibition at 1% concentration against representative strains of
microorganisms C. albicans, C. glabrata, C. krusei, C. lusitaniae, C. neoformans, A. fumigatus, T. mentagrophytes, S. aureus,
E. faecalis, E. coli, K. pneumonia, and P. aeruginosa; only the strains with activity were expressed; * Stereogenic center.

Szkaradek et al. [18,111] considered that the activity increased with the enlarged size of the lateral
chain, due to the mycobacterial membrane containing lipids, which makes the hydrophobic side chains
easier to penetrate. According to Table 13, compound 86S possessed the most promising activity [111].
In this work, the stereochemistry was also ignored.

4. Conclusions and Future Perspectives

Among many of natural CDXs, a few compounds where highlighted due to their interesting
antimicrobial activity. Mangostanin (1N), toxyloxanthone C (2N), formoxanthone-C (5N),
scortechinone B (17N), and scortechinone I (24N) displayed strong activity against fungus and
Gram-positive bacteria, with formoxanthone-C (5N) also being active against Gram-negative bacteria.
Geronthoxanthones G and A (3 and 4N) also presented interesting activities and should be explored
along with SAR studies in order to synthesize new analogues.

The synthetic CDXs were inspired by natural scaffolds with potential antimicrobial activity.
The most promising strategy among the synthesized CDXs analogues was the development of
membrane-targeting potent antibacterial agents in which the lipophilic side chains contain cationic
amino acid residues that can penetrate the microbial membranes in order to disrupt them.

Regarding the stereochemistry and enantioselectivity, the configuration of the stereogenic
centers are often ignored and only a few examples described the antimicrobial activity for both
enantiomers and/or racemate. Differences in the activity among enantiomers or epimers were



Molecules 2019, 24, 314 24 of 29

observed. One example concerns the naturally occurring epimers of scortechinone A (16N) and
L (27N), with 27N being more active. Another interesting example concerning the different activities
of racemic or pure enantiomeric forms are the synthesized muchimangins 1S and 3S.

It was found that the use of L-amino acids in the majority of the synthesized analogues amplified
the interaction with the antimicrobial membrane for a major effect. These examples emphasize the
importance of chirality in the development of new antibiotics.
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