Skip to main content
. 2018 Dec 6;142(2):471–485. doi: 10.1093/brain/awy279

Table 2.

Model fitting results

ep −2LL df AIC Δ−2LL Δdf P Comparison model
Bivariate model
1: Cholesky 29 26 072.78 8446 9179.78
2: L-COG↔L-SZ 29 26 072.78 8446 9179.78
3: Dropping L-SZ→L-COG 28 26 074.57 8447 9179.57 1.79 1 0.18 1 and 2
4: Dropping L-COG→L-SZ 28 26 092.64 8447 9197.64 19.85 1 <0.01 1 and 2
Trivariate model
1: Full 32 29 736.61 9752 10 232.61
2: Dropping PRs→L-COG (j) 31 29 759.54 9753 10 253.54 22.94 1 <0.01 1
3: Dropping PRS→L-SZ (i) 31 29 751.26 9753 10 245.26 14.65 1 <0.01 1
4: Dropping L-SZ→L-COG (k′) 31 29 737.85 9753 10 231.85 1.24 1 0.26 1
5: Dropping L-COG→L-SZ (k) 31 29 758.10 9753 10 252.10 21.49 1 <0.01 1

Δ − 2LL = the difference of minus 2 log likelihood between two models; Δdf = the difference of the degrees of freedom; −2LL = minus 2 log likelihood; AIC = Akaike information criterion; ep = estimate parameter; df = degree of freedom; P = P-value, when P-value < 0.05 (P-value < 0.025 for bivariate), the model is significantly worse than the comparison model.

The overall genetic variance to L-SZ is constrained to 0.82.