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Abstract

Background: DNA methylation is involved in the regulation of gene expression. Although bisulfite-sequencing
based methods profile DNA methylation at a single CpG resolution, methylation levels are usually averaged over
genomic regions in the downstream bioinformatic analysis.

Results: We demonstrate that on the genome level a single CpG methylation can serve as a more accurate predictor
of gene expression than an average promoter / gene body methylation. We define CpG traffic lights (CpG TL) as CpG
dinucleotides with a significant correlation between methylation and expression of a gene nearby. CpG TL are
enriched in all regulatory regions. Among all promoters, CpG TL are especially enriched in poised ones, suggesting
involvement of DNA methylation in their regulation. Yet, binding of only a handful of transcription factors, such as
NRF1, ETS, STAT and IRF-family members, could be regulated by direct methylation of transcription factor binding
sites (TFBS) or its close proximity. For the majority of TF, an alternative scenario is more likely: methylation and
inactivation of the whole regulatory element indirectly represses functional TF binding with a CpG TL being a reliable
marker of such inactivation.

Conclusions: CpG TL provide a promising insight into mechanisms of enhancer activity and gene regulation linking
methylation of single CpG to gene expression. CpG TL methylation can be used as reliable markers of enhancer
activity and gene expression in applications, e.g. in clinic where measuring DNA methylation is easier compared to
directly measuring gene expression due to more stable nature of DNA.

Keywords: CpG traffic lights, DNA methylation, Transcription regulation, Enhancers, CAGE, Chromatin states, NRF1,
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Background
Epigenetic regulation of gene expression has been thor-
oughly investigated over last decades. DNA methylation,
usually in CpG context, is probably the most well-studied
mechanism of epigenetic regulation. DNA methylation
is linked to many normal and pathological biological
processes: organism development, cell differentiation,
cell identity and pluripotency maintenance (reviewed in
[1–3]), aging [4], memory formation [5, 6], responses to

*Correspondence: ju.medvedeva@gmail.com
†Anna V. Lioznova and Abdullah M. Khamis contributed equally to this work.
1Institute of Bioengineering, Research Center of Biotechnology, Russian
Academy of Sciences, Moscow 119071, Russia
5Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region
141701, Russia
Full list of author information is available at the end of the article

environmental exposures, stress and diet [7–9]. Abnor-
malities in DNA methylation play an important role
in various diseases, including metabolic [10], cardio-
vascular [11], neurodegenerative [12, 13] diseases and
cancers (reviewed in [14]). For about a decade, DNA
demethylating drugs (Decitabine, Azacytidine) are used
in clinic for the treatment of acute myeloid leukemia
and myelodysplastic syndrome [15]. Recent advances
in site-specific editing of DNA methylation [16] sug-
gest DNA methylation as a promising target for non-
invasive therapies against diseases linked to aberrant
methylation.
Functionally, DNA methylation of promoter regions is

tightly associated with repression of transcription initi-
ation, while high levels of gene body methylation, on
the contrary, are linked to the increased gene expres-
sion (reviewed in [17]). Enhancers, distant regulatory
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regions, that contribute to the establishment of the
correct temporal and cell-type-specific gene expres-
sion pattern, have been shown to initiate transcrip-
tion of short RNAs [18]. Therefore, it is no sur-
prise that DNA methylation also regulates the enhancer
functioning [19–22].
Methods based on bisulfite sequencing allow detection

of single cytosine methylation. Yet, in downstream bioin-
formatic analysis, methylation levels of several dozens of
cytosines are often averaged to increase statistical power
[23, 24]. At the same time, multiple examples show that
changes in methylation of a single CpG can affect tran-
scription [25–39]. Recently, we have shown that methy-
lation of particular single CpG dinucleotides are tightly
linked to gene expression [40]. We have called such posi-
tions CpG traffic lights (CpG TL) and have demonstrated
a strong negative selection against them in computation-
ally predicted transcription factor binding sites. In the
current study we show enrichment of CpG TL in regu-
latory elements of different types: in transcription start
sites (TSS), in particular, in poised promoters, as well as
in enhancers and regions with active chromatin marks.
Although CpG TL may regulate transcription factors, co-
factors and epigenetic regulators, binding of only a hand-
ful of transcription factors could be regulated by direct
methylation of a CpG TL within a transcription factor
binding site (TFBS). For the majority of TF, an alternative
scenario is more likely: inactivation of the whole regu-
latory element via DNA methylation repress TF binding
indirectly; and CpG TL are reliable markers of inacti-
vation. We believe that CpG TL provide a promising
insight into mechanisms of enhancer activity and gene
regulation linking methylation of single CpG to gene
expression.

Results
CpG traffic lights detection
DNA methylation in promoter regions often repress gene
expression. Nevertheless, the link between expression and
promoter or gene body methylation is not straightfor-
ward, suggesting the need to deconvolute DNA methy-
lation profiles into regulatory regions of a smaller size.
To thoroughly investigate the connection between methy-
lation and expression, we focus on methylation levels of
single CpG dinucleotides. Following the logic previously
reported in our works [40, 41], we expand our approach
and use whole-genome DNA methylation (genome wide
bisulfite sequencing, WGBS) and expression (RNA-seq)
data for 48 normal human primary cells and tissues from
the Roadmap Epigenomics Project. We selected non-
related cell types to capture CpG position which are most
variable inmethylation between cell types.We define CpG
traffic lights (CpG TL) as CpG dinucleotides with sig-
nificant Spearman correlation coefficient (SCC) between

DNA methylation and expression levels of a neighboring
gene (FDR < 0.01, Fig. 1).
Here we show that the average methylation of pro-

moter/gene body less frequently correlates significantly
with the gene expression compared to the methylation of
CpG TL, even applying a proper multiple testing correc-
tion. In particular, at FDR < 0.01 we find only 764/762
genes for which average promoter/gene body methylation
correlates with expression, while at the same level of sig-
nificance we observe 7997 genes correlating significantly
with CpG TL methylation levels (Table 1, Additional
file 1: Table S1, Table S2). Similar tendencies are observed
for different promoter/gene body boundaries (Additional
file 1: Table S3).
The majority of promoter CpG TL demonstrate nega-

tive SCC, while the majority of those located in intronic
regions demonstrate positive SCC, which is in line with
the previous findings. Exonic CpG TL demonstrate com-
parable number of both positive and negative SCCwith an
increase in positive SCC towards gene 3’ end (Additional
file 1: Figure S1). CpG TL are uniformly distributed along
the genome (Manhattan plot, Additional file 1: Figure S2).

CpG traffic lights are conserved across mammals and
primates
To address functionality of CpG TL, we first investigate
their evolutionary conservation and find that CpG TL are
preserved inmammals and in primates according toGERP
RS [42] and PhyloP [43] scores respectively (Fig. 2a, b).
Also, CpG TL are depleted in repetitive sequences deter-
mined by repeatMasker (Fig. 2c) (see “Methods”) and
chromatin states (chromHMM [44], Fig. 3g). Eigen non-
coding scores [45] that reflects non-coding functional-
ity are significantly higher for CpG TL (Fig. 2d). Taken
together, these results suggest the regulatory role of CpG
TL in the genome.

CpG traffic lights are enriched in regulatory elements
To narrow down the regulatory role of CpG TL we tested
for the overlap between CpG TL and various functional
genomic elements. CpG TL are enriched in the open
chromatin regions (Fig. 3a) supporting the claim of their
regulatory potential. In particular, they are 2-fold enriched
at exact transcription start sites (Fig. 3b) determined by
CAGE (Cap Analysis of Gene Expression) [46], as well as
in all promoter types determined by chromHMM [44],
including active, bivalent, and poised promoters but not
in the regions of transcription elongation (Fig. 3g). Inter-
estingly, the strongest enrichment was observed in poised
promoters (>3.5 fold). Since the poised or bivalent chro-
matin is thought to be able to easily switch between active
and repressed states [47], such enrichment may suggest a
contribution of CpGTL to themaintenance of the bivalent
state of the chromatin.
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Fig. 1 Schematic representation of a CpG traffic light detection. Left panel. Suppose we analyze a particular genomic region (chr1:123..11654),
which contains for simplicity one gene. For each CpG in this region and the gene we have methylation and expression vectors in 6 cell lines,
respectively. CpG dinucleotides are represented by dark blue lollipops (filled: methylated CpG, empty: unmethylated CpG). First three CpGs are
located within the promoter region, while the last three are located in the gene body. Gene expression or lack of it is represented by green arrows.
Right panel. The yellow column shows methylation of a random CpG (used as a background), the methylation vector of this CpG demonstrates
low correlation with the gene expression (the green box on the right, in RPKM). Correlation between the average promoter/gene body methylation
(shown in the light blue and light purple columns, respectively) and the corresponding gene expression is also low. However, for the CpG TL (shown
in the red box), the methylation significantly correlates with the gene expression

CpG TL are also highly enriched in chromatin states
corresponding to regulatory elements (Fig. 3c-g), in par-
ticular in enhancers, determined by a combination of
histone marks (Fig. 3c), by CAGE bidirectional transcrip-
tion (Fig. 3d), and by chromatin states (Fig. 3g). Among
all enhancer types the most enriched are various stem
cell and hematopoietic cell enhancers suggesting potential
role of CpG TL methylation in regulation of pluripotency
and hematopoesis (Fig. 4, Additional file 1: Table S4). Sur-
prisingly, CpG TL are enriched in CpG island shores but
not in CpG islands (Fig. 3e, f ).

CpG traffic lights are enriched in regulatory genes but
avoid the majority of transcription factor binding sites
By analyzing the functionality of genes harboring CpG
TLs we found a strong enrichment of such genes with
known transcription regulators — transcription fac-
tors, co-factors and epigenetic regulators (Table 2, see
“Methods”). Previously we reported that CpG TL avoided
computationally predicted TFBS suggesting that direct
methylation of TFBS may not be the main mechanism
of TF binding regulation [40]. In this work, using aggre-
gated data on in vivo binding (ChIP-Seq) we support this

Table 1 The number of genes with significant correlation between expression and methylation

FDR-corrected p-value (significance level) Total number of genes, which have significant correlations between gene expression and methylation

Average methylation of
promoter regions
(-1000..500) (1)

Average methylation of
gene bodies (+500..TTS)
(2)

Methylation of CpG TL (3) Permutation test (4)

0.001 263 186 1463 14.5

0.005 537 505 4905 15.4

0.01 764 762 7997 16.2

0.05 2038 2125 22957 21.8

0.1 3251 3401 34095 27.5

Note: for multiple testing correction the number of genes was used in (1) and (2), while the number of all CpG - gene pairs was used for the same purpose in (3) and (4). (4)
Permutation test (RPKM) results: the number of genes with significant correlation between expression and methylation obtained by chance (averaged over 10 random
permutations). (TTS) refers to a Transcription Termination Site
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Fig. 2 Evolutionary conservation of the CpG TL compared to the
background CpG sites (BG). a Conservation in mammals and b in
primates, c repeats determined by RepeatMasker, d Eigen
non-coding functionality score. Whiskers (abc) represent standard
deviation out of the 50 random background samples. Fisher exact
test, p-value < 5E − 4 (a - c), Kolmogorov-Smirnov statistic for 2
samples p-value < 5E − 4 (d)

claim showing that for the majority of TFBS (with those
of NRF1 being a notable exception) there is no enrich-
ment for the CpG TL (Fig. 5a). Yet, surprisingly for some
TF, CpG TL were enriched in the close proximity of their
TFBS (Fig. 5b, c).

NRF1 binding sites
Despite the observation that overall TFBS do not co-
locate with CpG TL, binding sites of NRF1 (Fig. 5a, d)
— a transcription factor involved into activation of key
metabolic genes — are enriched in CpG TL even when
overall enrichment for regulatory regions is taken into
account (see “Methods”). Interestingly, core CpG posi-
tions of NRF1 binding sites are the most enriched with
CpG TL supporting their functional importance for NRF1
binding (Fig. 5e). Being in line with the previous findings
[48], these observations imply that NRF1 may be one of
the very few TF whose binding may be directly regulated
by DNA methylation.

ETS-family binding sites
Exact binding sites of GABPA (ETS-motif binding TF)
and their close proximity (50bp) are 1.3-folds enriched in
CpG TL (Fig. 5j, k). The strongest enrichment is observed
in C neighboring the core GGAA box. In vitro bind-
ing data (HT-SELEX and Methyl-SELEX) [49] show that
methylated C is less frequent in this position (Fig. 5l).
Similar CpG TL enrichment was observed for binding
sites of another members of ETS-familty: SPIB (Fig. 5f, g)
and ETV1 (Additional file 1: Figure S3a-c). Binding of
ETS-family members might be directly affected by DNA

methylation, yet enrichment of the CpG TL in the closest
proximity also supports the hypothesis of the indirect
effect of regional methylation.

STAT-family and IRF-family binding sites
Surprisingly, such GA-rich motifs as those bound by
STAT1,2,4 and IRF1,4 are also enriched in CpG TL but in
their weak positions and in close proximity to the TFBS
(Fig. 5h, i, m, n, Additional file 1: Figure S3d-k). In vitro
binding data for IRF4 (HT-SELEX and Methyl-SELEX)
shows an avoidance of methylated C in this motif position
(Fig. 5o). Since the enrichment in CpGTL is observed only
in weak motif positions we speculate that binding of the
TF from STAT- and IRF-families is indirectly affected by
methylation of the whole regulatory region.

Discussion
In this work we demonstrate that methylation profiles
of single CpG dinucleotides (CpG TL) more often sig-
nificantly correlate with gene expression as compared to
average promoter / gene body methylation. It is a sur-
prising observation, since it is widely accepted that DNA
methyltransferases once bound to DNA move along it
[50] or multimerize [51] methylating all neighboring CpG
dinucleotides unless a boundary protein, such as Sp1, is
reached (reviewed in [52]). Yet, only a small fraction of
CpG TL are co-located within the promoter (or body)
of the same gene. We speculate that local change in
DNA methylation could be achieved through active DNA
demethylation probably with the help of TET proteins. A
direct experiment with the use of CRISPR/TALEN-based
technology is required to test this hypothesis.
It should be noted that our procedure of CpG TL detec-

tion based on correlation (SCC) cannot be applied to CpG
dinucleotides that are fully methylated ormethylated in all
studied cell types. Our dataset consists of 48 cell types and
does not cover the whole spectrum of human cell types.
Due to this limitation, a significant fraction of regulatory
CpG might be missing from our analysis. Novel data on
DNAmethylation and expression in various cell types will
improve our understanding of CpG TL functions.
The enrichment of CpG TL in enhancers, in par-

ticular in hematopoietic enhancers, is in line with the
recent reports that DNA methylatransferases DNMT3a/b
can bind enhancers and regulate the enhancer RNA
production in hematopoietic cells [22]. Also, distal regu-
latory regions can initiate transcription themselves, being
in turn regulated by DNA methylation [53], contributing
to the similarity of TSS and enhancers in terms of CpG TL
enrichment.
Previously, it has been reported that NRF1 binding is

directly regulated by DNA methylation [48]. In our work
we demonstrate that such regulated binding is functional
and regulate corresponding gene expression at least in
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Fig. 3 CpG TL in regulatory regions. Over-representation of CpG TL in a open chromatin regions (DNaseI), b transcription start sites determined by
CAGE, c enhancers determined by histone modifications, d enhancers determined by FANTOM5. No difference between CpG TL and CpG BG
counts in e CpG islands while f CpG TL are over-represented in CpG islands shores. Panel g represents averaged across 127 cell types ratio of TL / BG
in chromatin states determined by chromHMM. The color g reflects absolute number of the CpG TL located in a given chromatin state. Whiskers
(a-f) represent standard deviation of the 50 random background samples. Fisher exact test, p-value < 5E − 4

some cases when NRF1 TFBS harbor a CpG TL. We also
observed the enrichment of CpGTL in the close proximity
to the ETS-, STAT- and IRF-family motifs hits. Interest-
ingly, the majority of TF from these families are involved
in hemapoietic regulation being in line with the strong
enrichment of CpGTL in hematopoietic enhancers. These
observations support the importance of the enhancer
methylation in the regulation of the hematopoetic cells.
In the light of over-representation in regulatory regions,

lack of enrichment of CpG TL within the majority of
TFBS is puzzling. We can see several possible explana-
tions. CpG TL may target unknown TFBS, although we
believe that this scenario is unlikely. It was previously
shown that almost all novel motifs obtained from reg-
ulatory regions correspond to known families of TFBS
[46, 54, 55]. Furthermore, the HOCOMOCO v11
collection covers almost all structural families of tran-
scription factors, except for the zinc finger family. Among
those, there might be some important isolated cases
enriched with CpG TL but their contribution to the

overall picture is expected to be negligible. Alternatively,
cytosine methylation could accumulate as a consequence
of the absence of TF binding, which makes methylation of
CpG TL not a primary cause, but just a “passive” marker
of absent gene expression resulting from inactivation of
its regulatory element. The last alternative is supported by
previous works [56, 57]. More studies are needed to con-
firm which alternative is the most accurate. Yet, even if
the “passive” marker explanation is true, CpG TL methy-
lation could be a reliable marker of enhancer activity and
gene expression, and can be used in practical applications,
for example, in clinic where testing for DNA methylation
is easier than testing directly for gene expression due to
more stable nature of DNA.

Conclusions
In this work we demonstrate that CpG TL are enriched in
regulatory regions, including poised/bivalent promoters
and enhancers, in particular in hematopoietic enhancers.
Only a handful of TFBS, such as those bound by NRF1,
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Fig. 4 Functional categories of human enhancers enriched with CpG TL (negative SCC). Fisher’s exact test and FDR (Benjamini-Hochberg) correction
for multiple testing (implemented in python scipy.stats.fisher_exact and p_adjust (method=’fdr’) from R) were used to calculate the p-values

could be directly regulated by DNA methylation, while
binding of several TF families (ETS-, STAT-, IRF-) could
be affected indirectly through methylation and repression
of the entire regulatory region. CpG traffic lights provide a
promising insight into gene regulation linking single CpG
methylation to gene expression.

Methods
DNAmethylation and expression data processing
We selected 48 tissues and cell types (see Additional
file 1: Table S5) for which both WGBS and RNA-seq

data were available in Roadmap Epigenomics Project. For
all samples sequenced with the Illumina platform read
trimming and adapter removal were performed by Trim-
momatic [58] (up to 2 mismatches between an adapter
and a read sequence; 5bp sliding window; quality thresh-
old of 20; removing sequences shorter than 20 bp after
trimming). For the samples sequenced with the SOLiD
platform we used Cutadapt [59] (up to 10% error rate
relative to the length of the matching region; quality
threshold of 20; removing sequences shorter than 20 bp
after trimming).

Table 2 Enrichment of CpG TL in regulatory genes

Gene type # genes of in the annotation # genes with CpG TL # genes expected fold enrichment over-repre-senta-tion p-value

Epigenetic regulators 719 279 98.56 2.83 + 1.4E-63

Histones 94 17 12.89 1.32 + 0.23

Transcription factors 1751 599 240.02 2.50 + 1.06E-108

Transcription co-factors 951 356 130.36 2.73 + 4.69E-76
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Fig. 5 CpG TL within transcription factor binding sites. CpG TL to CpG BG ratio vs Fisher’s exact test p-value within a all predicted TFBS; b TFBS and
50 nt shores for CpG TL with a negative SCC and c the same for CpG TL with a positive SCC. Length-normalized distribution of CpG TL / CpG BG
counts (negative SCC) within TFBS and 100 nt shores: d NRF1; f SPIB; h STAT1; j GABPA;m IRF4. Per position distribution of CpG TL / CpG BG counts
(negative SCC) within TFBS with logo: e NRF1; g SPIB; i STAT1; k GABPA; n IRF4. In vitro binding preferences of unmethylated and methylated oligos:
l GABPA; o IRF4

We mapped WGBS data to the genome (assembly
GRCh38-Ensembl 78) with Bismark [60] (zero mis-
matches in the seed, 20bp seed length, 0/500bp the
min/max insert size for valid paired-end alignments). Fur-
ther we consider only methylated cytosines in the CpG
context, covered with not less than 4 reads on both
strands. For each CpG position in every of the 48 samples,
the methylation values were averaged between replicates.
We removed all CpG positions if methylation values were
available for less than 20 samples.

We mapped RNA-Seq data with Tophat v2.0.13 [61] (up
to 2 mismatches and 2 gaps per read, paired-end reads are
reported only if both reads are mapped). We generated an
expressionmatrix using FeatureCount [62], the expression
profiles were normalized to RPKM values.

CpG traffic lights detection
To determine CpG TL we considered all pairs of genes
and CpG located within 10000 bp upstream of TSS
to 3’ gene ends. One CpG might be associated with
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multiple genes, similarly, one gene might be associated
with multiple CpG. For each CpG-gene pair we created
two k-dimensional vectors (where k=20..48) of methy-
lation levels (beta-values, [ 0, 1]) and gene expression
(RPKM). The length of the vectors (k) varies due to
the fact that WGBS does not provide uniform coverage
for all genomic CpG leading to missing values in the
methylation profile of many CpGs. To avoid vague cor-
relations we did not consider the CpG positions having
less than 20 defined values in the respective methylation
profiles. We further refer to each of the two vectors as
a methylation and expression profiles. In total we had
18,830,232 CpGs associated with 59,396 genes (in total,
25,813,295 pairs).
For each CpG position, we calculated SCC between the

methylation andexpressionprofiles for all available samples.
We refereed to a CpG position as a CpG traffic light (CpG
TL) if it had a significant Spearman correlation coefficient
(SCC) between methylation and expression profiles at the
level of FDR < 0.01 (Benjamini-Hochberg correction for
the total number of pairs). We found 33,276 such CpG TL
(0.18% of the original number of CpGs) that corresponded
to 7997 genes.

Construction of background datasets
To explore enrichment of CpG TL within various genomic
regions we constructed background sets (CpG BG) of the
same size. We required CpG BG to be similar to CpG TL
based on the following criteria:

• GC content (the total number of C and G
nucleotides) of the surrounding region of CpG BG
must be similar to that of CpG TL. We calculated GC
content in 200 bp windows centered on each CpG
TL. For each such TL-centered window, we searched
for another genomic CpG with the surrounding
window having no more than 5% difference in GC
content. For example, if there are 80 cytosines and
guanines in a 200 bp window around CpG TL, we
were looking for a CpG BG having from 76 to 84
cytosines and guanines in a 200 bp window.

• CpG content (the total number of CG pairs) of the
surrounding region of CpG BG should be similar to
that of CpG TL. Again, for each CpG TL we allowed
no more than 5% difference in CpG content in a 200
bp window.

• CpG BG should have a similar distance to the TSS of
the associated gene (while accounting for upstream
or downstream location). For this purpose, we
separately considered CpG TLs in [−100;TSS] and
[TSS; 100] distance bins by collecting CpG BG from
the respective regions. For CpG TLs located farther
than 100 bp from TSS, we considered log10(distance)
and allowed up to 5% difference between CpG TL

and its respective CpG BG. E.g. if a CpG TL is located
+ 1000 from a TSS, we are looking for a CpG BG
located [ 708; 1413].

AbackgroundCpGforaCpGTLwith a SCC < 0 (SCC > 0)
should also have a negative (positive) SCC with at least
one of the associated genes). We repeated the selection
process 50 times.
It is important to note that we did not control for the

presence of a CpG island (CGI). Recently it has been
shown that even methylated CpG dinucleotides within
CpG islands were more conserved in primate evolution
compared to methylated CpG outside the CGI [63]. Yet
algorithms for CGI search use arbitrary parameters and
may not be accurate in determination of CGI boundaries
[64]. Therefore, controlling for a presence of a CGI would
not necessarily reduce this bias.

Genomic annotations
We annotated all CpG positions with overlapping genomic
features. For each feature we calculated the over-
representation of CpG TL over CpG BG within each anno-
tation using the exact Fisher’s test (in the total number
of CpG TL and for CpG TL with positive/negative SCC
separately). The following genomic annotations were te
sted: repeats (RepeatMasker http://hgdownload.soe.ucsc.
edu/goldenPath/hg38/database/rmsk.txt.gz); the robust
CAGE clusters [46]; the robust enhancers [65] (mapped
to hg38 with the liftOver); the DNaseI hypersensitivity
clusters (http://hgdownload.soe.ucsc.edu/goldenPath/hg38/
database/wgEncodeRegDnaseClustered.txt.gz). Functional
annotation of the enhancers was obtained from [46, 54, 55].

Evolutionary conservation and Eigen scores
Conservation of CpG TL and background sites in mam-
mals and primates was assessed with UCSC Genome
Browser GERP RS [42] and PhyloP [43] hg19 tracks,
respectively.We calculated howmany sites in each dataset
had GERP RS score greater than 2, which we considered as
conserved in mammals and PhyloP score greater than 0.5,
which we considered as conserved in primates. Overall
functional scores for each site were calculated with Eigen
[45]. Higher Eigen scores imply more likely functionality
of respective genome sites.

Histonemodifications and chromatin states
The Roadmap Epigenomics Consortium 25-state segmen-
tation of 127 epigenomes predicted with ChromHMM
[44, 66] was used to assess chromatin states co-located
with CpG TL. The annotation based on the imputed data
for 12 chromatinmarks (H3K4me1, H3K4me2, H3K4me3,
H3K9ac, H3K27ac, H4K20me1, H3K79me2, H3K36me3,
H3K9me3, H3K27me3, H2A.Z, and DNaseI) was down-
loaded from http://egg2.wustl.edu/roadmap/web_portal/

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/rmsk.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/wgEncodeRegDnaseClustered.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/wgEncodeRegDnaseClustered.txt.gz
http://egg2.wustl.edu/roadmap/web_portal/imputed.html#chr_imp
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imputed.html#chr_imp. We calculated a CpG TL/CpG
BG ratio for each of the 25 chromatin states in each of
the 127 epigenomes and then averaged the ratios for a
representation on a figure.
Additionally, to verify CpG TL enrichment in the

enhancers we selected regions having H3K27ac and
H3K4me1 but lacking H3K4me3 (ENCODE, averaged
among all samples mapped to hg38 with pre-calculated
narrowPeak available, files withmajor errors andwarnings
excluded) (Additional file 1: Table S6).

TFBS prediction
For transcription factor binding sites prediction, we used
position weight matrices (PWM) of human TFs provided
in full HOCOMOCO v11 [67] collection and its default
PWM thresholds according to the pre-calculated motif
P-value of 0.0005 as in [68]. In HOCOMOCO v11, the
thresholds and P-value were estimated against whole-
genome dinucleotide composition. However, prediction of
TFBS using PWMs alone can result in a notable number
of false positives. Having this in mind, out of all predicted
TFBS, we considered only those located in the repro-
ducible and control data-supported cistrome [69] (only A,
B, and C cistrome categories) for each TF. The cistrome
was constructed from the ChIP-Seq data on transcription
factors provided in the GTRD database [70] and pro-
cessed by a common pipeline involving several computa-
tional ChIP-Seq peak callers, allowing to capture binding
events routinely detected in different experiments. Thus,
the TFBS considered in our study, were supported both
by computational sequence analysis and by experimental
ChIP-Seq data.

Gene enrichment analysis
We tested if genes that harbor CpG TL were enriched in
transcription factors, co-factors and epigenetic regulators
using Fisher’s exact test (implemented in python library
scipy.stats) with Bonferroni correction. A list of TF and
co-TF was obtained from Tcof DB [71] and the list of
epigenetic regulators was obtained from EpiFactors [72].
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