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Abstract

Tumor metastasis is a major contributor to cancer patient mortality, but the process remains poorly
understood. Molecular comparisons between primary tumors and metastases can provide insights
into the pathways and processes involved. Here, we systematically analyzed and cataloged
molecular correlates of metastasis using The Cancer Genome Atlas (TCGA) datasets across 11
different cancer types, these data involving 4,473 primary tumor samples and 395 tumor
metastasis samples (including 369 from melanoma). For each cancer type, widespread differences
in gene transcription between primary and metastasis samples were observed. For several cancer
types, metastasis-associated genes from TCGA comparisons were found to overlap extensively
with external results from independent profiling datasets of metastatic tumors. While some
differential expression patterns associated with metastasis were found to be shared across multiple
cancer types, by and large each cancer type showed a metastasis signature that was distinctive
from those of the other cancer types. Functional categories of genes enriched in multiple cancer
type-specific metastasis over-expression signatures included cellular response to stress, DNA
repair, oxidation-reduction process, protein deubiquitination, and receptor activity. The TCGA-
derived prostate cancer metastasis signature in particular could define a subset of aggressive
primary prostate cancer. Transglutaminase 2 protein and mRNA were both elevated in metastases
from breast and melanoma cancers. Alterations in microRNAs and in DNA methylation were also
identified.
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Introduction

Metastases are formed by cancer cells that have left the primary tumor mass to form new
colonies at sites throughout the human body(1). Tumor metastasis remains a major
contributor to cancer patient deaths(2). Metastasis is a multi-step process, which includes
localized invasion, intravasation into lymphatic or blood vessels, traversal of the
bloodstream, extravasation from the bloodstream, formation of micrometastasis, and
colonization(1, 2). The process of metastasis and the factors governing cancer spread and
establishment at secondary locations remains poorly understood(3). Only a small fraction of
cancer cells from the primary tumor may go on to successfully establish distant,
macroscopic metastasis, and while the tumor microenvironment is understood to play an
important role(3), the molecular state of the cancer cells in a macroscopic metastasis may
widely differ from that of the cancer cells in the associated primary tumor.

Molecular comparisons between primary tumors and metastases can potentially provide
insights into the pathways and processes involved with cancer disease progression(4, 5).
Numerous independent studies have carried out gene expression profiling of metastasis
versus primary cancer for individual cancer types(4—18). In addition to individual studies by
cancer type, “pan-cancer” molecular analyses would allow for examining similarities and
differences among the molecular alterations that may be associated with metastasis across
diverse cancer types. The recently published “MET500” dataset includes transcriptome
profiling data for metastasis samples from ~500 patients, involving over 30 primary sites and
biopsied from over 22 organs(19); however, the MET500 dataset does not include any data
on primary cancers. The Cancer Genome Atlas (TCGA), a large-scale initiative to
comprehensively profile over 10,000 cancer cases at the molecular level, includes data on
some metastasis samples as well as on primary samples. Other than the TCGA-sponsored
melanoma marker study(20), the metastasis samples were not featured in the respective
marker analyses by cancer type that were led by TCGA network, as the project as a whole
was focused on primary disease. The advantages of analyzing TCGA data for metastasis-
associated molecular correlations include the multiple cancer types having been profiled on
a common platform that involves multiple levels of molecular data in addition to mRNA
expression.

In this present study, we systematically analyzed and cataloged molecular correlates of
metastasis using TCGA datasets, across 11 different cancer types for which metastasis
versus primary data were available. Molecular profiling data platforms analyzed included
mMRNA expression, protein expression, microRNA expression, and DNA methylation.
Significantly altered genes, as identified in a given cancer type, were compared across the
other cancer types, as well as across results from other profiling datasets from studies
outside of TCGA.

Materials and methods
TCGA patient cohort

Results are based upon data generated by TCGA Research Network (https://
gdc.cancer.gov/). Molecular data were aggregated from public repositories. Tumors analyzed
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in this study spanned 11 different TCGA projects, each project representing a specific cancer
type, listed as follows: BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell
carcinoma and endocervical adenocarcinoma; CRC, Colorectal adenocarcinoma (combining
COAD and READ projects); ESCA, Esophageal carcinoma; HNSC, Head and Neck
squamous cell carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma
and Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin
Cutaneous Melanoma; THCA, Thyroid carcinoma. Cancer molecular profiling data were
generated through informed consent as part of previously published studies and analyzed in
accordance with each original study’s data use guidelines and restrictions. Metastasis versus
primary samples were inferred using the TCGA sample code (“06” versus “01,”
respectively), which is the two digit code following the TCGA legacy sample name (e.g.
metastasis sample “TCGA-V1-A905-06" and primary sample “TCGA-ZG-A9L9-01").

RNA-seq data were obtained from The Broad Institute Firehose pipeline (http://
gdac.broadinstitute.org/). All RNA-seq samples were aligned using the by UNC RNA-seq
V2 pipeline(21). Expression of coding genes was quantified for 20531 features based on the
gene models defined in the TCGA Gene Annotation File (GAF). Gene expression was
quantified by counting the number of reads overlapping each gene model’s exons and
converted to Reads per Kilobase Mapped (RPKM) values by dividing by the transcribed
gene length, defined in the GAF and by the total number of reads aligned to genes.
Proteomic data generated by RPPA across 7663 patient tumors (“Level 4” data) were
obtained from The Cancer Proteome Atlas (http://tcpaportal.org/tcpa/)(22). The miRNA-seq
dataset was obtained from TCGA PanCanAtlas project (https://gdc.cancer.gov/about-data/
publications/pancanatlas)(23), which dataset involved batch correction according to lllumina
GAllIx or HiSeq 2000 platforms. DNA methylation profiles for 450K Illumina array
platform were obtained from The Broad Institute Firehose pipeline (http://
gdac.broadinstitute.org/).

Differential analyses by molecular feature

For mMRNA, miRNA, and RPPA data platforms, differential expression between comparison
groups was assessed using Pearson’s correlation on log-transformed values (base 2). For
cancer types with more than one metastasis profile, the Pearson’s correlation p-value is
equivalent to a t-test; for cancer types with just one metastasis profile, significant genes in
effect represented outliers with large differences at the edge or outside of the distribution as
defined by the primary samples. Differential analyses between metastasis and primary by
alternate methods for RNA-seq data were found to be largely concordant with results by the
Pearson’s method (Supplementary Figure S1). For DNA methylation platform, differential
expression between comparison groups was assessed using Pearson’s correlation on logit-
transformed values (natural log). For SKCM datasets, a linear regression model was also
carried out for each gene, with dependent variable (continuous variable) of expression and
with independent variables: metastasis/primary (categorical variable) + estimated tumor
purity(24) (continuous variable). False Discovery Rates (FDRS) were estimated using the
method of Storey and Tibshirini(25). For selecting top features for a given data platform and
cancer type, FDR<10% was used as a cutoff; for SKCM datasets, top features were also
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significant with p<0.05 for linear model incorporating tumor purity as a covariate.
Visualization using heat maps was performed using both JavaTreeview (version 1.1.6r4)(26)
and matrix2png (version 1.2.1)(27). R software (version 3.1.0) was used for generation of
box plots.

Pathway and network analyses

Enrichment of GO annotation terms within sets of differentially expressed genes was
evaluated using SigTerms software(28) and one-sided Fisher’s exact tests, with FDRs
estimated using the method of Storey and Tibshirini(25). Protein interaction network
analysis used the entire set of human protein—protein interactions cataloged in Entrez Gene
(downloaded June 2017). Entrez gene interactions with yeast two-hybrid experiments
providing the only support for the interaction were not included in the analysis. Graphical
visualization of networks was generated using Cytoscape(29).

Analysis of external expression profiling datasets

We examined the following external gene expression profiling datasets of metastasis versus
primary samples (listed by Gene Expression Omnibus or ArrayExpress accession number):
BRCA studies E-MTAB-4003(8), GSE100534(9), and GSE110590(5); CRC studies
GSE50760(10), GSE22834(11), and GSE41258(12); PAAD studies GSE42952(13) and
GSE19281(14); PRAD studies GSE21034(7), GSE3933(6), and GSE6099(4); SKCM
studies GSE65904(15), GSE17275(16), and GSE46517(17); and THCA study
GSE60542(18). Differential expression between comparison groups was assessed using t-
test on log-transformed values (base 2). For the purposes of comparing results of external
datasets with TCGA metastasis signatures, where multiple expression array features referred
to the same gene, the feature with the smallest p-value for differences between metastasis
and primary tumors (either direction) was used to represent the gene. For patient survival
associations involving the TCGA PRAD metastasis signature, we examined external gene
expression profiling datasets of primary prostate cancer from Taylor et al. (GSE21034)(7),
Shoner et al. (GSE16560)(30), and Nakagawa et al. (GSE10645)(31), assigning a metastasis
signature score to each external tumor profile using our previously described “t-score”
metric(21); log2-transformed values within each dataset were for normalized to standard
devations from the median across the primary sample profiles. In the same way, the t-score
metric was also used in applying the TCGA metastasis gene signature for a given cancer
type to the primary sample mRNA profiles in TCGA for that cancer type.

We also examined tissue specific mRNA signatures, in order to determine whether these
might overlap with the cancer metastasis-specific mMRNA signatures that were identified.
Gene expression data (TPM values) from GTEX Analysis version 7 release were obtained
from the GTEx Portal (https://www.gtexportal.org). Genes with average TPM values greater
than five units across the normal tissue samples were used in this analysis, which involved
12769 unique genes in total. Using log-transformed values, for each tissue in GTEXx dataset
that would be associated with one of the cancer types analyzed in the present study
(Breast:BRCA, Skin:SKCM, Cervix Uteri:CESC, Colon:CRC, Esophagus:ESCA,
Muscle:SARC, Nerve:PCPG, Pancreas:PAAD, Prostate:PRAD, Thyroid: THCA), the top
500 genes positively correlated with that tissue as compared to all other tissues were
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determined (t-test using log-transformed data). For a given cancer type, both the genes over-
expressed in metastasis and the genes under-expressed in metastasis were each compared
with the set of tissue-specific MRNA markers from GTEx corresponding to that cancer type,
with the significant of overlap determined using one-sided Fisher’s exact tests. In the same
way, we examined GTEXx-derived markers of tissues representing common sites of
metastasis (adrenal gland, brain, liver, lung) for significant overlap with TCGA-derived
metastasis over-expressed genes.

Statistical analysis

Results

All p-values were two-sided unless otherwise specified.

TCGA cohort of primary and metastasis samples

Our study utilized 4,473 primary tumor samples and 395 tumor metastasis samples,
involving 4,839 human cancer cases representing 11 different major types, for which TCGA
generated data on one or more of the following molecular characterization platforms
(Supplementary Data S1): RNA sequencing (4446 primaries and 393 metastases), reverse-
phase protein array (RPPA, 3194 and 267), microRNA sequencing (4350 and 378), and
DNA methylation arrays (3913 and 391). Of the cancer types studied, TCGA SKCM
(melanoma) data involved the most metastasis samples (n=369), followed by THCA
(thyroid, n=8), and BRCA (breast, n=7); CESC (cervical), HNSC (head and neck), and
PCPG (pheochromocytoma and paraganglioma) cancer types each involved two metastasis
samples; CRC (colorectal), ESCA (esophageal), PAAD (pancreas), PRAD (prostate), and
SARC (sarcoma) each involved one metastatic sample. Just 29 of the 395 metastasis samples
had a primary pair from the same patient, and so unpaired analyses between primary and
metastasis were made the focus of this study. In terms of somatic DNA copy by SNP array
platform, only SKCM metastasis samples had available data, with no data generated on
primaries. Somatic mutation calls by whole-exome sequencing were considered too sparse
for carrying out comparisons within each cancer type, with the exception of SKCM, which
data have been studied previously(20).

Differential mRNA patterns associated with metastasis by TCGA cancer type

We first set out to define differentially expressed mRNAs (based on RNA sequencing
platform) between primary and metastasis samples for each cancer type. For each cancer
type, the top differentially expressed mRNAs (genes) in metastasis greatly exceeded chance
expected (Figure 1, Supplementary Data S2, and Supplementary Data S3). Using a False
Discovery Rate (FDR) cutoff of 10%, the numbers of top significant genes ranged from 43
for PCPG to 10,084 for SKCM, with the other cancer types having between 178 and 1205
top genes. For cancer types with only one metastasis sample, significant genes in effect
represented outliers with large differences at the edge or outside of the distribution as
defined by the primary samples (Supplementary Figure S1). The limitations with metastasis
signatures as defined by a single sample would include false negatives (e.g. in cases where
the distributions between primary and metastasis would overlap) and questions as to the
generalizability of the signature to other metastasis cases, where the latter may be partially
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addressable by comparisons with results from external datasets (see below). We examined
differences involving estimated tumor purities(24), as gene expression patterns in cancer can
reflect non-cancer as well as cancer cells(32). Of all the cancer types examined, only SKCM
showed significantly lower tumor purity in metastasis versus primary (p=7.6E-7, t-test,
Supplementary Figure S2). Using linear models incorporating purity as a covariate, on the
order of 8,038 genes remained significantly differentially expressed in SKCM, out of the
above 10,084 genes (Figure 1).

While some differential expression patterns associated with metastasis were found to be
shared across multiple cancer types, by and large each cancer type showed a metastasis
signature that was distinctive from those of the other cancer types. In comparing the
respective expression signatures of metastasis from each cancer type to each other, some
amount of gene set overlap was observed (Figure 2A). In a number of cases, the overlap in
signatures between any two cancer types was statistically significant, even if the overlap
itself involved a fraction of genes (e.g. on the order of 10%). A set of 821 genes were found
significant (FDR<10%) with same direction of change for two or more cancer types (Figure
2B). Of these genes, 65 were significant for three or more cancer types, including genes with
previously demonstrated functional roles in metastasis such as £PL3A33), MYCNOS(34),
and FOXF235). Just eight genes (BEND4, CD5L, CELAL, CLEC4AM, CYP17A1,
DCAF8L2, FAM151A, SPIC) were over-expressed in metastasis (FDR<10%) for four or
more cancer types. We furthermore examined whether any of the metastasis signature genes
(considering over-expressed and under-expressed gene sets separately) would be enriched
for normal tissue-specific mMRNA markers associated with the given cancer type (as obtained
using GTEx data). Of 10 different tissue specific marker gene sets, only a nominally
significant association (p<0.001, one-sided Fisher’s exact test) was observed between
SKCM metastasis under-expressed genes and gene markers associated with GTEx mRNA
markers of normal skin tissues.

Functional categories of genes represented by the cancer type-specific metastasis expression
signatures were examined, using the Gene Ontology (GO) annotation terms (Supplementary
Data S4). Specific GO term categories were found enriched within the corresponding
metastasis signatures of multiple cancer types (Figure 3A). Significantly enriched GO terms
(FDR<10% using one-sided Fisher’s exact tests) found with the metastasis over-expressed
genes for at least three cancer types included “cellular response to stress,” “DNA repair,”
“oxidation-reduction process,” “protein deubiquitination,” and “receptor activity,” and
significant GO terms within the under-expressed genes for at least three cancer types
included “extracellular region,” “proteolysis,” and “regulation of locomotion.” We took the
genes related to receptor activity and genes high in metastasis (FDR<10%) for at least one
cancer type, and we integrated these with public databases of protein—protein interactions to
generate a protein interaction network (Figure 3), which allowed us to visualize the potential
relationships involving these genes. While most of the genes in this network involved
SKCM, a number of other genes involved a trend (p<0.05, Pearson’s on log-transformed
data) of higher expression in metastasis in two or more cancer types, and ten genes in the
network were high (p<0.05) in three or more cancer types: CRI1, CR2, GP1BA, GRIDZ,
GRM7, LHCGR, LRP2, MED14, P2RX2, and PTPRH. Similar types of interaction
networks were also generated involving genes related to oxidation-reduction process or
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protein deubiquitination (Supplementary Figure S3). Genes involved in the immune
checkpoint pathway were also examined in TCGA metastasis profiles (Supplementary
Figure S4), with these being elevated across SKCM metastasis samples as expected(20), as
well as elevated in a portion of metastasis samples from other cancer types.

Metastasis-associated mMRNA patterns as observed in datasets external to TCGA

To help assess their generalizability, we compared the gene expression signatures of
metastasis, as defined for each cancer type using TCGA data, with metastasis expression
signatures obtained from external datasets made available by previously published studies.
We examined 15 external gene expression profiling datasets of metastasis versus primary
samples, involving six cancer types (BRCA, CRC, PAAD, PRAD, SKCM, and THCA). For
each of the cancer types surveyed, a significant number of genes where found to overlap
with the results of at least one external dataset of the given cancer type, for either the
metastasis over-expressed or under-expressed genes (Figure 4A). Perhaps in part because the
CRC and THCA metastasis signatures each involved fewer genes, the CRC over-expressed
genes showed some overlap but not significant overlap with CRC over-expressed genes from
external datasets, and THCA under-expressed genes by TCGA did not show significant
overlap with external dataset results. For each cancer type, on the order of 35-70% of genes
comprising the corresponding TCGA metastasis signature showed a similar significant trend
(p<0.05) in at least one external dataset of that cancer type (Figure 4B).

Notably, the external datasets often involved different sites of metastasis for a given cancer
type; for example, the external PRAD datasets involved samples taken from various sites
including lymph node, bone, lung, testes, and brain(4, 6, 7), implying that the TCGA PRAD
signature, while derived from a single metastasis sample, would not be specific to a single
site. Similarly, breast metastasis in the GSE110590 dataset(5) involved a number of different
sites, with the TCGA BRCA metastasis signature being manifested in samples from most of
these sites (Figure 4C). Furthermore, we examined GTEXx-derived markers of tissues
representing common sites of metastasis (adrenal gland, brain, liver, lung) for significant
overlap with TCGA-derived metastasis over-expressed genes; after multiple testing
correction(25), only the GTEXx liver signature was found to significantly overlap with
metastasis genes associated with BRCA (p<1E-7, one-sided Fisher’s exact test, with 20 of
the 342 BRCA metastasis over-expressed genes also included in the top 500 genes highly
expressed in normal liver), but not with genes from the other cancer types.

Previous studies have suggested that a subset of primary tumors resemble metastatic tumors
with respect to gene expression patterns(36). For each cancer type in our TCGA cohort, we
investigated the corresponding metastasis expression signatures in primary tumors. TCGA
expression profiles of primary tumors were each scored for manifestation of the metastasis
signature. Out of nine cancer types for which pathological stage or grade information were
provided, five (CSEC, HNSC, PRAD, SKCM, and THCA) showed some statistical trend for
positive correlation between the signature score and stage or grade across primary cancers
(one-sided p<=0.05, Pearson’s, Figure 5A). This association was notably strongest for
PRAD (prostate) cancer type (p<1E-30), to the extent that clear differences in time to
adverse events between patients with primary prostate tumors manifesting the PRAD
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metastasis signature as compared to the rest of the were observable, when applying the
signature to profiles from multiple external cohorts (Figure 5B). In addition, in another
prostate cancer dataset, consisting of primary prostate cancer samples from patients for
which the early onset of metastasis following radical prostatectomy was recorded(37),
PRAD metastasis signature scores were significantly elevated (p<1E-9) in the early onset
group (Figure 5C).

Molecular patterns associated with metastasis involving protein, microRNAs, and

methylation

We went on to examine protein, microRNA, and DNA methylation datasets in TCGA, in
order to define differentially expressed features between primary and metastasis samples for
each cancer type. RPPA proteomic data involved 218 features and four cancer types (BRCA,
PCPG, SKCM, THCA) with metastasis profiles. For SKCM, a large portion of RPPA
features examined were differentially expressed in metastasis (94 features at FDR<10%,
Pearson’s correlation on log-transformed data, 83 features significant after corrections for
tumor purity, Supplementary Data S5), analogous to results from mRNA expression. No
RPPA features with globally significant (FDR<10%) were found for PCPG or THCA, likely
in part due to limited sample power. For BRCA, one protein feature, transglutaminase 2, was
elevated in metastasis and globally significant at FDR<10% (FDR<1E-12), corresponding to
mRNA-level differences (Figure 6A). Transglutaminase 2 protein and mMRNA were also
elevated in SKCM (Figure 6A), and the protein is known to promote metastasis(38). For
most cancer types, widespread differences in microRNA (miRNA) expression between
metastasis and primary were observed (Figure 6B and Supplementary Data S5). Most of the
significant miRNAs detected were over-expressed versus under-expressed in metastasis,
with 85 over-expressed miRNAs and 12 under-expressed miRNAs significant (FDR<10%)
in two or more cancer types, and with 17 over-expressed miRNAs significant in three or
more cancer type (Figure 6C). For a number of cancer types, mMRNA:microRNA pairings, as
defined by both a previously identified miRNA-target interaction (as cataloged by
miRTarBase(39)) and significant differential expression in metastasis for both mRNA and
microRNA (in opposite directions), could also be identified (Supplementary Data S5).

Using TCGA data from DNA methylation arrays, we examined 150,253 CpG Island probes,
finding widespread differences in methylation between metastasis and primary samples for
each cancer type studied (Figure 6D and Supplementary Data S6). The numbers of top
significant methylation features (FDR<10%, Pearson’s on logit-transformed data) ranged
from 163 for THCA to 27,530 for SKCM (after corrections for tumor purity), with the other
cancer types having between 441 and 6,611 top features. As increased methylation of
regulatory regions in proximity to genes can lead to epigenetic silencing, we integrated DNA
methylation results with mRNA expression results, defining sets of gene associated with
both altered methylation and expression (Figure 6E and Supplementary Data S6). For all
cancer types except SARC and THCA, significant inverse correspondences between
methylation and expression results were observed (p<0.05, one-sided Fisher’s exact test or
chi-squared test), either involving genes over-expressed and with lower associated
methylation in metastasis or involving genes under-expressed and with higher associated
methylation in metastasis. The significantly overlapping results involved, for example, 2730
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genes for SKCM (both over-expressed and under-expressed genes, with inverse patterns of
DNA methylation), 66 genes for PRAD, 43 genes for HNSC, and 33 genes for CESC.

Discussion

Our study of TCGA data on cancer metastasis samples had three overall objectives: 1) to
obtain a preliminary global view of metastasis versus primary molecular differences across
several cancer types; 2) to provide a resource for future studies investigating the role of
specific genes in metastasis; and 3) to help provide direction for future genomics studies of
metastasis, e.g. by showcasing the utility of examining molecular differences across cancer
types and across other molecular profiling platforms in addition to RNA-sequencing. A clear
limitation of the present study involves the limited number of metastasis samples profiled as
part of TCGA consortium, as the main focus of TCGA was to examine genomic and
molecular patterns of primary rather than of metastatic cases. For several of the cancer types
examined, this limitation is mitigated somewhat by comparing the results from TCGA
transcriptomic data to existing data from other studies, thereby demonstrating the relevance
of differential gene patterns as observed across sample cohorts. Our results would support
the need for future multiplatform-based and pan-cancer genomics studies profiling larger
numbers of metastasis with primary samples, which would allow us to further define and
refine the molecular signatures of metastasis as put forth in this present study. Nevertheless,
our study demonstrates that, even on the basis of a single metastasis sample, there would be
molecular information contained here representing real biological differences that may
involve at least some metastasis cases for a given cancer type.

Our study has identified widespread molecular differences in metastasis versus primary
tumors for 11 different cancer types, with each cancer type having a signature of metastasis
that is distinct from that of the other cancer types. This would suggest that there are different
molecular pathways to metastasis involved in different cancers. Our findings would
seemingly differ with those of two early studies of gene expression patterns of metastasis,
one from Ramaswamy et al. (36), which defined a single 128-gene signature of metastasis
across multiple cancer types (lung, breast, prostate, colorectal, uterus, ovary, etc.), and one
from Weigelt et al.(40), which could not find any global significant differences over chance
expected between breast cancer primary and metastasis samples. Studies subsequent to the
Weigelt study have been able to define widespread differences associated with breast cancer
metastasis versus primary tumors(5, 8, 9). Interestingly, when surveying TCGA data, none
of the Ramaswamy signature genes showed consistent high or low expression patterns in
metastasis across the different cancer types (Supplementary Data S2). While the
Ramaswamy study found that a subset of primary tumors from various cancer types
expressing the 128-gene metastasis signature were associated with worse outcome, we find
in our present study that aggressive prostate cancers in particular appear to express a
metastasis signature pattern, but other cancer types such as breast cancer do not show a
similar phenomenon. One salient feature of this present study was to survey available data
from multiple external sources in addition to TCGA data. Where genes are found to show
consistent patterns across multiple datasets and studies, we may place the most confidence in
these gene patterns, at least given the currently available data.
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The results of this present study (e.g. as provided in the supplementary materials) may serve
as a resource for future studies investigating the role of specific genes in metastasis. The
various gene signatures of metastasis, as identified in each cancer type by TCGA data, may
be mined to help identify candidates for functional studies. For cancer types with only a
single metastasis sample with TCGA, there would be potential limitations with the
associated metastasis signature, including questions as to the generalizability of the
signature to other metastasis cases. Integration of TCGA results with results of external
public datasets can considerably strengthen the metastasis associations as identified for
specific genes. For example, the TCGA PRAD metastasis signature was based on a single
metastasis profile, but this signature showed highly significant overlap with results with each
of three independent profiling datasets of prostate cancer metastasis versus primary
disease(4, 6, 7), and the TCGA PRAD signature could also define a subset of aggressive
primary prostate cancer. Integration between mRNA data and data from other platforms in
TCGA may also be used to select genes of particular interest, such as genes showing
concordant alterations involving both expression and DNA methylation. Genes that appear
significant in multiple cancer types, including genes encoding cell receptors, may also be of
interest for further investigation.

While successfully defining molecular signatures of metastasis across several different
cancer types, our present study points to the need for more molecular data on metastasis in
human tumors. Much could be gained by generating molecular data on larger numbers of
metastasis and primary cancers, using multiple “omics” data platforms in addition to mRNA
expression profiling. The global molecular patterns involved in metastasis would entail
proteomic and DNA methylation levels in addition to transcriptomic levels. For many cancer
types with metastasis data in TCGA, few or no relevant external molecular profiling datasets
were found to be available. For cancer types where a large number of expression outliers
could be associated with a single metastasis sample profile, profiling more metastasis cases
would enable us to define more robust molecular signatures that would presumably be
generalizable to the disease as a whole. Profiling larger numbers of cases would also allow
for paired analyses by patient between primary and metastasis samples, as well as offering
the possibility of subtype discovery within metastatic tumors according to differential
patterns being found within some but not all metastasis cases. Molecular data from human
tumors may be combined with molecular data from experimental models of metastasis(41),
in order to identify genes common to both, which may help pinpoint critical targets relevant
in both the laboratory and human disease settings. The top gene correlates of metastasis by
and large do not appear to represent canonical oncogenes(32, 42) or frequent targets of point
mutation(43), but rather appear indicative of complex processes at work involving multiple
internal and external factors. The molecular signatures of metastasis for each cancer type
have the potential to lead to new discoveries into the disease process.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Chenetal.

Acknowledg

Th

Page 11

ements

is work was supported in part by National Institutes of Health (NIH) grant P30CA125123 (C. Creighton).

Abbreviations:

References

TCGA The Cancer Genome Atlas
RNA-seq RNA sequencing
RPPA reverse-phase protein arrays

1. Weinberg RA. The Biology of Cancer. New York: Garland Science; 2006.
2. Steeg P Targeting metastasis. Nat Rev Cancer. 2016;16(4):201-18. [PubMed: 27009393]
3. Jiang W, Sanders A, Katoh M, Ungefroren H, Gieseler F, Prince M, Thompson S, Zollo M, Spano

10

11.

12.

13.

14.

D, Dhawan P, et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives.
Semin Cancer Biol. 2015;35 Suppl(S244-S75).

. Tomlins S, Mehra R, Rhodes D, Cao X, Wang L, Dhanasekaran S, Kalyana-Sundaram S, Wei J,

Rubin M, Pienta K, et al. Integrative molecular concept modeling of prostate cancer progression.
Nature genetics. 2007;39(1):41-51. [PubMed: 17173048]

. Siegel M, He X, Hoadley K, Hoyle A, Pearce J, Garrett A, Kumar S, Moylan V, Brady C, Van

Swearingen A, et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast
cancer. J Clin Invest. 2018;E-pub Feb 26

. Lapointe J, Li C, Giacomini C, Salari K, Huang S, Wang P, Ferrari M, Hernandez-Boussard T,

Brooks J, and Pollack J. Genomic profiling reveals alternative genetic pathways of prostate
tumorigenesis. Cancer Res. 2007;67(18):8504—10. [PubMed: 17875689]

. Taylor B, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver B, Arora V, Kaushik P, Cerami E,

Reva B, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18(1):11~
22. [PubMed: 20579941]

. Lawler K, Papouli E, Naceur-Lombardelli C, Mera A, Ougham K, Tutt A, Kimbung S, Hedenfalk I,

Zhan J, Zhang H, et al. Gene expression modules in primary breast cancers as risk factors for
organotropic patterns of first metastatic spread: a case control study. Breast Cancer Res. 2017;19(1):
113. [PubMed: 29029636]

. Schulten H, Bangash M, Karim S, Dallol A, Hussein D, Merdad A, Al-Thoubaity F, Al-Maghrabi J,

Jamal A, Al-Ghamdi F, et al. Comprehensive molecular biomarker identification in breast cancer
brain metastases. J Transl Med. 2017;15(1):269. [PubMed: 29287594]

.Kim S, Kim S, Kim J, Roh S, Cho D, Kim Y, and Kim J. A nineteen gene-based risk score
classifier predicts prognosis of colorectal cancer patients. Mol Oncol. 2014;8(8):1653-66.
[PubMed: 25049118]

Lin A, Chua M, Choi Y, Yeh W, Kim Y, Azzi R, Adams G, Sainani K, van de Rijn M, So S, et al.
Comparative profiling of primary colorectal carcinomas and liver metastases identifies LEF1 as a
prognostic biomarker. PloS one. 2011;6(2):16636. [PubMed: 21383983]

Sheffer M, Bacolod M, Zuk O, Giardina S, Pincas H, Barany F, Paty P, Gerald W, Notterman D,
and Domany E. Association of survival and disease progression with chromosomal instability: a
genomic exploration of colorectal cancer. Proc Natl Acad Sci U S A. 2009;106(17):7131-6.
[PubMed: 19359472]

Van den Broeck A, Vankelecom H, Van Eijsden R, Govaere O, and Topal B. Molecular markers
associated with outcome and metastasis in human pancreatic cancer. J Exp Clin Cancer Res.
2012;31(68).

Barry S, Chelala C, Lines K, Sunamura M, Wang A, Marelli-Berg F, Brennan C, Lemoine N, and
Crnogorac-Jurcevic T. S100P is a metastasis-associated gene that facilitates transendothelial

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Chenetal.

Page 12

migration of pancreatic cancer cells. Clin Exp Metastasis. 2013;30(3):251-64. [PubMed:
23007696]

15. Cirenajwis H, Ekedahl H, Lauss M, Harbst K, Carneiro A, Enoksson J, Rosengren F, Werner-
Hartman L, Térngren T, Kvist A, et al. Molecular stratification of metastatic melanoma using gene
expression profiling: Prediction of survival outcome and benefit from molecular targeted therapy.
Oncotarget. 2015;6(14):12297-309. [PubMed: 25909218]

16. Martins W, Esteves G, Almeida O, Rezze G, Landman G, Marques S, Carvalho A, L Reis L,
Duprat J, and Stolf B. Gene network analyses point to the importance of human tissue kallikreins
in melanoma progression. BMC Med Genomics. 2011;4(76).

17. Kabbarah O, Nogueira C, Feng B, Nazarian R, Bosenberg M, Wu M, Scott K, Kwong L, Xiao Y,
Cordon-Cardo C, et al. Integrative genome comparison of primary and metastatic melanomas.
PloS one. 2010;5(5):€10770. [PubMed: 20520718]

18. Tarabichi M, Saiselet M, Trésallet C, Hoang C, Larsimont D, Andry G, Maenhaut C, and Detours
V. Revisiting the transcriptional analysis of primary tumours and associated nodal metastases with
enhanced biological and statistical controls: application to thyroid cancer. Br J Cancer.
2015;112(10):1665-74. [PubMed: 25965298]

19. Robinson D, Wu Y, Lonigro R, Vats P, Cobain E, Everett J, Cao X, Rabban E, Kumar-Sinha C,
Raymond V, et al. Integrative clinical genomics of metastatic cancer. Nature. 2017;548(7667):297—
303. [PubMed: 28783718]

20. Cancer_Genome_Atlas_Network. Genomic Classification of Cutaneous Melanoma. Cell.
2015;161(7):1681-96. [PubMed: 26091043]

21. The_Cancer_Genome_Atlas_Research_Network. Comprehensive molecular characterization of
clear cell renal cell carcinoma. Nature. 2013;499(7456):43-9. [PubMed: 23792563]

22. Zhang Y, Kwok-Shing Ng P, Kucherlapati M, Chen F, Liu Y, Tsang Y, de Velasco G, Jeong K,
Akbani R, Hadjipanayis A, et al. A Pan-Cancer Proteogenomic Atlas of PI3K/AKT/mTOR
Pathway Alterations. Cancer Cell. 2017;E-pub May 8

23. Hoadley K, Yau C, Hinoue T, Wolf D, Lazar A, Drill E, Shen R, Taylor A, Cherniack A, Thorsson
V, et al. Cell-of-Origin Patterns Dominate the Molecular Classification of 10,000 Tumors from 33
Types of Cancer. Cell. 2018;173(2):291-304. [PubMed: 29625048]

24. Aran D, Sirota M, and Butte A. Systematic pan-cancer analysis of tumour purity. Nat Commun.
2015;6(8971).

25. Storey JD, and Tibshirani R. Statistical significance for genomewide studies. Proc Natl Acad Sci
USA. 2003;100(9440-5.

26. Saldanha AJ. Java Treeview--extensible visualization of microarray data. Bioinformatics.
2004;20(3246-8.

27. Pavlidis P, and Noble W. Matrix2png: A Utility for Visualizing Matrix Data. Bioinformatics.
2003;19(2):295-6. [PubMed: 12538257]

28. Creighton C, Nagaraja A, Hanash S, Matzuk M, and Gunaratne P. A bioinformatics tool for linking
gene expression profiling results with public databases of microRNA target predictions. RNA.
2008;14(11):2290-6. [PubMed: 18812437]

29. Shannon P, Markiel A, Ozier O, Baliga N, Wang J, Ramage D, Amin N, Schwikowski B, and
Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction
networks. Genome Res. 2003;13(11):2498-504. [PubMed: 14597658]

30. Shoner A, Demichelis F, Calza S, Pawitan Y, Setlur S, Hoshida Y, Perner S, Adami H, Fall K,
Mucci L, et al. Molecular sampling of prostate cancer: a dilemma for predicting disease
progression. BMC Med Genomics. 2010;3(8.

31. Nakagawa T, Kollmeyer T, Morlan B, Anderson S, Bergstralh E, Davis B, Asmann Y, Klee G,
Ballman K, and Jenkins R. A tissue biomarker panel predicting systemic progression after PSA
recurrence post-definitive prostate cancer therapy. PloS one. 2008;3(5):e2318. [PubMed:
18846227]

32. Chen F, Zhang Y, Gibbons D, Deneen B, Kwiatkowski D, Ittmann M, and Creighton C. Pan-cancer
molecular classes transcending tumor lineage across 32 cancer types, multiple data platforms, and
over 10,000 cases. Clin Cancer Res. 2018;24(9):2182-93. [PubMed: 29440175]

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Chenetal.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

Page 13

Delaunay S, Rapino F, Tharun L, Zhou Z, Heukamp L, Termathe M, Shostak K, Klevernic I, Florin
A, Desmecht H, et al. Elp3 links tRNA modification to IRES-dependent translation of LEF1 to
sustain metastasis in breast cancer. J Exp Med. 2016;213(11):2503-23. [PubMed: 27811057]
Zhao X, Li D, Pu J, Mei H, Yang D, Xiang X, Qu H, Huang K, Zheng L, and Tong Q. CTCF
cooperates with noncoding RNA MYCNOS to promote neuroblastoma progression through
facilitating MYCN expression. Oncogene. 2016;35(27):3565-76. [PubMed: 26549029]

Wang Q, Kong P, Li X, Yang F, and Feng Y. FOXF2 deficiency promotes epithelial-mesenchymal
transition and metastasis of basal-like breast cancer. Breast Cancer Res. 2015;17(30.
Ramaswamy S, Ross K, Lander E, and Golub T. A molecular signature of metastasis in primary
solid tumors. Nature genetics. 2003;33(1):49-54. [PubMed: 12469122]

Erho N, Crisan A, Vergara I, Mitra A, Ghadessi M, Buerki C, Bergstralh E, Kollmeyer T, Fink S,
Haddad Z, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early
metastasis following radical prostatectomy. PloS one. 2013;8(6):e66855. [PubMed: 23826159]
Huang L, Xu A, and Liu W. Transglutaminase 2 in cancer. Am J Cancer Res. 2015;5(9):2756-76.
[PubMed: 26609482]

Hsu S, FM L, Wu W, Liang C, Huang W, Chan W, Tsai W, Chen G, Lee C, Chiu C, et al.
miRTarBase: a database curates experimentally validated microRNA-target interactions. Nucleic
Acids Res. 2011;39(Database issue):D163-9. [PubMed: 21071411]

Weigelt B, Glas A, Wessels L, Witteveen A, Peterse J, and van’t Veer L. Gene expression profiles
of primary breast tumors maintained in distant metastases. Proc Natl Acad Sci U S A.
2003;100(26):15901-5. [PubMed: 14665696]

Gibbons D, Lin W, Creighton C, Zheng S, Berel D, Yang Y, Raso M, Liu D, Wistuba I, Lozano G,
et al. Expression signatures of metastatic capacity in a genetic mouse model of lung
adenocarcinoma. PloS one. 2009;4(4):e5401. [PubMed: 19404390]

Hanahan D, and Weinberg R. The hallmarks of cancer. Cell. 2000;100(1):57-70. [PubMed:
10647931]

Lawrence M, Stojanov P, Mermel C, Robinson J, Garraway L, Golub T, Meyerson M, Gabriel S,
Lander E, and Getz G. Discovery and saturation analysis of cancer genes across 21 tumour types.
Nature. 2014;505(7484):495-501. [PubMed: 24390350]

Zack T, Schumacher S, Carter S, Cherniack A, Saksena G, Tabak B, Lawrence M, Zhsng C, Wala
J, Mermel C, et al. Pan-cancer patterns of somatic copy number alteration. Nature genetics.
2013;45(10):1134-40. [PubMed: 24071852]

Creighton C, Hernandez-Herrera A, Jacobsen A, Levine D, Mankoo P, Schultz N, Du Y, Zhang Y,
Larsson E, Sheridan R, et al. Integrated analyses of microRNAs demonstrate their widespread
influence on gene expression in high-grade serous ovarian carcinoma. PloS one. 2012;7(3):e34546.
[PubMed: 22479643]

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Chen et al.

Page 14

Implications:

Our findings suggest that there are different molecular pathways to metastasis involved in
different cancers. Our catalog of alterations provides a resource for future studies
investigating the role of specific genes in metastasis.
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Figure 1. Top differentially expressed mMRNAsin metastasis versus primary samplesfor each of
11 cancer typesin The Cancer Genome Atlas (TCGA).

Top genes for each cancer type were selected using Pearson’s correlation (on log-
transformed values) with Storey and Tibshirini estimate of False Discovery Rate (FDR) of
<10% (for SKCM, FDR<10% and significant with p<0.05 for linear model incorporating
tumor purity as a covariate). Yellow denotes high expression relative to the average of
primary samples; blue denotes low expression. Genes listed individually are either over-
expressed in metastasis and focally amplified in a previous pan-cancer analysis(44) or under-
expressed in metastasis and focally deleted in pan-cancer analysis. For SKCM, hundreds of
genes involved regions of focal amplification or deletion, and so these are not listed here.
BRCA, Breast invasive carcinoma; CESC, Cervical squamous cell carcinoma and
endocervical adenocarcinoma; CRC, Colorectal adenocarcinoma (combining COAD and
READ projects); ESCA, Esophageal carcinoma; HNSC, Head and Neck squamous cell
carcinoma; PAAD, Pancreatic adenocarcinoma; PCPG, Pheochromocytoma and
Paraganglioma; PRAD, Prostate adenocarcinoma; SARC, Sarcoma; SKCM, Skin Cutaneous
Melanoma; THCA, Thyroid carcinoma.
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Figure 2. Genes shared among the cancer type-specific metastasis mRNA signatures.
(A) For both the genes over-expressed in metastasis for at least one cancer type (left, genes

from Figure 1) and the genes under-expressed in metastasis for at least one cancer type
(right, genes from Figure 1), the numbers of overlapping genes between any two cancer
types are indicated, along with the significance of overlap (using colorgram, by one-sided
Fisher’s exact test). (B) Heat map of differential t-statistics (Pearson’s correlation on log-
transformed data), by cancer type, comparing metastasis versus primary (red, higher in
metastasis; white, not significant with p>0.05), for 821 genes significant for two or more
cancer types (FDR<10%; for SKCM, FDR<10% and significant with p<0.05 for linear
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model incorporating tumor purity as a covariate). Genes significant for three or more cancer
types are indicated by name.
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# gene:

-protein interaction network involving genes associated with GO:receptor activity

Protein

Higher expression in metastasis versus primary for given cancer type

PCPG PRAD SARC SKCM THCA

ESCA HNSC PAAD

CRC

BRCA CESC

expressed in metastasis. For both sets of enriched GO terms,

(enrichment for cancer type defined as FDR<10% using one-sided Fisher’s exact test) within
the respective sets of genes over-expressed in metastasis (based on the gene sets represented
in Figure 1); right, GO terms significantly enriched for at least three cancer types within the

respective sets of genes under
the numbers of genes involved for each cancer type and overall significance of enrichment

(A) Left, Gene Ontology (GO) terms significantly enriched for at least three cancer types

Figure 3. Functional gene classes shared among the cancer type-specific metastasis mRNA

signatures.
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(by colorgram; black, highly significant) are indicated. (B) Protein-protein interaction
network involving genes over-expressed in metastasis, with focus on genes involved in
receptor activity. Nodes represent genes with GO annotation “receptor activity” and which
were found over-expressed in metastasis for at least one cancer type (FDR<10%; for SKCM,
FDR<10% and significant with p<0.05 for linear model incorporating tumor purity as a
covariate). Nodes are colored according to the individual cancer types in which a trend
(p<0.05, Pearson’s correlation on log-transformed data) of higher expression in metastasis
versus primary samples was observed. A line between two nodes signifies that the
corresponding protein products of the genes can physically interact (according to the
literature, from Entrez gene interactions database).
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Figure 4. Significance of overlap between TCGA metastasis mMRNA signatures and metastasis
mMRNA signatures from datasets external to TCGA.

(A) For both the genes over-expressed in metastasis for a given cancer type (left) and the
genes under-expressed in metastasis for a given cancer type (right), the numbers of
overlapping genes between the TCGA mRNA signatures (rows, signatures from Figure 1)
and the genes over- or under-expressed in metastasis (p<0.05, t-test) in the indicated external
datasets from previously published gene expression profiling studies (columns), along with
the corresponding significances of overlap (using colorgram, by one-sided Fisher’s exact

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Chenetal.

Page 21

test, chi-squared test for TCGA SKCM gene sets). (B) For each indicated cancer type,
numbers of genes overlapping between the TCGA metastasis signature genes (left, genes
over-expressed in metastasis; right, genes under-expressed in metastasis) and the genes
significantly high or low in metastasis (p<0.05, t-test) in the published external datasets
corresponding to the given cancer type. Significance of overlap (by one-sided Fisher’s exact
test; chi-squared test for SKCM genes) is indicated for TCGA genes found in one or more
external datasets (blue bars) and in two or more external datasets (red bars). Selected top
genes overlapping between TCGA and results from other datasets are listed (BRCA over-
expressed: TCGA p<1E-6 and p<1E-6 for E-MTAB-4003 dataset; BRCA under-expressed:
TCGA p<1E-6 and p<1E-6 for E-MTAB-4003 dataset; CRC under-expressed: TCGA
FDR<10% and p<0.05 for two or more external datasets; PAAD over-expressed: TCGA
FDR<10% and p<0.01 for GSE42952 dataset; PAAD under-expressed: TCGA FDR<10%
and p<0.05 for one or more external datasets; PRAD over-expressed: TCGA FDR<10% and
p<0.01 for all three external datasets; PRAD under-expressed: TCGA FDR<10% and p<0.05
for all three external datasets; SKCM over-expressed: TCGA FDR<10% and p<0.05 for all
three external datasets; SKCM under-expressed: TCGA FDR<10% and p<0.05 for all three
external datasets; THCA over-expressed: TCGA FDR<10% and p<0.001 for GSE60542
dataset; P-values by Pearson’s correlation or t-test on log-transformed data). (C) TCGA-
BRCA metastasis gene expression signature similarity score (t-statistic as derived from the
“t-score” metric(21, 45)), as applied to the sample profiles in the GSE110590 breast cancer
metastases RNA-seq dataset(5). For selected groups of metastasis according to site,
comparisons with the primary group are indicated (t-test as applied to the signature t-scores).

Mol Cancer Res. Author manuscript; available in PMC 2020 February 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Chenetal. Page 22

*
(@

GSE46691, prostate cancer

= 31
o3 % p<=0.05 o
cC© =] J .
= s 10
82 = Gleason>7
og 4 B O Gleason<=7
£o 22
g3 88 51 - PEIED
3y o 85 ;|
=2 0 =0
g g > 01
22 2 =
£ £ * <DE i)
5 o £5
c® ... _________ ™ _____ ard N
S5 < -5 | .
T 2 1 o .
S0 'L_J
< - primary cancers primary cancers
'§ that did not develop that developed
o O el O 0 O N\ Y metastases metastases
) <& O o O O
Q;% & & & & & QQY & (n=333) (n=212)
] GSE21034, prostate cancer ’ GSE16560, prostate cancer 3 GSE10645, prostate cancer
0.9 other (n=93) 0.9 Log rank p<1E-5 0.9 \
£08 £0.8 | £08 other (n=397)
20.7 2 0.7 207
$06 £06 £06
505 505 other (n=187) 505
o4 PRAD T 04 T 04 PRAD metastasis
£ 03] B o S 0.3{ PRAD censored $03 signature high (n=199)
5 signature high 5 metastasis 5
% 0-21 (n=47) cansarag X ® 02 signature high % 0-2
0.1 Log rank p<1E-6 0.11 (n2od) 0.1 Log rank p<1E-16 censored «
0 ‘ ‘ 0 ‘ ‘ ‘ ‘ 0
0 50 100 150 0 50 100 150 200 250 300 0 50 100 150 200 250
Recurrence-free survival (months) Disease-specific survival (months) Disease-specific survival (months)

Figure5. For specific cancer types, gene expression signatures of metastasis found present within
a subset of primary samples and associated with more aggressive disease.

(A) For each of the indicated cancer types, the corresponding TCGA metastasis gene
signature was applied to the primary sample mRNA profiles for that cancer type; across the
primary samples, the metastasis signature similarity scores (t-statistic as derived from the “t-
score” metric(21, 45)) were correlated with the cancer stage or grade (Gleason grade for
PRAD, pathologic stage for the other cancer types). One-sided p-values indicate the
Pearson’s correlation between the signature score and stage or grade (numerical 1-4 for
stage, 6-10 for Gleason grade). (B) For each of three independent mMRNA expression
profiling datasets of primary prostate cancer(7, 30, 31), differences in survival between
patients with tumors manifesting the TCGA-PRAD metastasis signature (top third of
signature similarity scores across the samples) and the other patients. P-values by log-rank
test. (C) The TCGA PRAD metastasis gene signature was applied to the primary sample
MRNA profiles for the GSE46691 prostate cancer dataset (37), consisting of primary
prostate cancer samples from patients for which the early onset metastasis following radical
prostatectomy was recorded. Box plot represents 5%, 25%, 50%, 75%, and 95%. P-value for
differences in signature scores between groups with or without metastasis by t-test.
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Figth_rI_e 6. Molecular correlates of metastasis by protein, microRNA, or DNA methylation
roriing.

?A) Tra?]sglutaminase 2 protein and mRNA (7GMZ2 gene) were significantly elevated in
TCGA BRCA metastases as well as in TCGA SKCM metastases. Box plots represent 5%,
25%, 50%, 75%, and 95%. P-values by t-test on log-transformed data. (B) Numbers of
significant microRNAs between metastasis (“met.”) and primary samples for each cancer
type (FDR<10%, based on Pearson’s correlation using log-transformed values; for SKCM,
FDR<10% and significant with p<0.05 for linear model incorporating tumor purity as a
covariate), along with the numbers or microRNAs significant (FDR<10%) for two or three
cancer types. (C) Heat map of differential t-statistics (Pearson’s correlation on log-
transformed data), by cancer type, comparing metastasis versus primary (red, higher in
metastasis; white, not significant with p>0.05), for 29 microRNAs that were either
significantly over-expressed for three or more cancer types (FDR<10%) or significantly
under-expressed for two or more cancer types. (D) Numbers of significant DNA methylation
array probes located within CpG Islands (by Illumina 450K array, ~150K CpG Island
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probes) between metastasis (“met.”) and primary samples for each cancer type (FDR<10%,
based on Pearson’s correlation using logit-transformed values; for SKCM, FDR<10% and
significant with p<0.05 for linear model incorporating tumor purity as a covariate). (E) For
each cancer type, numbers of genes overlapping between the RNA-seq and DNA
methylation results (FDR<10% for each platform, with top features in SKCM corrected for
tumor purity as described above). Left plot represents genes over-expressed in metastases
(“met.”), and right plot represents genes under-expressed in metastases. Significance of
overlap by one-sided Fisher’s exact test (chi-squared test for SKCM results).
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