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Abstract

Purpose: To improve persistence of adoptively transferred T cell receptor (TCR)-engineered T 

cells and durable clinical responses, we designed a clinical trial to transplant genetically-modified 

hematopoietic stem cells (HSCs) together with adoptive cell transfer (ACT) of T cells both 

engineered to express an NY-ESO-1 TCR. Here, we report the preclinical studies performed to 

enable an investigational new drug (IND) application.

Experimental design: HSCs transduced with a lentiviral vector expressing NY-ESO-1 TCR 

and the PET reporter/suicide gene HSV1-sr39TK and T cells transduced with a retroviral vector 

expressing NY-ESO-1 TCR were co-administered to myelodepleted HLA-A2/Kb mice within a 

formal GLP-compliant study to demonstrate safety, persistence and HSC differentiation into all 

blood lineages. Non-GLP experiments included assessment of transgene immunogenicity and in 
vitro viral insertion safety studies. Furthermore, GMP-compliant cell production qualification runs 

were performed to establish the manufacturing protocols for clinical use.

Results: TCR genetically-modified and ex vivo cultured HSCs differentiated into all blood 

subsets in vivo after HSC transplantation, and co-administration of TCR-transduced T cells did not 

result in increased toxicity. The expression of NY-ESO-1 TCR and sr39TK transgenes did not 

have a detrimental effect on gene-modified HSCs differentiation to all blood cell lineages. There 

was no evidence of genotoxicity induced by the lentiviral vector. GMP batches of clinical-grade 

transgenic cells produced during qualification runs had adequate stability and functionality.

Conclusion: Co-administration of HSCs and T cells expressing an NY-ESO-1 TCR is safe in 

preclinical models. The results presented in this manuscript led to the U.S. FDA approval of IND 

17471.
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Introduction

Adoptive transfer of T cells genetically modified to express tumor-specific T cell receptors 

(TCR) has shown remarkable antitumor efficacy in several clinical trials (1–7). However, 

durable long-term clinical responses have been more challenging to maintain (4,6), while 

engraftment and persistence of the modified T cells have been associated with better 

antitumor responses (4,5,8).

To improve the persistence of the TCR-expressing T cells, we propose to use genetically 

modified hematopoietic stem cells (HSCs) as a source for constant endogenous renewal of 

TCR-engineered T cells. The use of genetically modified HSCs was first shown to be 
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efficacious in primary immunodeficiencies, where the transplantation of genetically 

modified HSCs demonstrated long-term correction of the disease (9–11). Regarding its use 

in cancer immunotherapy, it has been previously shown in murine and humanized murine 

models that transplantation of HSCs engineered to express a tumor-specific TCR results in 

the output of functional T cells with the defined specificity after proper thymic selection. 

The newly generated T cells showed antitumor activity, and were able to differentiate into 

memory T cells after antigen stimulation (12–18). The endogenously produced TCR-

engineered T cells demonstrated allelic exclusion, a process in which the TCR transgenic 

chains inhibit the expression of the endogenous TCR chains, thereby avoiding TCR 

mispairing and consequently reducing the potential toxicity of the therapy (19).

To test the approach of TCR genetic engineering of HSCs in the clinic, we designed a 

clinical trial of double cell therapy co-administering HSCs and T cells both genetically 

modified to express an NY-ESO-1 TCR. We propose to use two TCR-engineered cell 

therapies because we anticipate that the TCR-engineered HSCs will endogenously 

differentiate into fully active mature T cells with a long delay in their appearance in the 

periphery, as new T cells reaching peripheral circulation must undergo a thymic selection 

process which takes one to three months (20,21). In this clinical trial, TCR-engineered 

mature lymphocytes and TCR-engineered HSCs will be co-administered to patients with 

NY-ESO-1-positive advanced cancers after a myelo- and lymphodepleting conditioning 

regimen. We hypothesize that the TCR-engineered mature lymphocytes will expand in vivo 
and provide the first wave of transient antitumor activity. This will serve as a bridge until the 

second wave of TCR-transgenic cells arising from the bone marrow-engrafted gene-

modified HSCs has gone through the T lymphocyte maturation process and partially 

repopulated peripheral tissues (Supplemental Figure 1).

We propose to use the NY-ESO-1 TCR for this clinical trial since the toxicities observed in 

adoptive T cell therapy clinical trials using this TCR were not dose-limiting and unrelated to 

the TCR recognizing its cognate antigen, which in adult life is presented by the cancer cells 

and absent in most normal somatic cells (3,5,6). NY-ESO-1 is a cancer-testis antigen 

expressed at high homogeneous levels in synovial sarcoma, with lower frequency of 

expression in melanoma and multiple myeloma, and at even lower levels in other cancers 

(22–24). The NY-ESO-1 TCR used in this work recognizes the SLLMWITQC NY-ESO-1 

epitope in the context of HLA-A*0201 and contains a two amino acid substitution in the 

third complementary determining region that increases its affinity for peptide-MHC 

complexes (25).

Herein we report on preclinical studies performed to demonstrate the safety and feasibility 

of the approach. These studies led to the investigational new drug (IND) application 

approval for a new clinical trial that is being conducted at UCLA (NCT03240861). Based on 

the previous experience with adoptive T cell transfer using the NY-ESO-1 TCR, the major 

safety concerns were focused on the transplantation with lentivirally modified HSCs and the 

untested effects of the co-administration of the HSCs and T cells both expressing the same 

NY-ESO-1 TCR. The preclinical studies performed to justify the safety of our approach 

adressed: i) the ability of the genetically modified and ex vivo cultured Lin- cells to 

differentiate into all blood lineages; ii) the effect of the co-administration of genetically 
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modified Lin- cells and T cells on the engraftment and proliferation of the T cells and the 

engraftment and differentiation of the HSCs; iii) the immunogenicity of the NY-ESO-1 TCR 

and the sr39TK transgenes caused by their expression in the various hematopoietic cells; iv) 

the potential genotoxicity induced by the lentiviral vector integration in the Lin- cells; and v) 

the ability of the sr39TK suicide gene to ablate transduced stem cell progeny in case of a 

serious adverse event. To test the feasibility of the clinical trial, we validated the HSC cell 

product manufacturing process and demonstrated the stability and functionality of the final 

product. The data presented on the manuscript is focused on the approach-specific studies. 

Detailed information on the viral vector manufacturing, lot release criteria and optimization 

of the gene modified cell manufacturing can be found in the Supplemental Data Section.

Materials and Methods

Bone marrow transplantation (BMT) experiments:

All animal experiments were performed under the UCLA Animal Research Committee 

protocol #2013–095 that was previously approved by the IACUC. Lin- cells were isolated 

from the bone marrow of HLA-A2/Kb transgenic mice (26), pre-stimulated with cytokines, 

transduced with previously validated lentiviral vectors LV-NY-ESO-1 TCR/sr39TK, LV-NY-

ESO-1 TCR, or LV-empty and cultured in vitro. For the co-administration experiments, T 

cells were isolated from spleens from HLA-A2/Kb transgenic mice, activated with CD3/28 

and IL-2 stimulation, transduced with the RV-NY-ESO-1 TCR and expanded in vitro. The 

methods and reagents to manufacture and validate both cell products are described in the 

supplemental materials. Transduced Lin- cells alone or together with transduced T cells 

were administered systemically to 8- to 12-week-old HLA-A2/Kb mice that had received 

total body irradiation with 900cGy the day prior to cell administration. A detailed 

description of the cell testing performed prior to administration and the cell doses can be 

found in the supplemental material and methods. Five days or three months after the BMT, 

mice were euthanized and hematology, serum chemistry, complete histopathology survey, 

lentivirus and retrovirus vector copy number (VCN) in the blood, spleen and bone marrow 

and TCR expression and phenotype analysis in the bone marrow and spleen were performed. 

A detailed explanation of these procedures can be found in the supplemental material and 

methods.

In vitro immortalization assays:

Lin- cells from C57BL/6J (Jackson Laboratories, Bar Harbor, ME) mice were transduced 

with the LV-NY-ESO-1 TCR/sr39TK vector or the retrovirus SF91-eGFP-WPRE, expanded 

and seeded at limiting dilution. The growth of transformed clones was measured. This 

procedure is detailed in the supplemental material and methods.

LV-NYESO TCR/sr39TK Peripheral Blood Stem Cells (PBSC) manufacturing and stability 
evaluation:

The CD34+ cell population was enriched using the CliniMACS®CD34 reagent system, pre-

stimulated overnight and transduced with LV-NYESO TCR/sr39TK vector supernatant at a 

final multiplicity of infection (MOI) of 50 (two transduction cycles of 25 MOI each). After 

18±6 hours from the first transduction, cells were harvested, formulated in cryopreservation 
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solution and cryopreserved using a controlled-rate freezer. The cell product was tested for 

sterility, endotoxin levels, mycoplasma contamination, clonogenic potential and transduction 

efficiency. Long-term stability of the cryopreserved cell product was evaluated 30±7, 90±7 

and 180±10 days post-cryopreservation. The post-thaw stability of the cell product was 

tested over a 48-hour period. See supplemental material for further details.

Statistical analysis:

Described in the supplemental materials.

Results

Generation of clinical-grade lentiviral and retroviral vectors expressing NY-ESO-1 TCR

The lentiviral vector used in this clinical trial, LV-NY-ESO-1 TCR/sr39TK (RRL-MSCV-

optNYESO-optsr39TK-WPRE, Figure 1A), expresses the alpha and beta chains of the NY-

ESO-1 TCR and the sr39TK suicide/PET reporter gene linked by a 2A self-cleavage peptide, 

and has been previously described in preclinical studies (17). The expression of the 

transgenes is driven by the murine stem cell virus (MSCV) promoter derived from the 

MSCV retrovirus long terminal repeat (LTR). Both genes had been codon-optimized to 

improve expression in mammalian cells. This vector was produced at Good Manufacturing 

Practice (GMP) grade at the Indiana University Vector Production Facility (IU VPF). To 

have enough vector for all of the IND-enabling studies and product manufacture 

optimization, a first manufacture of a 20-liter preparation without full lot release testing was 

labeled as GMP-comparable lot and was used for the majority of the preclinical studies. A 

second GMP production of 60 liters that was tested and met all of the lot release criteria 

(Supplemental Tables 1 and 2) was used for preclinical studies of cell product manufacturing 

and functionality, and will be used for clinical product manufacturing. To characterize the 

functionality of the lentiviral vector, we measured: i) the expression of the NY-ESO-1 TCR 

on the cell surface by dextramer staining in transduced human PBMCs (Figure 1B); and ii) 

the sr39TK suicide gene function in transduced human CD34+ peripheral blood stem cells 

(PBSC). Following treatment of human CD34+ PBSC with increasing doses of ganciclovir 

in vitro, the number of NY-ESO-1 TCR-positive cells (Vβ13+ cells) decreased while the 

number of TCR-negative cells remained constant (Figure 1C).

To genetically engineer the peripheral T cells for short-term anti-tumor activity while 

awaiting the emergence of TCR transgenic T cells from the transplanted HSCs, a preparation 

of 18 liters of GMP-grade retroviral vector expressing the NY-ESO-1 TCR chains, RV-NY-

ESO-1 TCR (MSGV1-A2ab-1G4A-Ly3H10), was made at the IU VPF. The vector met all of 

the release criteria (Supplemental Table 3). This retroviral vector is a splicing-optimized 

MSCV-derived vector expressing the alpha and the beta chains of the NY-ESO-1 TCR linked 

by a P2A self-cleavage peptide (a kind gift from Dr. Steven A. Rosenberg and Dr. Paul 

Robbins, Figure 1D). For the studies in mice presented in this manuscript, we pseudotyped 

the clinical vector with an ecotropic envelope, and a 3-liter GMP-comparable batch was 

produced at the IU VPF. For the GMP-comparable vector, only partial lot release testing was 

performed (Supplemental Table 4). To demonstrate the functionality of the ecotropic RV-

NY-ESO-1 TCR retroviral vector, we transduced murine T cells from HLA-A2/Kb mice and 
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measured the expression of extracellular and surface NY-ESO-1 TCR staining for the beta 

chain of the TCR (Vβ13 staining, Figure 1E).

Preparation for a Good Laboratory Practice (GLP) study in an academic setting

To formally test if the co-administration of both cell products is safe, it was necessary to set 

up all of the conditions required to conduct a complete toxicology study under GLP 

conditions in compliance with 21 CFR Part 58. As GLP studies require exclusively 

dedicated facilities, a new laboratory space was set up with certified and calibrated 

equipment, with continuous automated monitoring of all the equipment and a tracking 

system in place to assure that the raw materials, test articles and specimens were adequately 

preserved. One-hundred-twelve standard operating procedures (SOPs) were generated that 

captured all of the intended procedures for the study, including the specifics of the scientific 

protocols, facility and equipment management, personnel training and GLP procedures. All 

of the personnel involved in the study were qualified to perform their assignments, and 

curricula vitae, job descriptions and training records were maintained to document their 

proficiency. The study required 32 personnel with job descriptions previously defined and 

recorded (see organizational chart in Supplemental Figure 2). All personnel were required to 

undergo documented training to conduct GLP studies and to perform the procedures for 

which they were responsible. In addition, all personnel were required to demonstrate 

proficiency using the pertinent SOPs according to their job descriptions. Prior to study 

initiation, the identity, purity and potency of the test articles were verified, acceptance 

criteria for the manufactured cells were established, and the study protocol was approved by 

the study director, the test facility management and the sponsor. This documentation was 

included in the IND later submitted to the FDA. Before the beginning of the study, a master 

schedule was generated and distributed to all personnel involved in the study. Sterility 

testing, blood and serum analysis and histopathology analysis were outsourced to GLP-

compliant contract research organizations. The study included a full histopathological 

analysis performed by an ACVP board-certified veterinary pathologist. All raw data were 

signed by the study personnel performing the activity, reviewed by the study director or 

designee and archived. Any deviation from the SOPs, study protocol or GLP regulations was 

summarized in a deviation report, and its impact on the study data addressed by the study 

director and archived with the study documentation. All of the data generated in the study 

were included in a final study report that was submitted to the FDA in support of the IND 

application. All of the study raw data, specimens and test articles will be archived for 5 years 

after submission of the IND to the FDA. Finally, an independent Quality Assurance Unit 

audited all of the experimental portions of the study, the facilities, the SOPs, the study 

records and the GLP report and generated a Quality Assurance statement that was included 

in the final study report.

Establishment of a suitable syngeneic mouse model for the GLP testing of dual TCR-
engineered cell therapy

Fully immunocompetent HLA-A2/Kb transgenic mice express a chimeric MHC class I 

complex that includes the human HLA-A2.1 α1 and α2 domains, allowing their cells to 

present the same epitopes as HLA-A2.1 subjects, and maintain the murine α3 domain, 

permitting murine CD8 co-receptor engagement (26). To manufacture the T cell products, T 
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cells from HLA-A2/Kb mice were activated, transduced with the RV-NY-ESO-1 TCR vector 

and expanded ex vivo. For the HSC product, lineage-negative (Lin-) progenitor stem cells 

were purified from the bone marrow of HLA-A2/Kb mice, pre-stimulated with cytokines and 

transduced with the LV-NY-ESO-1 TCR/sr39TK vector. Both cell types were co-

administered by tail vein injection to myelodepleted HLA-A2/Kb mice that had previously 

received a lethal dose of total body irradiation (TBI, 900 cGy). We performed twelve pilot 

studies to establish the best conditions for bone marrow transplantation (BMT) in this 

model. The main conclusions from these pilot studies were: i) TBI at 900cGy is 

myelodepleting and lethal without BMT (Supplemental Figure 3A); ii) specific animal care 

procedures had an important role, in particular having long acclimatization periods in the 

animal facility before treatment, preventive antibiotic treatment, and supplementary 

hydration and nutritional gel diet during the post-irradiation recovery; iii) culture of Lin- 

cells for a short time, 48 hours, was important for HSCs engraftment, progeny persistence 

and survival (Supplemental Figure 3B); iv) doses from 0.5–2 × 106 short culture (48 hours) 

Lin- cells showed no differences in engraftment and survival (Supplemental Figure 3C); and 

v) increasing the retrovirus vector copy number (VCN) in T cells was not toxic 

(Supplemental Figure 3D).

GLP toxicity study demonstrating that co-administration of TCR-engineered Lin- cells and 
T cells is safe and does not affect the engraftment and differentiation of progeny cells

The formal GLP-compliant toxicity study design is described in detail in the study protocol 

(Supplemental Materials section 4). This study included a total of 110 mice divided into five 

groups (Supplemental Table 5). The number of mice had been prospectively defined by 

power calculation based on the assumptions made after interpreting the pilot studies (see 

study protocol in the Supplemental Materials section 4). TCR-transduced Lin- cells and 

TCR-transduced T cells (cohort E) were co-administered to myelodepleted HLA-A2/Kb 

mice and compared with control groups of mice receiving mock-transduced Lin- cells and 

mock-transduced T cells (cohort B), transduced Lin- cells and mock-transduced T cells 

(cohort C), mock-transduced Lin- cells and transduced T cells (cohort D), or untreated 

control mice (cohort A). Different cohorts of mice were euthanized at five days or three 

months after BMT to allow analyses of toxicity without interfering with the overall survival 

endpoint (Supplemental Table 5). Prior to the study start, we established acceptance criteria 

for the cell manufacture, and planned to not proceed with any batches of cells that did not 

meet the criteria. The criteria included cell purity, viability, VCN, mycoplasma, sterility, 

endotoxin, cell mix homogeneity and stability during administration (Supplemental Table 6).

After BMT and T cell administration, mice were followed for three months. No differences 

in overall survival were observed among cohorts (log-rank test p-value 0.48, Figure 2A). A 

statistically significant decrease in total body weight was observed in all cohorts receiving 

TBI and BMT compared to the untreated mice, but it was independent of the expression of 

the NY-ESO-1 TCR and sr39TK transgenes (Figure 2B, Supplemental Figure 4).

Overall, the clinical observations, gross pathology and histopathology from the 10 animals 

that died or were euthanized before the end of the study did not identify toxicities that could 

be attributed to a specific treatment leading to increased mortality of a specific cohort. Lack 
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of engraftment together with intestine necrosis was observed in the three mice that died 

within the first two weeks after BMT: one in cohort C (transduced Lin- cells and mock T 

cells), one in cohort D (mock Lin- cells and transduced T cells) and one in cohort E 

(transduced Lin- cells and transduced T cells). Necrotic intestines and cecal torsions 

associated with irradiation sickness were also observed in two additional mice from cohort C 

(transduced Lin- cells and mock T cells) that died at day 64 and 69 after BMT. Urethral 

obstruction and urinary bladder distension were observed in one mouse from cohort C that 

died at day 52 after BMT (transduced Lin- cells and mock T cells) and one from cohort D 

that died at day 21 after BMT (mock Lin- cells and transduced T cells). Additionally, one 

mouse from cohort A (untreated) died at day 71 presenting an atypical enlargement of the 

heart. No significant findings were identified in one mouse from cohort B (mock Lin- cells 

and mock T cells) that died at day 35 and one from cohort E (transduced Lin- cells and 

transduced T cells) that died at day 85. We performed a full necropsy for all of the mice 

euthanized at the study end, three months after treatment. The necropsy included organ 

weights (Figure 2C) and histopathology of all protocol-specified collected tissues 

(Supplemental Table 7). A marked reduction in testes weight was observed in all cohorts 

receiving TBI, consistent with germ cell ablation identified by histopathology analysis. No 

other consistent microscopic findings associated with a treatment or with irradiation were 

identified.

Complete blood cell counts (CBC) at day 5 after BMT showed that mice receiving TBI were 

lymphodepeleted and presented with statistically significant decreases in red blood cell and 

platelet counts (Figure 2D and E, Supplemental Figure 4C). TBI caused a sharp reduction in 

splenocyte and bone marrow cell counts, with a decrease in spleen weight that was 

recovered three months after BMT (Supplemental Figure 5). At three months after BMT, 

mice from all cohorts had reconstituted all blood cell compartments. All white blood cell 

lineages had recovered completely (Figure 2D and E), and red blood cell parameters (RBC, 

hemoglobin and hematocrit) were slightly increased in irradiated mice while platelets were 

not completely recovered relative to untreated mice (Figure 2D and Supplemental Figure 4). 

Serum chemistry analysis at three months after BMT showed a slight decrease in albumin 

levels in the co-administration group (cohort E). Liver function tests and creatinine kinase 

activities were highly variable and in general increased in all cohorts receiving BMT (Figure 

2 F and Supplemental Figure 6). However, there was no evidence of hepatocyte or muscle 

damage in tissue sections or the clinical observations. Altogether, these data demonstrate 

that the co-administration of Lin- cells and T cells expressing an NY-ESO-1 TCR is safe and 

does not increase toxicity beyond those related to the BMT procedure.

To assess the engraftment and persistence of the T cells and Lin- cells expressing the NY-

ESO-1 TCR, we quantified the VCN using droplet digital PCR (ddPCR) with primers 

specific for the inserted retroviral and lentiviral vectors. We demonstrated the presence of 

transduced T cells at five days and three months after treatment in blood, spleen and bone 

marrow cells with no statistical difference between the groups receiving mock transduced 

Lin- cells or NY-ESO-1/sr39TK-transduced Lin- cells together with the transduced T cells 

(Figure 3A and B). Similarly, we quantified the engraftment of the transduced Lin- cells and 

the persistence of their progeny five days and three months after treatment in blood, spleen 

and bone marrow. No statistically significant differences were identified among the cohorts 
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receiving transduced Lin- cells together with mock-transduced T cells or with NY-ESO-1 

TCR-transduced T cells (Figure 3C and D).

Finally, to study the differentiation of the Lin- cells, we performed an extensive phenotype 

characterization of the bone marrow cells and splenocytes three months after BMT. In the 

bone marrow, there were no differences in the frequencies of HSCs and precursor 

populations, Lin-, LSK (Lin-, ScaI+, cKit+) and HSCs (LSK, CD150+ CD48-), among the 

cohorts receiving BMT, although the frequency of Lin- and HSCs populations was decreased 

compared to untreated mice (Figure 4A and Supplemental Figure 7). Intracellular expression 

of the NY-ESO-1 TCR by clonotypic Vβ13 staining was observed in mice receiving BMT 

with TCR-transduced Lin- cells independently of the T cells received (Figure 4B and 

Supplemental Figure 7). Interestingly, there were no differences in the frequencies of the 

Lin-, LSK and HSCs cells between the total bone marrow and the Vβ13+ population (Figure 

4C and Supplemental Figure 7). Similarly, phenotypic characterization in the spleen showed 

no differences in NKT cells, CD4+ T cells, CD8+ T cells, B cells, granulocytes, neutrophils 

and monocytes/macrophages among all cohorts receiving BMT, although there was a 

decrease in the NKT cell population and an increase in the CD4+ T cell population when 

compared to the untreated mice (Figure 4D and Supplemental Figure 7). Intracellular NY-

ESO-1 TCR was expressed in the cohorts receiving transduced Lin- cells independent of the 

T cells received (Figure 4E and Supplemental Figure 7). The NY-ESO-1 TCR-positive cells 

displayed an increase in CD8+ T cells, NKT and macrophages and a decrease in CD4+ T 

cells compared to the total splenocyte population (Figure 4F and Supplemental Figure 7).

Lack of immunogenicity due to the expression of NY-ESO-1 TCR and sr39TK by Lin- cells 
progeny after BMT in myelodepleted mice

To test if the expression of the NY-ESO-1 TCR and the sr39TK in the hematopoietic cell 

progeny after BMT in myelodepleted hosts is immunogenic, we performed BMT 

experiments with Lin- cells transduced with the lentiviral vectors expressing the NY-ESO-1 

TCR and the sr39TK, the NY-ESO-1 TCR alone, or an empty vector using the same animal 

model described above. We demonstrated that after the BMT, engraftment was observed in 

mice from all cohorts with no difference in survival (Supplemental Figure 8A). The 

peripheral blood cell populations were reconstituted three months after BMT, and no 

significant differences were observed among cohorts in the white cell and red blood cell 

populations (Figure 5A and Supplemental Figure 8B). As seen in the co-administration 

experiment, at three months the platelets had not completely recovered to the level of 

untreated control mice (Figure 5A). To test the potential immunogenicity of the transgenes, 

we assessed the engraftment and persistence of modified Lin- cells progeny by VCN 

quantification using primers designed within the lentivirus packaging signal to be able to 

detect the three lentiviruses. If the transgenes were immunogenic, then we would anticipate 

that cells expressing NY-ESO-1 TCR and sr39TK would not persist long term. As the 

engraftment and persistence of the transduced stem cell progeny in the bone marrow, spleen 

and blood were not affected by the expression of the transgenes (Figure 5B), we concluded 

that expression of the NY-ESO-1 TCR and sr39TK was not immunogenic three months after 

autologous BMT in this immunocompetent mouse model.
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Lack of genotoxicity of the LV-NY-ESO-1 TCR/sr39TK vector in murine Lin- cells

To assess the potential genotoxicity of the lentiviral vector in Lin- cells, we performed an in 
vitro immortalization (IVIM) experiment (27). Briefly, Lin- stem cells from C57BL/6J mice 

were purified and either mock-transduced, transduced with the retroviral vector SF91-eGFP-

WPRE (28), or transduced with the LV-NY-ESO-1 TCR/sr39TK lentiviral vector. The 

retrovirus SF91-eGFP-WPRE is known to be oncogenic and to integrate preferentially close 

to cancer-related genes (27,29,30), thereby serving as a positive control for the IVIM 

experiment. The Lin- cells were cultured in bulk for two weeks and then seeded in limiting 

dilution and cultured for an additional two weeks. At the end of the expansion, the replating 

frequency/VCN ratio was measured. Transformation occurred in eight out of the 20 

independent assays performed with the cells transduced with the positive control vector, 

SF91-eGFP-WPRE. In contrast, no growth was observed in the mock-transduced Lin- cells 

(n=3) or the Lin- cells transduced with LV-NY-ESO-1 TCR/sr39TK (n=17) (Figure 5C). 

These data demonstrated lack of genotoxicity of the vector proposed for use in our clinical 

trial by the IVIM assay.

Human PBSC product manufacturing validation, functionality and stability of the final 
product

For the chemistry, manufacturing and controls (CMC) section of the IND, we performed five 

manufacturing validation runs together with their lot release testing. Three of the validation 

runs were performed using the GMP-compliant clinical-grade vectors. We purchased 

granulocyte-colony stimulating factor (G-CSF)-mobilized peripheral blood leukapheresis 

products obtained from healthy human donors and enriched them for CD34+ PBSC using a 

clinical grade magnetic sorting system. Analysis of five enrichment procedures 

demonstrated mean CD34+ fraction purity of 96% and viability of 92%. Following 

enrichment, the cells were stimulated for approximately 18 hours in X-Vivo 15 media 

supplemented with rhSCF, rhTPO, rhFLT3L and rhIL-3 and transduced with the lentiviral 

vector encoding NY-ESO-1 TCR and sr39TK for an additional 18 hours. Following the 

transduction, the PBSC were harvested and cryopreserved; average cell viability was 95%. 

An aliquot evaluated for bacterial, fungal, and mycoplasmal contamination using both 

organism-specific cultures and multiple histological stains demonstrated no infections. 

Endotoxin levels were ≤ 5 EU/Kg of body weight. We assessed the transduction efficiency 

of PBSC with the LV-NY-ESO-1 TCR/sr39TK vector by VCN with an average of 0.3. The 

percentage of cells expressing NY-ESO-1 TCR (by Vβ13 staining) was 24%, and the 

percentage of colony-forming units (CFU) positive for Psi (Ψ) sequence was 33%. These 

results show the feasibility of the manufacturing procedure and were used to establish the lot 

release acceptance criteria for the clinical trial batches (See Supplemental Table 8 

summarizing the cell product specifications for all of the qualification runs and 

Supplemental Material Section 5 containing the CMC section of the approved IND).

To study the effect of gene-modification on PBSC functionality, we compared the 

clonogenic potential of PBSC product to that of freshly isolated peripheral blood CD34+ 

cells and untransduced CD34+ cells cultured under the same conditions. The clonogenic 

potential of peripheral blood CD34+ cells was similar between the groups as established by 

percentage of CFU per total cells plated. The average percentage of CFUs was 39±11%, 
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48±6% and 51±11% (n=5, p=0.1), respectively, in the unstimulated, untransduced and 

transduced PBSC final product. Finally, we showed that the transduced and in vitro-cultured 

stem cells were able to differentiate in vitro in artificial thymic organoids into functional T 

cells expressing the NY-ESO TCR (Supplemental Figure 9), as previously described by Seet 

and co-workers (31).

To measure the stability of the TCR-transduced HSCs product, we confirmed that the total 

cell viability, CD34 recovery and clonogenic potential as well as the CFU subtype 

distribution were not affected after 1, 3 and 6 months post-cryopreservation (Figures 6A and 

B). See Supplemental Table 9 and supplemental material section 6 for the detailed 

description of the stability evaluation for the LV-NYESO TCR/sr39TK PBSC product. In 

addition, we evaluated the post-thaw stability of the PBSC product after 3, 6, 24 and 48 

hours. The cells were split and stored at either ambient room temperature (RT) or 4–8°C. 

Based on the results of CD34+ cell viability and clonogenic potential, we concluded that the 

PBSC product should be stable for up to 6 hours post-thawing. Although no significant 

changes in total cell viability were observed (Figure 6C) the number of viable CD34+ cells 

in the cell product was significantly decreased in both storage conditions after 24h (Figure 

6D). The percent CFU per total cells plated significantly decreased after 24 hours in both 

storage conditions, from 46% to 13% (RT) and 29% (4–8°C) (Figure 6E). The average 

recovery of CD34+ cells after 24h in storage at RT decreased to 81%, whereas no significant 

change in recovered CD34+ cells was observed while stored at 4–8°C (Figure 6F).

Discussion

The IND-enabling studies presented herein were performed based on the written 

requirements from FDA reviewers discussed at a pre-IND meeting. The safety concerns 

regarding the proposed clinical trial were mainly focused on the effect of ex vivo 
modification of HSCs with lentiviral vectors on genotoxicity and stem cell differentiation 

and the effect of the co-administration with TCR-transduced T cells. Our studies 

demonstrate that neither of these concerns were evident in preclinical models. Accordingly, 

the proposed clinical trial has subsequently been approved by the FDA to proceed to patient 

accrual.

We have previously shown that human CD34+ cells transduced with the same lentiviral 

vector and ex vivo-cultured were able to engraft in myelodepleted neonatal NSG HLA-A2.1 

mice and differentiate into B cells and functional T cells (17). In these experiments, we have 

also demonstrated that the modified HSCs and their progeny could be tracked using PET/CT 

scan and could be completely ablated following ganciclovir treatment (17). We also have 

demonstrated that human CD34+ cells transduced with the LV-NY-ESO-1 TCR vector were 

able to differentiate in vitro in artificial thymic organoids to functional T cells with tumor 

antigen-specific cytotoxicity and near-complete lack of endogenous TCR Vβ expression due 

to allelic exclusion (31). In the current studies using immunocompentent mouse models, we 

have established that co-administration of genetically modified Lin- cells and T cells does 

not affect the engraftment and persistence of T cells and the engraftment, differentiation and 

progeny persistence of the Lin- cells. Based on these new results, we conclude that the 

expression of NY-ESO-1 TCR and sr39TK do not alter the differentiation of the Lin- cells or 
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the persistence of their progeny, supporting the lack of immunogenicity of these transgenes 

after BMT in myelodepleted mice. Overall, these data indicate that co-administration of 

TCR-engineered T cells and TCR-engineered HSCs represents a viable means of obtaining 

cells capable of mounting both an immediate and a prolonged tumor-targeted immune 

response.

A concern regarding the HSCT with lentivirally transduced HSCs is the potential 

genotoxicity of the vector caused by its integration close to cancer-related genes leading to 

clonal expansion, a process termed insertional mutagenesis. This concern arises from 

previous clinical trials using gamma-retroviral vectors that preferentially integrate near 

oncogenes (LMO2, MDS1-EVI1, PRDM16, SETBP1, CCND2 among others) and 

deregulate their expression due to the strong viral promoters located in their LTRs; this 

phenomenon led to the development of leukemia and myelodysplasia in the first gene 

therapy clinical trials using gene-modified HSCs (32–35). More recently, clinical trials of 

HSCT with HSCs genetically modified with self-inactivating (SIN) lentiviral vectors have 

proven the safety of this approach, showing high polyclonality and no expansion of clones 

with integrations near cancer-related genes previously associated with insertional 

mutagenesis (36–40). In the current clinical trial, we plan to use a SIN-lentiviral vector with 

an MSCV promoter derived from the MPSV murine gamma-retrovirus (41) to drive the 

expression of the transgenes. There is no prior clinical experience with this lentiviral vector. 

However, clinical trials using SIN-lentiviral vectors with the closely related MND promoter 

derived from the MPSV murine gamma-retrovirus (42) to drive the expression of the 

ABCD1 gene have shown safety and lack of clonal expansion of the modified cells (43,44). 

Interestingly, Biffi et al. compared the integration profile of different lentiviruses in human 

HSCs engrafted in immunodeficient mice and showed that integration clustered in 

megabase-wide chromosomal regions of high lentiviral vector integration density 

demonstrating the bias toward specific genomic regions rather than by oncogenic selection 

(37). In line with these data, we demonstrated that the transduction of murine Lin- cells with 

our vector does not lead to transformation in vitro in contrast with the gamma-retroviral 

vector used as a positive control.

T cells are a self-renewing population, but we and others have previously shown that the 

their persistence is limited and associated to increased antitumor responses (4,5,8). HSC 

gene therapy holds great promise for immunotherapy due to the long-term persistence of the 

modified cells. Similar to the clinical trial proposed in this manuscript, the use of TCR 

genetically engineered HSCs has been proposed for HIV-1 therapy (45,46) in which 

feasibility has been shown in preclinical models. In line with this, cancer therapy and HIV-1 

therapy approaches using chimeric antigen receptors (CARs) (47–49) and iNKT cell 

receptors (50) have been proposed in preclinical studies. These studies demonstrate the 

ability of HSCs to differentiate into functional T cells or invariant natural killer T (iNKT) 

cells expressing the selected antigen-specific receptor and show antitumor activity or 

functional antiviral response to limit HIV-1 replication. The co-administration of T cells 

together with HSCs is key to allow the HSCs to engraft and generate new functional T cells 

and at the same time provide a therapeutic effect, especially in patients with advanced 

disease.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational relevance

TCR-engineered adoptive T cell transfer has shown a high frequency of transient 

antitumor responses in several clinical trials but has been followed by a high relapse rate. 

Persistence and continuous functionality of the engineered T cells are thought to be an 

important component to achieve long-term responses. We propose a clinical trial to co-

administer genetically modified T cells and hematopoietic stem cells (HSCs) expressing 

an NY-ESO-1 TCR to generate a source for constant renewal of TCR-engineered T cells. 

The clinical trial proposed here will serve as a proof-of-concept to demonstrate the 

feasibility and efficacy of gene-modified stem cell therapy to genetically redirect the 

immune response to cancer.
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Figure 1. Lentiviral and retroviral vector characterization.
A. LV-NY-ESO-1 TCR/sr39TK (RRL-MSCV-optNYESO-optsr39TK-WPRE) self-

inactivating third-generation lentiviral vector scheme. B. NY-ESO-1 TCR expression in 

human PBMCs three days after transduction. Percentage of NY-ESO-1 TCR and CD3 

expression were measured by flow cytometry with NYESO-1(157–162) dextramer and anti-

CD3 antibody in mock-transduced (top panel) and transduced (bottom panel) PBMCs. C. In 
vitro sr39TK functionality in hCD34+. Mock-transduced or LV-NY-ESO-1 TCR/sr39TK-

transduced human CD34+ cells were treated with 0, 0.02, 0.2, 2, 20 or 200μM ganciclovir 

(GCV) for 48 days. Left, TCR expression (measured by Vβ13 staining) in cells not treated 

with GCV. Percentage of Vβ13+ (center) and Vβ13- cells (right) in the transduced CD34+ 

cells after GCV treatment at the indicated concentrations. Vβ13 expression was measure by 

flow cytometry D. RV-NY-ESO-1 TCR (MSGV1-A2aB-1G4A-LY3H10) gamma-retroviral 

vector scheme. E. NY-ESO-1 TCR expression in murine T cells from HLA-A2/Kb mice two 

days after transduction. Surface (top panels) and total (surface + intracellular, bottom panels) 

TCR expression was measured by Vβ13 TCR beta chain and surface CD3 staining detected 

by flow cytometry. Abbreviations: Ψ, packaging signal; cPPT, central polypurine tract; LTR, 

long terminal repeat; MSCV, murine stem cell virus promoter; RRE, Rev response element; 

SA, splicing acceptor; SD, splicing donor; WPRE, woodchuck hepatitis virus 

posttranslational response element.
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Figure 2. Co-administration of Lin- cells and T cells expressing NY-ESO-1 TCR does not have a 
negative impact on survival, body and organ weights, blood cell reconstitution and serum 
chemistry parameters three months after BMT.
TCR engineered Lin- cells and T cells were co-administered to myelodepleted 8- to 12-

week-old HLA-A2/Kb mice by intravenous injection. Mice from each cohort were 

euthanized at day 5 (n=6) or 3 months (n=12–15) after BMT. A. Kaplan-Meier survival 

curve (Log-rank test p = 0.48). Numbers in the graph indicate survivor count at each time 

point. B. Total body weight. * p<0.05 vs untreated controls (cohort A), pair-wise 

comparisons of least-squares means in a linear model framework with Tukey-Kramer 

adjustment within each time point; considered significant only if 5 or more consecutive 

measurements were significantly different. C. Organ weights at 3 months after BMT. D. 
Hematology at day 5 and 3 months after BMT. WBC, White Blood Cells; RBC, Red Blood 

Cells; HGB, Hemoglobin. E. White Blood Cell differential count at day 5 (left) and 3 

months (right) after BMT. Neut, neutrophils; Lymphs, lymphocytes; Mono, monocytes; Eos, 

eosinophils; Baso, basophils; Bands, Band cells; Unclass, Unclassified cells. F. Serum 

chemistry at 3 months after BMT. ALT, alanine aminotransferase; AST, aspartate 

aminotransferase; ALP, alkaline phosphatase, serum; CK, creatine kinase; ALB, Albumin. 

Mean ±SEM is plotted. * p<0.05 vs cohort A, # p<0.05 compared to cohort E (receiving 
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transduced Lin- and transduced T cells), pair-wise comparisons of least-squares means in a 

linear model framework with Tukey-Kramer adjustment within each time point.
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Figure 3. Co-administration of Lin- cells and T cells expressing an NY-ESO-1 TCR does not have 
a negative impact on stem cell and T cell engraftment and progeny persistence.
Retrovirus vector copy number (VCN) in the blood, spleen and bone marrow at 5 days (n=6) 

(A) and 3 months (n=12–15) (B) after BMT. Lentivirus VCN in the blood, spleen and bone 

marrow at 5 days (n=6) (C) and 3 months (n=12–15) (D) after BMT. Individual values and 

mean ±SEM are plotted. * p<0.05 vs cohorts A, B and C; # p<0.05 vs Cohorts A, B and D; 

& p<0.05 vs Cohorts D; pair-wise comparisons of least-squares means in a linear model 

framework with Tukey-Kramer adjustment.
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Figure 4. The expression of NY-ESO-1 TCR in Lin- cells and their co-administration with T cells 
expressing an NY-ESO-1 TCR does not have a negative impact on hematopoietic lineage 
differentiation.
Bone marrow cells and splenocyte phenotype characterization 3 months after BMT. TCR 

and cell surface markers were assessed by flow cytometry. A. Percentage of Lin- (left panel), 

LSK (Lin- ScaI+ cKit+, middle panel) and HSC (LSK CD150+ CD48-, right panel) cells in 

bone marrow. B. Percentage of NY-ESO-1 TCR-expressing cells in the bone marrow, 

detected by intracellular Vβ13 staining. C. Comparison of the frequency of Lin- (right), LSK 

(middle) and HSC (left) cells in the total bone marrow population (open circles) and the 

Vβ13+ population (closed circles). D. Percentages of NKT cells, CD4+ T cells, CD8+ T 

cells (left panel), B cells, granulocytes, macrophages and neutrophils (right panel) in the 

total splenocyte population, E. Percentage of NY-ESO-1 TCR-expressing cells in the 

splenocytes, detected by intracellular Vβ13 staining. F. Comparison of the frequency of 

NKT cells, CD4+T cells, CD8+ T cells (left panel), B cells, granulocytes, macrophages and 

neutrophils (right panel) in the total splenocyte population (open circles) and the Vβ13+ 

population (closed circles). Individual values and mean ±SEM are plotted (n=12–15). * 

p<0.05 vs cohort A; # p<0.05 vs Cohort A, B and D; & p<0.05 vs Cohort A and B; + 

p<0.05; pair-wise comparisons of least-squares means in a linear model framework with 

Tukey-Kramer adjustment.
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Figure 5. Lack of immunogenicity and genotoxicity of the LV-NY-ESO-1 TCR/sr39TK vector.
Lin- cells transduced with either a LV-NY-ESO-1 TCR/sr39TK, LV-NY-ESO-1 TCR or LV-

empty vector were transplanted into myelodepleted HLA-A2/Kb mice. Mice were 

euthanized at three months after BMT. A. Hematology at 3 months after BMT (n=5–9). 

WBC, White Blood Cells; RBC, Red Blood Cells; HGB, Hemoglobin. * p<0.05 vs untreated 

and # p<0.05 vs Mock-transduced. Pair-wise Comparison with Tukey-Kramer. B. Lentivirus 

VCN in the bone marrow, spleen and blood at three months after BMT. The VCN is 

normalized with the VCN value of the transplanted cells. Mean ±SEM are plotted (n=6–9). 

*p<0.05 vs untreated and # p<0.05 vs Mock-transduced. Pair-wise multiple comparison 

analysis using the Dwass, Steel, Critchlow-Fligner method. C. In vitro immortalization 

assay. Replating frequency/VCN ratio for mock transduced Lin- cells (n=3), Lin- cells 

transduced with SF91-eGFP-RRE (n=20) and Lin- cells transduced with the LV-NY-ESO-1 

TCR/sr39TK (n=17). Fisher’s exact test (two-sided), p-value = 0.004, and Wilcoxon rank-

sum test (two sided), p-value = 0.004, between the SF91-eGFP-RRE transduced group and 

the LV-NYESO-1 TCR/sr39TK group.
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Figure 6. PBSC product stability.
An aliquot of cryopreserved PBSC product was recovered at different time points post-

cryopreservation: Thawed Cell Product (TCP Day 1, n=2), 30 days (TCP Day 30, n=5), 90 

days (TCP Day 90, n=3) and 180 days (TCP Day 180, n=2) after cryopreservation (panels A 

and B). The stability parameters of the recovered PBSC product stored at RT or 4–8°C were 

analyzed after 3, 6, 24 and 48h post-thaw and compared to those at 0h, (n=9), (Panels C – 

F). A. Total nucleated cells (TNC) viability (by trypan blue exclusion), CD34 recovery (by 

ISCHAGE method) and the percentage of TNCs that grew into hematopoietic colonies when 

cultured in MethoCult complete medium for 14 days (CFU potential) was assessed at 

different time points after the cryopreservation. There was no significant difference between 

the examined time points and fresh cell product (FCP) (p=0.17, p=0.31 and p=0.45 for TNC 

viability, CD34 recovery and CFU potential, respectively). Data are presented as mean±SD. 

B. The percentages of CFU-G/M/GM (colony-forming unit-granulocyte/-macrophage/-

granulocyte and macrophage), CFU-e/BFU-e (colony-forming unit-erythroid/Burst-forming 

unit erythroid) and CFU-GEMM (colony-forming unit granulocyte, erythrocyte, monocyte, 

megakaryocyte) colonies after 14 days culture in MethoCult complete medium. Colonies 

were scored with the aid of a Zeiss Vert.A1 inverted microscope. Results are expressed as 
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the percentage of CFU subtype per total cells plated. There were no statistically significant 

differences in the percentage of CFU-G/M/GM (p=0.24), CFU-e/BFU-e (p=0.68) and CFU-

GEMM (p=0.52) between different time points and fresh CP. C. Percentage of viable TNC 

in the PBSC product at 0, 3, 6, 24 and 48h post thaw established by trypan blue exclusion 

essay. D. Percentage of viable CD34+ at 0, 3, 6, 24 and 48h post-thaw assessed by flow 

cytometry (ISCHAGE method). E. Percentage of CD34 recovery at the different time points 

post thawing calculated by dividing “the number of CD34+ cells/ml at 0h” by the “number 

of CD34+ cells/ml at 3, 6, 24 and 48h time points” and multiplying by 100%. F. Clonogenic 

potential of the PBSC product 0, 3, 6, 24 and 48h post thaw measured by the percentage of 

TNCs that grew into hematopoietic colonies. The horizontal bars show averaged values 

(*p<0.05, **p<0.01 and ***p<0.001 when compared to the 0h time point, by Tukey-Kramer 

test).
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