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Abstract

Tumor metastasis is a major contributor to cancer patient mortality, but the process remains poorly 

understood. Molecular comparisons between primary tumors and metastases can provide insights 

into the pathways and processes involved. Here, we systematically analyzed and cataloged 

molecular correlates of metastasis using The Cancer Genome Atlas (TCGA) datasets across 11 

different cancer types, these data involving 4,473 primary tumor samples and 395 tumor 

metastasis samples (including 369 from melanoma). For each cancer type, widespread differences 

in gene transcription between primary and metastasis samples were observed. For several cancer 

types, metastasis-associated genes from TCGA comparisons were found to overlap extensively 

with external results from independent profiling datasets of metastatic tumors. While some 

differential expression patterns associated with metastasis were found to be shared across multiple 

cancer types, by and large each cancer type showed a metastasis signature that was distinctive 

from those of the other cancer types. Functional categories of genes enriched in multiple cancer 

type-specific metastasis over-expression signatures included cellular response to stress, DNA 

repair, oxidation-reduction process, protein deubiquitination, and receptor activity. The TCGA-

derived prostate cancer metastasis signature in particular could define a subset of aggressive 

primary prostate cancer. Transglutaminase 2 protein and mRNA were both elevated in metastases 

from breast and melanoma cancers. Alterations in microRNAs and in DNA methylation were also 

identified.

Correspondence to: Chad J. Creighton (creighto@bcm.edu), One Baylor Plaza, MS305, Houston, TX 77030.
*co-first authors

Disclosure of potential conflicts of interest: The authors have no conflicts of interest.

HHS Public Access
Author manuscript
Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.

Published in final edited form as:
Mol Cancer Res. 2019 February ; 17(2): 476–487. doi:10.1158/1541-7786.MCR-18-0601.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

Metastases are formed by cancer cells that have left the primary tumor mass to form new 

colonies at sites throughout the human body(1). Tumor metastasis remains a major 

contributor to cancer patient deaths(2). Metastasis is a multi-step process, which includes 

localized invasion, intravasation into lymphatic or blood vessels, traversal of the 

bloodstream, extravasation from the bloodstream, formation of micrometastasis, and 

colonization(1, 2). The process of metastasis and the factors governing cancer spread and 

establishment at secondary locations remains poorly understood(3). Only a small fraction of 

cancer cells from the primary tumor may go on to successfully establish distant, 

macroscopic metastasis, and while the tumor microenvironment is understood to play an 

important role(3), the molecular state of the cancer cells in a macroscopic metastasis may 

widely differ from that of the cancer cells in the associated primary tumor.

Molecular comparisons between primary tumors and metastases can potentially provide 

insights into the pathways and processes involved with cancer disease progression(4, 5). 

Numerous independent studies have carried out gene expression profiling of metastasis 

versus primary cancer for individual cancer types(4–18). In addition to individual studies by 

cancer type, “pan-cancer” molecular analyses would allow for examining similarities and 

differences among the molecular alterations that may be associated with metastasis across 

diverse cancer types. The recently published “MET500” dataset includes transcriptome 

profiling data for metastasis samples from ~500 patients, involving over 30 primary sites and 

biopsied from over 22 organs(19); however, the MET500 dataset does not include any data 

on primary cancers. The Cancer Genome Atlas (TCGA), a large-scale initiative to 

comprehensively profile over 10,000 cancer cases at the molecular level, includes data on 

some metastasis samples as well as on primary samples. Other than the TCGA-sponsored 

melanoma marker study(20), the metastasis samples were not featured in the respective 

marker analyses by cancer type that were led by TCGA network, as the project as a whole 

was focused on primary disease. The advantages of analyzing TCGA data for metastasis-

associated molecular correlations include the multiple cancer types having been profiled on 

a common platform that involves multiple levels of molecular data in addition to mRNA 

expression.

In this present study, we systematically analyzed and cataloged molecular correlates of 

metastasis using TCGA datasets, across 11 different cancer types for which metastasis 

versus primary data were available. Molecular profiling data platforms analyzed included 

mRNA expression, protein expression, microRNA expression, and DNA methylation. 

Significantly altered genes, as identified in a given cancer type, were compared across the 

other cancer types, as well as across results from other profiling datasets from studies 

outside of TCGA.

Materials and methods

TCGA patient cohort

Results are based upon data generated by TCGA Research Network (https://

gdc.cancer.gov/). Molecular data were aggregated from public repositories. Tumors analyzed 
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in this study spanned 11 different TCGA projects, each project representing a specific cancer 

type, listed as follows: BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell 

carcinoma and endocervical adenocarcinoma; CRC, Colorectal adenocarcinoma (combining 

COAD and READ projects); ESCA, Esophageal carcinoma; HNSC, Head and Neck 

squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma 

and Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin 

Cutaneous Melanoma; THCA, Thyroid carcinoma. Cancer molecular profiling data were 

generated through informed consent as part of previously published studies and analyzed in 

accordance with each original study’s data use guidelines and restrictions. Metastasis versus 

primary samples were inferred using the TCGA sample code (“06” versus “01,” 

respectively), which is the two digit code following the TCGA legacy sample name (e.g. 

metastasis sample “TCGA-V1-A9O5–06” and primary sample “TCGA-ZG-A9L9–01”).

Datasets

RNA-seq data were obtained from The Broad Institute Firehose pipeline (http://

gdac.broadinstitute.org/). All RNA-seq samples were aligned using the by UNC RNA-seq 

V2 pipeline(21). Expression of coding genes was quantified for 20531 features based on the 

gene models defined in the TCGA Gene Annotation File (GAF). Gene expression was 

quantified by counting the number of reads overlapping each gene model’s exons and 

converted to Reads per Kilobase Mapped (RPKM) values by dividing by the transcribed 

gene length, defined in the GAF and by the total number of reads aligned to genes. 

Proteomic data generated by RPPA across 7663 patient tumors (“Level 4” data) were 

obtained from The Cancer Proteome Atlas (http://tcpaportal.org/tcpa/)(22). The miRNA-seq 

dataset was obtained from TCGA PanCanAtlas project (https://gdc.cancer.gov/about-data/

publications/pancanatlas)(23), which dataset involved batch correction according to Illumina 

GAIIx or HiSeq 2000 platforms. DNA methylation profiles for 450K Illumina array 

platform were obtained from The Broad Institute Firehose pipeline (http://

gdac.broadinstitute.org/).

Differential analyses by molecular feature

For mRNA, miRNA, and RPPA data platforms, differential expression between comparison 

groups was assessed using Pearson’s correlation on log-transformed values (base 2). For 

cancer types with more than one metastasis profile, the Pearson’s correlation p-value is 

equivalent to a t-test; for cancer types with just one metastasis profile, significant genes in 

effect represented outliers with large differences at the edge or outside of the distribution as 

defined by the primary samples. Differential analyses between metastasis and primary by 

alternate methods for RNA-seq data were found to be largely concordant with results by the 

Pearson’s method (Supplementary Figure S1). For DNA methylation platform, differential 

expression between comparison groups was assessed using Pearson’s correlation on logit-

transformed values (natural log). For SKCM datasets, a linear regression model was also 

carried out for each gene, with dependent variable (continuous variable) of expression and 

with independent variables: metastasis/primary (categorical variable) + estimated tumor 

purity(24) (continuous variable). False Discovery Rates (FDRs) were estimated using the 

method of Storey and Tibshirini(25). For selecting top features for a given data platform and 

cancer type, FDR<10% was used as a cutoff; for SKCM datasets, top features were also 
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significant with p<0.05 for linear model incorporating tumor purity as a covariate. 

Visualization using heat maps was performed using both JavaTreeview (version 1.1.6r4)(26) 

and matrix2png (version 1.2.1)(27). R software (version 3.1.0) was used for generation of 

box plots.

Pathway and network analyses

Enrichment of GO annotation terms within sets of differentially expressed genes was 

evaluated using SigTerms software(28) and one-sided Fisher’s exact tests, with FDRs 

estimated using the method of Storey and Tibshirini(25). Protein interaction network 

analysis used the entire set of human protein–protein interactions cataloged in Entrez Gene 

(downloaded June 2017). Entrez gene interactions with yeast two-hybrid experiments 

providing the only support for the interaction were not included in the analysis. Graphical 

visualization of networks was generated using Cytoscape(29).

Analysis of external expression profiling datasets

We examined the following external gene expression profiling datasets of metastasis versus 

primary samples (listed by Gene Expression Omnibus or ArrayExpress accession number): 

BRCA studies E-MTAB-4003(8), GSE100534(9), and GSE110590(5); CRC studies 

GSE50760(10), GSE22834(11), and GSE41258(12); PAAD studies GSE42952(13) and 

GSE19281(14); PRAD studies GSE21034(7), GSE3933(6), and GSE6099(4); SKCM 

studies GSE65904(15), GSE17275(16), and GSE46517(17); and THCA study 

GSE60542(18). Differential expression between comparison groups was assessed using t-

test on log-transformed values (base 2). For the purposes of comparing results of external 

datasets with TCGA metastasis signatures, where multiple expression array features referred 

to the same gene, the feature with the smallest p-value for differences between metastasis 

and primary tumors (either direction) was used to represent the gene. For patient survival 

associations involving the TCGA PRAD metastasis signature, we examined external gene 

expression profiling datasets of primary prostate cancer from Taylor et al. (GSE21034)(7), 

Sboner et al. (GSE16560)(30), and Nakagawa et al. (GSE10645)(31), assigning a metastasis 

signature score to each external tumor profile using our previously described “t-score” 

metric(21); log2-transformed values within each dataset were for normalized to standard 

devations from the median across the primary sample profiles. In the same way, the t-score 

metric was also used in applying the TCGA metastasis gene signature for a given cancer 

type to the primary sample mRNA profiles in TCGA for that cancer type.

We also examined tissue specific mRNA signatures, in order to determine whether these 

might overlap with the cancer metastasis-specific mRNA signatures that were identified. 

Gene expression data (TPM values) from GTEx Analysis version 7 release were obtained 

from the GTEx Portal (https://www.gtexportal.org). Genes with average TPM values greater 

than five units across the normal tissue samples were used in this analysis, which involved 

12769 unique genes in total. Using log-transformed values, for each tissue in GTEx dataset 

that would be associated with one of the cancer types analyzed in the present study 

(Breast:BRCA, Skin:SKCM, Cervix Uteri:CESC, Colon:CRC, Esophagus:ESCA, 

Muscle:SARC, Nerve:PCPG, Pancreas:PAAD, Prostate:PRAD, Thyroid:THCA), the top 

500 genes positively correlated with that tissue as compared to all other tissues were 
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determined (t-test using log-transformed data). For a given cancer type, both the genes over-

expressed in metastasis and the genes under-expressed in metastasis were each compared 

with the set of tissue-specific mRNA markers from GTEx corresponding to that cancer type, 

with the significant of overlap determined using one-sided Fisher’s exact tests. In the same 

way, we examined GTEx-derived markers of tissues representing common sites of 

metastasis (adrenal gland, brain, liver, lung) for significant overlap with TCGA-derived 

metastasis over-expressed genes.

Statistical analysis

All p-values were two-sided unless otherwise specified.

Results

TCGA cohort of primary and metastasis samples

Our study utilized 4,473 primary tumor samples and 395 tumor metastasis samples, 

involving 4,839 human cancer cases representing 11 different major types, for which TCGA 

generated data on one or more of the following molecular characterization platforms 

(Supplementary Data S1): RNA sequencing (4446 primaries and 393 metastases), reverse-

phase protein array (RPPA, 3194 and 267), microRNA sequencing (4350 and 378), and 

DNA methylation arrays (3913 and 391). Of the cancer types studied, TCGA SKCM 

(melanoma) data involved the most metastasis samples (n=369), followed by THCA 

(thyroid, n=8), and BRCA (breast, n=7); CESC (cervical), HNSC (head and neck), and 

PCPG (pheochromocytoma and paraganglioma) cancer types each involved two metastasis 

samples; CRC (colorectal), ESCA (esophageal), PAAD (pancreas), PRAD (prostate), and 

SARC (sarcoma) each involved one metastatic sample. Just 29 of the 395 metastasis samples 

had a primary pair from the same patient, and so unpaired analyses between primary and 

metastasis were made the focus of this study. In terms of somatic DNA copy by SNP array 

platform, only SKCM metastasis samples had available data, with no data generated on 

primaries. Somatic mutation calls by whole-exome sequencing were considered too sparse 

for carrying out comparisons within each cancer type, with the exception of SKCM, which 

data have been studied previously(20).

Differential mRNA patterns associated with metastasis by TCGA cancer type

We first set out to define differentially expressed mRNAs (based on RNA sequencing 

platform) between primary and metastasis samples for each cancer type. For each cancer 

type, the top differentially expressed mRNAs (genes) in metastasis greatly exceeded chance 

expected (Figure 1, Supplementary Data S2, and Supplementary Data S3). Using a False 

Discovery Rate (FDR) cutoff of 10%, the numbers of top significant genes ranged from 43 

for PCPG to 10,084 for SKCM, with the other cancer types having between 178 and 1205 

top genes. For cancer types with only one metastasis sample, significant genes in effect 

represented outliers with large differences at the edge or outside of the distribution as 

defined by the primary samples (Supplementary Figure S1). The limitations with metastasis 

signatures as defined by a single sample would include false negatives (e.g. in cases where 

the distributions between primary and metastasis would overlap) and questions as to the 

generalizability of the signature to other metastasis cases, where the latter may be partially 
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addressable by comparisons with results from external datasets (see below). We examined 

differences involving estimated tumor purities(24), as gene expression patterns in cancer can 

reflect non-cancer as well as cancer cells(32). Of all the cancer types examined, only SKCM 

showed significantly lower tumor purity in metastasis versus primary (p=7.6E-7, t-test, 

Supplementary Figure S2). Using linear models incorporating purity as a covariate, on the 

order of 8,038 genes remained significantly differentially expressed in SKCM, out of the 

above 10,084 genes (Figure 1).

While some differential expression patterns associated with metastasis were found to be 

shared across multiple cancer types, by and large each cancer type showed a metastasis 

signature that was distinctive from those of the other cancer types. In comparing the 

respective expression signatures of metastasis from each cancer type to each other, some 

amount of gene set overlap was observed (Figure 2A). In a number of cases, the overlap in 

signatures between any two cancer types was statistically significant, even if the overlap 

itself involved a fraction of genes (e.g. on the order of 10%). A set of 821 genes were found 

significant (FDR<10%) with same direction of change for two or more cancer types (Figure 

2B). Of these genes, 65 were significant for three or more cancer types, including genes with 

previously demonstrated functional roles in metastasis such as EPL3(33), MYCNOS(34), 

and FOXF2(35). Just eight genes (BEND4, CD5L, CELA1, CLEC4M, CYP17A1, 

DCAF8L2, FAM151A, SPIC) were over-expressed in metastasis (FDR<10%) for four or 

more cancer types. We furthermore examined whether any of the metastasis signature genes 

(considering over-expressed and under-expressed gene sets separately) would be enriched 

for normal tissue-specific mRNA markers associated with the given cancer type (as obtained 

using GTEx data). Of 10 different tissue specific marker gene sets, only a nominally 

significant association (p<0.001, one-sided Fisher’s exact test) was observed between 

SKCM metastasis under-expressed genes and gene markers associated with GTEx mRNA 

markers of normal skin tissues.

Functional categories of genes represented by the cancer type-specific metastasis expression 

signatures were examined, using the Gene Ontology (GO) annotation terms (Supplementary 

Data S4). Specific GO term categories were found enriched within the corresponding 

metastasis signatures of multiple cancer types (Figure 3A). Significantly enriched GO terms 

(FDR<10% using one-sided Fisher’s exact tests) found with the metastasis over-expressed 

genes for at least three cancer types included “cellular response to stress,” “DNA repair,” 

“oxidation-reduction process,” “protein deubiquitination,” and “receptor activity,” and 

significant GO terms within the under-expressed genes for at least three cancer types 

included “extracellular region,” “proteolysis,” and “regulation of locomotion.” We took the 

genes related to receptor activity and genes high in metastasis (FDR<10%) for at least one 

cancer type, and we integrated these with public databases of protein–protein interactions to 

generate a protein interaction network (Figure 3), which allowed us to visualize the potential 

relationships involving these genes. While most of the genes in this network involved 

SKCM, a number of other genes involved a trend (p<0.05, Pearson’s on log-transformed 

data) of higher expression in metastasis in two or more cancer types, and ten genes in the 

network were high (p<0.05) in three or more cancer types: CR1, CR2, GP1BA, GRID2, 

GRM7, LHCGR, LRP2, MED14, P2RX2, and PTPRH. Similar types of interaction 

networks were also generated involving genes related to oxidation-reduction process or 
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protein deubiquitination (Supplementary Figure S3). Genes involved in the immune 

checkpoint pathway were also examined in TCGA metastasis profiles (Supplementary 

Figure S4), with these being elevated across SKCM metastasis samples as expected(20), as 

well as elevated in a portion of metastasis samples from other cancer types.

Metastasis-associated mRNA patterns as observed in datasets external to TCGA

To help assess their generalizability, we compared the gene expression signatures of 

metastasis, as defined for each cancer type using TCGA data, with metastasis expression 

signatures obtained from external datasets made available by previously published studies. 

We examined 15 external gene expression profiling datasets of metastasis versus primary 

samples, involving six cancer types (BRCA, CRC, PAAD, PRAD, SKCM, and THCA). For 

each of the cancer types surveyed, a significant number of genes where found to overlap 

with the results of at least one external dataset of the given cancer type, for either the 

metastasis over-expressed or under-expressed genes (Figure 4A). Perhaps in part because the 

CRC and THCA metastasis signatures each involved fewer genes, the CRC over-expressed 

genes showed some overlap but not significant overlap with CRC over-expressed genes from 

external datasets, and THCA under-expressed genes by TCGA did not show significant 

overlap with external dataset results. For each cancer type, on the order of 35–70% of genes 

comprising the corresponding TCGA metastasis signature showed a similar significant trend 

(p<0.05) in at least one external dataset of that cancer type (Figure 4B).

Notably, the external datasets often involved different sites of metastasis for a given cancer 

type; for example, the external PRAD datasets involved samples taken from various sites 

including lymph node, bone, lung, testes, and brain(4, 6, 7), implying that the TCGA PRAD 

signature, while derived from a single metastasis sample, would not be specific to a single 

site. Similarly, breast metastasis in the GSE110590 dataset(5) involved a number of different 

sites, with the TCGA BRCA metastasis signature being manifested in samples from most of 

these sites (Figure 4C). Furthermore, we examined GTEx-derived markers of tissues 

representing common sites of metastasis (adrenal gland, brain, liver, lung) for significant 

overlap with TCGA-derived metastasis over-expressed genes; after multiple testing 

correction(25), only the GTEx liver signature was found to significantly overlap with 

metastasis genes associated with BRCA (p<1E-7, one-sided Fisher’s exact test, with 20 of 

the 342 BRCA metastasis over-expressed genes also included in the top 500 genes highly 

expressed in normal liver), but not with genes from the other cancer types.

Previous studies have suggested that a subset of primary tumors resemble metastatic tumors 

with respect to gene expression patterns(36). For each cancer type in our TCGA cohort, we 

investigated the corresponding metastasis expression signatures in primary tumors. TCGA 

expression profiles of primary tumors were each scored for manifestation of the metastasis 

signature. Out of nine cancer types for which pathological stage or grade information were 

provided, five (CSEC, HNSC, PRAD, SKCM, and THCA) showed some statistical trend for 

positive correlation between the signature score and stage or grade across primary cancers 

(one-sided p<=0.05, Pearson’s, Figure 5A). This association was notably strongest for 

PRAD (prostate) cancer type (p<1E-30), to the extent that clear differences in time to 

adverse events between patients with primary prostate tumors manifesting the PRAD 
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metastasis signature as compared to the rest of the were observable, when applying the 

signature to profiles from multiple external cohorts (Figure 5B). In addition, in another 

prostate cancer dataset, consisting of primary prostate cancer samples from patients for 

which the early onset of metastasis following radical prostatectomy was recorded(37), 

PRAD metastasis signature scores were significantly elevated (p<1E-9) in the early onset 

group (Figure 5C).

Molecular patterns associated with metastasis involving protein, microRNAs, and 
methylation

We went on to examine protein, microRNA, and DNA methylation datasets in TCGA, in 

order to define differentially expressed features between primary and metastasis samples for 

each cancer type. RPPA proteomic data involved 218 features and four cancer types (BRCA, 

PCPG, SKCM, THCA) with metastasis profiles. For SKCM, a large portion of RPPA 

features examined were differentially expressed in metastasis (94 features at FDR<10%, 

Pearson’s correlation on log-transformed data, 83 features significant after corrections for 

tumor purity, Supplementary Data S5), analogous to results from mRNA expression. No 

RPPA features with globally significant (FDR<10%) were found for PCPG or THCA, likely 

in part due to limited sample power. For BRCA, one protein feature, transglutaminase 2, was 

elevated in metastasis and globally significant at FDR<10% (FDR<1E-12), corresponding to 

mRNA-level differences (Figure 6A). Transglutaminase 2 protein and mRNA were also 

elevated in SKCM (Figure 6A), and the protein is known to promote metastasis(38). For 

most cancer types, widespread differences in microRNA (miRNA) expression between 

metastasis and primary were observed (Figure 6B and Supplementary Data S5). Most of the 

significant miRNAs detected were over-expressed versus under-expressed in metastasis, 

with 85 over-expressed miRNAs and 12 under-expressed miRNAs significant (FDR<10%) 

in two or more cancer types, and with 17 over-expressed miRNAs significant in three or 

more cancer type (Figure 6C). For a number of cancer types, mRNA:microRNA pairings, as 

defined by both a previously identified miRNA-target interaction (as cataloged by 

miRTarBase(39)) and significant differential expression in metastasis for both mRNA and 

microRNA (in opposite directions), could also be identified (Supplementary Data S5).

Using TCGA data from DNA methylation arrays, we examined 150,253 CpG Island probes, 

finding widespread differences in methylation between metastasis and primary samples for 

each cancer type studied (Figure 6D and Supplementary Data S6). The numbers of top 

significant methylation features (FDR<10%, Pearson’s on logit-transformed data) ranged 

from 163 for THCA to 27,530 for SKCM (after corrections for tumor purity), with the other 

cancer types having between 441 and 6,611 top features. As increased methylation of 

regulatory regions in proximity to genes can lead to epigenetic silencing, we integrated DNA 

methylation results with mRNA expression results, defining sets of gene associated with 

both altered methylation and expression (Figure 6E and Supplementary Data S6). For all 

cancer types except SARC and THCA, significant inverse correspondences between 

methylation and expression results were observed (p<0.05, one-sided Fisher’s exact test or 

chi-squared test), either involving genes over-expressed and with lower associated 

methylation in metastasis or involving genes under-expressed and with higher associated 

methylation in metastasis. The significantly overlapping results involved, for example, 2730 
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genes for SKCM (both over-expressed and under-expressed genes, with inverse patterns of 

DNA methylation), 66 genes for PRAD, 43 genes for HNSC, and 33 genes for CESC.

Discussion

Our study of TCGA data on cancer metastasis samples had three overall objectives: 1) to 

obtain a preliminary global view of metastasis versus primary molecular differences across 

several cancer types; 2) to provide a resource for future studies investigating the role of 

specific genes in metastasis; and 3) to help provide direction for future genomics studies of 

metastasis, e.g. by showcasing the utility of examining molecular differences across cancer 

types and across other molecular profiling platforms in addition to RNA-sequencing. A clear 

limitation of the present study involves the limited number of metastasis samples profiled as 

part of TCGA consortium, as the main focus of TCGA was to examine genomic and 

molecular patterns of primary rather than of metastatic cases. For several of the cancer types 

examined, this limitation is mitigated somewhat by comparing the results from TCGA 

transcriptomic data to existing data from other studies, thereby demonstrating the relevance 

of differential gene patterns as observed across sample cohorts. Our results would support 

the need for future multiplatform-based and pan-cancer genomics studies profiling larger 

numbers of metastasis with primary samples, which would allow us to further define and 

refine the molecular signatures of metastasis as put forth in this present study. Nevertheless, 

our study demonstrates that, even on the basis of a single metastasis sample, there would be 

molecular information contained here representing real biological differences that may 

involve at least some metastasis cases for a given cancer type.

Our study has identified widespread molecular differences in metastasis versus primary 

tumors for 11 different cancer types, with each cancer type having a signature of metastasis 

that is distinct from that of the other cancer types. This would suggest that there are different 

molecular pathways to metastasis involved in different cancers. Our findings would 

seemingly differ with those of two early studies of gene expression patterns of metastasis, 

one from Ramaswamy et al. (36), which defined a single 128-gene signature of metastasis 

across multiple cancer types (lung, breast, prostate, colorectal, uterus, ovary, etc.), and one 

from Weigelt et al.(40), which could not find any global significant differences over chance 

expected between breast cancer primary and metastasis samples. Studies subsequent to the 

Weigelt study have been able to define widespread differences associated with breast cancer 

metastasis versus primary tumors(5, 8, 9). Interestingly, when surveying TCGA data, none 

of the Ramaswamy signature genes showed consistent high or low expression patterns in 

metastasis across the different cancer types (Supplementary Data S2). While the 

Ramaswamy study found that a subset of primary tumors from various cancer types 

expressing the 128-gene metastasis signature were associated with worse outcome, we find 

in our present study that aggressive prostate cancers in particular appear to express a 

metastasis signature pattern, but other cancer types such as breast cancer do not show a 

similar phenomenon. One salient feature of this present study was to survey available data 

from multiple external sources in addition to TCGA data. Where genes are found to show 

consistent patterns across multiple datasets and studies, we may place the most confidence in 

these gene patterns, at least given the currently available data.
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The results of this present study (e.g. as provided in the supplementary materials) may serve 

as a resource for future studies investigating the role of specific genes in metastasis. The 

various gene signatures of metastasis, as identified in each cancer type by TCGA data, may 

be mined to help identify candidates for functional studies. For cancer types with only a 

single metastasis sample with TCGA, there would be potential limitations with the 

associated metastasis signature, including questions as to the generalizability of the 

signature to other metastasis cases. Integration of TCGA results with results of external 

public datasets can considerably strengthen the metastasis associations as identified for 

specific genes. For example, the TCGA PRAD metastasis signature was based on a single 

metastasis profile, but this signature showed highly significant overlap with results with each 

of three independent profiling datasets of prostate cancer metastasis versus primary 

disease(4, 6, 7), and the TCGA PRAD signature could also define a subset of aggressive 

primary prostate cancer. Integration between mRNA data and data from other platforms in 

TCGA may also be used to select genes of particular interest, such as genes showing 

concordant alterations involving both expression and DNA methylation. Genes that appear 

significant in multiple cancer types, including genes encoding cell receptors, may also be of 

interest for further investigation.

While successfully defining molecular signatures of metastasis across several different 

cancer types, our present study points to the need for more molecular data on metastasis in 

human tumors. Much could be gained by generating molecular data on larger numbers of 

metastasis and primary cancers, using multiple “omics” data platforms in addition to mRNA 

expression profiling. The global molecular patterns involved in metastasis would entail 

proteomic and DNA methylation levels in addition to transcriptomic levels. For many cancer 

types with metastasis data in TCGA, few or no relevant external molecular profiling datasets 

were found to be available. For cancer types where a large number of expression outliers 

could be associated with a single metastasis sample profile, profiling more metastasis cases 

would enable us to define more robust molecular signatures that would presumably be 

generalizable to the disease as a whole. Profiling larger numbers of cases would also allow 

for paired analyses by patient between primary and metastasis samples, as well as offering 

the possibility of subtype discovery within metastatic tumors according to differential 

patterns being found within some but not all metastasis cases. Molecular data from human 

tumors may be combined with molecular data from experimental models of metastasis(41), 

in order to identify genes common to both, which may help pinpoint critical targets relevant 

in both the laboratory and human disease settings. The top gene correlates of metastasis by 

and large do not appear to represent canonical oncogenes(32, 42) or frequent targets of point 

mutation(43), but rather appear indicative of complex processes at work involving multiple 

internal and external factors. The molecular signatures of metastasis for each cancer type 

have the potential to lead to new discoveries into the disease process.
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Implications:

Our findings suggest that there are different molecular pathways to metastasis involved in 

different cancers. Our catalog of alterations provides a resource for future studies 

investigating the role of specific genes in metastasis.
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Figure 1. Top differentially expressed mRNAs in metastasis versus primary samples for each of 
11 cancer types in The Cancer Genome Atlas (TCGA).
Top genes for each cancer type were selected using Pearson’s correlation (on log-

transformed values) with Storey and Tibshirini estimate of False Discovery Rate (FDR) of 

<10% (for SKCM, FDR<10% and significant with p<0.05 for linear model incorporating 

tumor purity as a covariate). Yellow denotes high expression relative to the average of 

primary samples; blue denotes low expression. Genes listed individually are either over-

expressed in metastasis and focally amplified in a previous pan-cancer analysis(44) or under-

expressed in metastasis and focally deleted in pan-cancer analysis. For SKCM, hundreds of 

genes involved regions of focal amplification or deletion, and so these are not listed here. 

BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and 

endocervical adenocarcinoma; CRC, Colorectal adenocarcinoma (combining COAD and 

READ projects); ESCA, Esophageal carcinoma; HNSC, Head and Neck squamous cell 

carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and 

Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous 

Melanoma; THCA, Thyroid carcinoma.
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Figure 2. Genes shared among the cancer type-specific metastasis mRNA signatures.
(A) For both the genes over-expressed in metastasis for at least one cancer type (left, genes 

from Figure 1) and the genes under-expressed in metastasis for at least one cancer type 

(right, genes from Figure 1), the numbers of overlapping genes between any two cancer 

types are indicated, along with the significance of overlap (using colorgram, by one-sided 

Fisher’s exact test). (B) Heat map of differential t-statistics (Pearson’s correlation on log-

transformed data), by cancer type, comparing metastasis versus primary (red, higher in 

metastasis; white, not significant with p>0.05), for 821 genes significant for two or more 

cancer types (FDR<10%; for SKCM, FDR<10% and significant with p<0.05 for linear 
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model incorporating tumor purity as a covariate). Genes significant for three or more cancer 

types are indicated by name.
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Figure 3. Functional gene classes shared among the cancer type-specific metastasis mRNA 
signatures.
(A) Left, Gene Ontology (GO) terms significantly enriched for at least three cancer types 

(enrichment for cancer type defined as FDR<10% using one-sided Fisher’s exact test) within 

the respective sets of genes over-expressed in metastasis (based on the gene sets represented 

in Figure 1); right, GO terms significantly enriched for at least three cancer types within the 

respective sets of genes under-expressed in metastasis. For both sets of enriched GO terms, 

the numbers of genes involved for each cancer type and overall significance of enrichment 

Chen et al. Page 18

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(by colorgram; black, highly significant) are indicated. (B) Protein-protein interaction 

network involving genes over-expressed in metastasis, with focus on genes involved in 

receptor activity. Nodes represent genes with GO annotation “receptor activity” and which 

were found over-expressed in metastasis for at least one cancer type (FDR<10%; for SKCM, 

FDR<10% and significant with p<0.05 for linear model incorporating tumor purity as a 

covariate). Nodes are colored according to the individual cancer types in which a trend 

(p<0.05, Pearson’s correlation on log-transformed data) of higher expression in metastasis 

versus primary samples was observed. A line between two nodes signifies that the 

corresponding protein products of the genes can physically interact (according to the 

literature, from Entrez gene interactions database).
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Figure 4. Significance of overlap between TCGA metastasis mRNA signatures and metastasis 
mRNA signatures from datasets external to TCGA.
(A) For both the genes over-expressed in metastasis for a given cancer type (left) and the 

genes under-expressed in metastasis for a given cancer type (right), the numbers of 

overlapping genes between the TCGA mRNA signatures (rows, signatures from Figure 1) 

and the genes over- or under-expressed in metastasis (p<0.05, t-test) in the indicated external 

datasets from previously published gene expression profiling studies (columns), along with 

the corresponding significances of overlap (using colorgram, by one-sided Fisher’s exact 
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test, chi-squared test for TCGA SKCM gene sets). (B) For each indicated cancer type, 

numbers of genes overlapping between the TCGA metastasis signature genes (left, genes 

over-expressed in metastasis; right, genes under-expressed in metastasis) and the genes 

significantly high or low in metastasis (p<0.05, t-test) in the published external datasets 

corresponding to the given cancer type. Significance of overlap (by one-sided Fisher’s exact 

test; chi-squared test for SKCM genes) is indicated for TCGA genes found in one or more 

external datasets (blue bars) and in two or more external datasets (red bars). Selected top 

genes overlapping between TCGA and results from other datasets are listed (BRCA over-

expressed: TCGA p<1E-6 and p<1E-6 for E-MTAB-4003 dataset; BRCA under-expressed: 

TCGA p<1E-6 and p<1E-6 for E-MTAB-4003 dataset; CRC under-expressed: TCGA 

FDR<10% and p<0.05 for two or more external datasets; PAAD over-expressed: TCGA 

FDR<10% and p<0.01 for GSE42952 dataset; PAAD under-expressed: TCGA FDR<10% 

and p<0.05 for one or more external datasets; PRAD over-expressed: TCGA FDR<10% and 

p<0.01 for all three external datasets; PRAD under-expressed: TCGA FDR<10% and p<0.05 

for all three external datasets; SKCM over-expressed: TCGA FDR<10% and p<0.05 for all 

three external datasets; SKCM under-expressed: TCGA FDR<10% and p<0.05 for all three 

external datasets; THCA over-expressed: TCGA FDR<10% and p<0.001 for GSE60542 

dataset; P-values by Pearson’s correlation or t-test on log-transformed data). (C) TCGA-

BRCA metastasis gene expression signature similarity score (t-statistic as derived from the 

“t-score” metric(21, 45)), as applied to the sample profiles in the GSE110590 breast cancer 

metastases RNA-seq dataset(5). For selected groups of metastasis according to site, 

comparisons with the primary group are indicated (t-test as applied to the signature t-scores).
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Figure 5. For specific cancer types, gene expression signatures of metastasis found present within 
a subset of primary samples and associated with more aggressive disease.
(A) For each of the indicated cancer types, the corresponding TCGA metastasis gene 

signature was applied to the primary sample mRNA profiles for that cancer type; across the 

primary samples, the metastasis signature similarity scores (t-statistic as derived from the “t-

score” metric(21, 45)) were correlated with the cancer stage or grade (Gleason grade for 

PRAD, pathologic stage for the other cancer types). One-sided p-values indicate the 

Pearson’s correlation between the signature score and stage or grade (numerical 1–4 for 

stage, 6–10 for Gleason grade). (B) For each of three independent mRNA expression 

profiling datasets of primary prostate cancer(7, 30, 31), differences in survival between 

patients with tumors manifesting the TCGA-PRAD metastasis signature (top third of 

signature similarity scores across the samples) and the other patients. P-values by log-rank 

test. (C) The TCGA PRAD metastasis gene signature was applied to the primary sample 

mRNA profiles for the GSE46691 prostate cancer dataset (37), consisting of primary 

prostate cancer samples from patients for which the early onset metastasis following radical 

prostatectomy was recorded. Box plot represents 5%, 25%, 50%, 75%, and 95%. P-value for 

differences in signature scores between groups with or without metastasis by t-test.
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Figure 6. Molecular correlates of metastasis by protein, microRNA, or DNA methylation 
profiling.
(A) Transglutaminase 2 protein and mRNA (TGM2 gene) were significantly elevated in 

TCGA BRCA metastases as well as in TCGA SKCM metastases. Box plots represent 5%, 

25%, 50%, 75%, and 95%. P-values by t-test on log-transformed data. (B) Numbers of 

significant microRNAs between metastasis (“met.”) and primary samples for each cancer 

type (FDR<10%, based on Pearson’s correlation using log-transformed values; for SKCM, 

FDR<10% and significant with p<0.05 for linear model incorporating tumor purity as a 

covariate), along with the numbers or microRNAs significant (FDR<10%) for two or three 

cancer types. (C) Heat map of differential t-statistics (Pearson’s correlation on log-

transformed data), by cancer type, comparing metastasis versus primary (red, higher in 

metastasis; white, not significant with p>0.05), for 29 microRNAs that were either 

significantly over-expressed for three or more cancer types (FDR<10%) or significantly 

under-expressed for two or more cancer types. (D) Numbers of significant DNA methylation 

array probes located within CpG Islands (by Illumina 450K array, ~150K CpG Island 
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probes) between metastasis (“met.”) and primary samples for each cancer type (FDR<10%, 

based on Pearson’s correlation using logit-transformed values; for SKCM, FDR<10% and 

significant with p<0.05 for linear model incorporating tumor purity as a covariate). (E) For 

each cancer type, numbers of genes overlapping between the RNA-seq and DNA 

methylation results (FDR<10% for each platform, with top features in SKCM corrected for 

tumor purity as described above). Left plot represents genes over-expressed in metastases 

(“met.”), and right plot represents genes under-expressed in metastases. Significance of 

overlap by one-sided Fisher’s exact test (chi-squared test for SKCM results).
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