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Abstract

For patients with advanced cancers there has been a concerted effort to transition from a generic 

treatment paradigm to one based on tumor-specific biologic, and patient-specific clinical 

characteristics. This approach, known as precision therapy has been made possible owing to 

widespread availability and a reduction in the cost of cutting-edge technologies that are used to 

study the genomic, proteomic, and metabolic attributes of individual tumors. This review traces 

the evolution of precision therapy for lung cancer from the identification of molecular subsets of 

the disease to the development and approval of tyrosine kinase, as well as immune checkpoint 

inhibitors for lung cancer therapy. Challenges of the precision therapy era including the emergence 

of acquired resistance, identification of untargetable mutations, and the effect on clinical trial 

design are discussed. We conclude by highlighting newer applications for the concept of precision 

therapy.
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INTRODUCTION

With an estimated 224,000 cases diagnosed in 2014, lung cancer continues to account for a 

large share of the cancer burden in the United States. Additionally, the estimated 159,000 

deaths related to this disease account for 27% of all cancer deaths, and the overall 5-year 

survival for patients with lung cancer remains distressingly low (17%).1 Non–small cell lung 

cancer (NSCLC) is the most common type of lung cancer, and adenocarcinoma is the most 

common histologic subtype of this disease.2 Unfortunately most of patients with lung cancer 

are diagnosed with locally advanced or metastatic disease which is unamenable to surgical 

resection or definite radiation therapy; the 5-year survival of these patients is 4%.1

Advanced NSCLC has traditionally been treated with platinum-doublet chemotherapy with 

the addition of the vascular endothelial growth factor inhibitor, bevacizumab when clinically 

indicated. Response rates (RRs) of 12%−37% have been observed in the frontline setting 
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with median overall survival (OS) ranging from 10–14 months.3 The identification of 

molecular subsets of NSCLC in the genomic era, and the development of drugs targeting 

specific oncogenic mutations have resulted in significant alterations in the management of 

advanced lung cancer. These changes provide a vivid illustration of the evolution of the 

therapeutic paradigm from a “one-size-fits-all” approach to that of “precision therapy” with 

the biology of the disease forming the bedrock of treatment choice. In this article we focus 

on the identification of molecular subsets of NSCLC and describe the effect of these 

discoveries on clinical management of advanced NSCLC, as well as its effects on clinical 

trial design.

CLASSIFICATION OF NSCLC: EFFECT OF THE GENOMIC ERA

The classification of NSCLC has traditionally been based on the histologic appearance of 

the tumor supplemented by information provided by immunohistochemistry.4 With the 

advent of genomic testing, it has been recognized that NSCLC is composed of multiple 

molecular subsets with distinct phenotypes, natural histories, and sensitivities to targeted 

therapies. The discovery of oncogenic drivers, which has been facilitated by large multi-

institutional studies using cutting-edge genomic technologies forms the bedrock of precision 

therapy for lung cancer.5–8

The Cancer Genome Atlas Project

The Cancer Genome Atlas (TCGA) analysis of lung cancer was conducted to identify 

molecular alterations in NSCLC and uncover potential targets for biologic therapy. Tumor 

samples and matched normal controls from patients with previously untreated NSCLC (230 

adenocarcinomas and 178 squamous cell carcinomas) were analyzed using multiple 

platforms including whole genome, messenger RNA, and microRNA sequencing, as well as 

DNA copy number, methylation, and proteomic analyses.5,7 These studies confirmed the 

presence of a large number of somatic mutations in NSCLC (mean mutation rate per 

megabase, adenocarcinoma:8.9, squamous cell carcinoma: 8.1) including statistically 

significant mutations in 18 genes in adenocarcinoma and 11 genes in squamous cell 

carcinomas. Adenocarcinomas without known oncogenic mutations (EGFR, KRAS, and 

BRAF) were found to harbor aberrations in NF1, RIT1, KEAP1, TP53, MET, and ERBB2. 

Biologic pathways with recurrent alterations included the RTK/RAS/RAF, PI3K/mTOR, 

p53, and oxidative stress response pathways, cell cycle regulators, and chromatin and RNA 

splicing factors. Squamous cell carcinomas nearly always harbored mutations in TP53. 

Other important findings in squamous cell carcinomas included newly discovered loss-of-

function mutations in the human leukocyte antigen-A class 1 major histocompatibility gene, 

and recurrent alterations affecting the PI3K/AKT, CDKN2A/RB1, NFE2L2/KEAP1/CUL3, 

and SOX2/TP63/NOTCH1 pathways.

Lung Cancer Mutation Consortium Trial

The Lung Cancer Mutation Consortium (LCMC) conducted a study designed to determine 

the frequency of 10 oncogenic drivers in lung adenocarcinoma, select treatment based on the 

identified target, and determine survival.8 Unlike the TCGA project, tumors analyzed in the 

LCMC study were derived from patients with advanced or recurrent adenocarcinoma of the 
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lung. More than 50% of the patients had received prior chemotherapy, and analyzed tumor 

specimens were not exclusively obtained by surgical resection. Among 1102 eligible 

patients, analysis of at least 1 gene was possible in 1007 patients including 341 (34%) never-

smokers. Tumor samples were screened for EGFR, KRAS, ERBB2, AKT1, BRAF, MEK1, 

NRAS, and PIK3CA mutations, as well as ALK rearrangements and MET amplification. 

Full genotyping was feasible in 733 (67%) cancers, and an oncogenic driver was detected in 

466 (64%) cases (Fig. 1). Based on these results, 260 (26%) patients received appropriate 

targeted therapy, and had a median survival of 3.5 years compared with 2.4 years for 318 

(32%) patients with an oncogenic driver who did not receive genotype-targeted therapy (P = 

0.006). This study demonstrated the feasibility of conducting comprehensive molecular 

profiling in patients with advanced adenocarcinoma of the lung, and suggested that targeted 

therapy based on molecular profiling improved patient survival.

PRECISION THERAPY BASED ON GENOMIC DATA

The identification of molecular subsets of lung cancer has resulted in the exponential growth 

of biologic agents designed to target specific oncogenic drivers. Scores of drugs are at 

various stages of development and a few small molecule tyrosine kinase inhibitors (TKIs) 

have been approved by the U.S. Food and Drug Administration (FDA) for treatment of 

NSCLC with EGFR mutations or ALK translocations.9

NSCLC With EGFR Mutations

In-frame deletions in exon 19 and the L858R substitution in exon 21 account for 90% of all 

mutations in the tyrosine kinase domain of the EGFR gene, and confer sensitivity to EGFR 

TKIs.10 Several randomized clinical trials have demonstrated the ability of EGFR TKIs to 

significantly improve RRs and progression-free survival (PFS) in NSCLC harboring EGFR 

sensitizing mutations (Table 1).11–17 In May 2013 the U.S. FDA approved the use of the 

competitive EGFR inhibitor, erlotinib for first-line treatment of metastatic NSCLC with 

EGFR exon 19 deletions or exon 21 substitution mutations based on the results of the 

randomized, phase III European Tarceva vs Chemotherapy (EURTAC) trial. In this study, 

174 patients with previously untreated meta-static NSCLC harboring the aforementioned 

sensitizing mutations were randomized to receive frontline treatment with platinum-doublet 

chemotherapy or oral erlotinib at a dose of 150 mg daily. The primary end point of the study 

was investigator-assessed PFS. The results demonstrated a clear benefit of erlotinib with a 

median PFS of 9.7 months in the erlotinib arm vs 5.2 months in the chemotherapy arm 

(hazard ratio [HR] = 0.37; 95% CI: 0.25–0.54; P < 0.0001). Erlotinib was well tolerated; 

treatment-related serious adverse events (AEs) were observed in 6% of patients in the 

erlotinib arm vs 20% in the chemo-therapy arm.11

In July 2013, afatinib, a second-generation, non-competitive TKI targeting all members of 

the ErbB family of receptors was approved as frontline therapy for patients with NSCLC 

with EGFR-deletion 19 and L858R mutations. Approval was based on the results of a 

randomized, phase III trial (LUX-Lung 3) that showed an improvement in PFS with oral 

afatinib at a dose of 40 mg daily vs up to 6 cycles of cisplatin and pemetrexed in patients 

with advanced EGFR-mutated NSCLC.15 Among 345 patients randomized to treatment, the 
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median PFS was 11.1 months in the afatinib arm and 6.9 months in the chemotherapy arm 

(HR = 0.58; 95% CI: 0.43–0.78; P = 0.001). AEs were manageable with the frequency of 

treatment-related grade ≥3 AEs comparable in both arms (49% in the afatinib arm and 48% 

in the chemotherapy arm). Afatinib demonstrated comparable benefit in a randomized, phase 

III trial in treatment-naïve Asian patients with EGFR-mutated NSCLC (LUX-Lung 6) with a 

median PFS of 11 months in the afatinib group vs 5.6 months in the chemotherapy group 

(HR = 0.28; 95% CI: 0.20–0.39; P < 0.0001).16 Although neither trial showed an 

improvement in OS for the entire study populations, an OS benefit was observed in patients 

with exon 19 deletions, suggesting innate differences between exon 19 deletions and L858R 

mutations in pulmonary adenocarcinomas.18

Despite these impressive results, a significant challenge associated with the use of small 

molecule TKIs is acquired resistance.19,20 Several mechanisms account for this 

phenomenon, the most common of which is the emergence of a secondary mutation 

(T790M) in exon 20, which is detected in approximately 50% of cases.21 Initial attempts to 

target the T790M mutation with second-generation EGFR TKIs yielded disappointing 

results.22,23 However, 2 new third-generation TKIs that target common EGFR mutations 

including T790M have shown promising results in early-phase trials (Table 1). In a dose 

finding study of CO-1686, 88 patients were treated including 55 (63%) with the T790M 

mutation. A partial response was achieved in 23 of 40 (58%) evaluable patients with a 

T790M mutation.24 A phase I study evaluated AZD9291 in 199 patients with EGFR-

mutated NSCLC who had developed acquired resistance to EGFR TKIs. Among 107 

patients with a T790M mutation, the overall RR was 64% vs 22% in 50 patients without a 

T790M mutation.25 Additional therapeutic strategies to overcome acquired resistance to 

EGFR TKIs are currently under evaluation.26

NSCLC With ALK Translocations

ALK translocations were identified as a driver event in NSCLC in 2007.27 ALK 

rearrangements occur in 3%−7% of NSCLCs, and the fusion product can be targeted by 

small molecule TKIs. There are 2 drugs approved for treatment of advanced NSCLC with 

ALK rearrangements, and others are being evaluated in clinical trials (Table 2).28–33

In November 2013 the U.S. FDA approved the use of crizotinib for treatment of metastatic 

NSCLC with ALK rearrangements. This approval was based on the results of a randomized, 

phase III trial in which 347 patients with locally advanced or metastatic NSCLC with ALK 

rearrangements who had received 1 prior line of platinum-containing chemotherapy were 

randomized to receive oral crizotinib at a dose of 250 mg twice daily or chemotherapy 

(intravenous pemetrexed 500 mg/m2 or docetaxel 75 mg/m2 once every 3 weeks). The 

primary end point was PFS. Patients receiving crizotinib had a median PFS of 7.7 vs 3.0 

months for patients in the chemotherapy arm (HR = 0.49; 95% CI: 0.37–0.64; P < 0.001). 

Crizotinib was well tolerated, and AEs were usually mild. The incidence of treatment-

related grade 3 or 4 AEs and other serious AEs were similar in the crizotinib and 

chemotherapy arms (33% vs 32% and 12% vs 14%, respectively).29

Ceritinib is an adenosine triphosphate-competitive, TKI targeting ALK with 20 times the 

potency of crizotinib, which has shown preclinical activity against crizotinib-sensitive, as 
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well as crizotinib-resistant tumors.34 Ceritinib was evaluated at doses of 50–750 mg once 

daily in a phase I study in patients with tumors harboring ALK rearrangements.30 A total of 

130 patients were enrolled including 122 with advanced, previously treated NSCLC of 

whom 83 (68%) had received crizotinib previously. Ceritinib doses of 400 mg or more per 

day were administered in 114 patients with NSCLC, and resulted in an overall RR of 58% 

(95% CI: 48%−67%) and median PFS of 7 months (95% CI: 5.6–9.5 months). Among 80 

patients with NSCLC previously treated with crizotinib and receiving at least 400 mg/d of 

ceritinib, the RR was 56% (95% CI: 45%−67%) and median PFS was 6.9 months (95% CI: 

5.3–8.8 months). In April 2014, ceritinib received FDA approval for treatment of patients 

with metastatic NSCLC with disease progression or intolerance to crizotinib.

Similar to EGFR-targeted therapies, a consequence of prolonged treatment with ALK TKIs 

is the development of acquired resistance. Multiple mechanisms have been implicated in this 

phenomenon including development of secondary resistance mutations, amplification of the 

ALK fusion gene, and activation of bypass pathways including the KIT and EGFR signaling 

cascades.35,36 As mentioned above, ceritinib is the first drug approved for treatment of 

crizotinib-resistant NSCLC with ALK rearrangements. Other drugs that are under evaluation 

for treatment of ALK resistance include alectinib, AP26113, and heat shock protein 90 

(Hsp90) inhibitors including AUY922 and ganetespib.37 In phase I studies, AP26113 and 

alectinib have shown promising activity with RRs of 75% and 48% in patients with NSCLC 

who have progressed on crizotinib.31,32 Development of acquired resistance remains a 

recurring problem that limits the benefits of these drugs as illustrated by the occurrence of 

novel ALK mutations in a patient treated with alectinib.38 Additional approaches need to be 

explored to circumvent the problem of acquired resistance including the identification of 

newer compounds for targeted therapy, evaluation of sequential therapy using existing drugs, 

and development of patient-derived models of acquired resistance to identify drug 

combinations that can overcome resistance.39

Other Targets for Precision Therapy in NSCLC

In addition to EGFR and ALK, efforts such as TCGA and LCMC have identified several 

genomic aberrations that have the potential to serve as targets for precision therapy in 

NSCLC. Examples include BRAF and HER2 mutations and ROS1 gene rearrangements.

The LCMC data showed that the prevalence of BRAF mutations in advanced lung 

adenocarcinoma is approximately 2%, and these mutations occur more often in current or 

former smokers.40 The BRAF inhibitor, dabrafenib has demonstrated activity in a phase II 

study in patients with advanced NSCLC harboring a BRAF V600E mutation after failure of 

chemotherapy, with an overall RR of 32%, median duration of response of 11.8 months, and 

an acceptable safety profile.41 In January 2014 Dabrafenib received “Breakthrough 

Therapy” designation by the FDA for treatment of patients with metastatic, BRAF V600E 

mutation-positive NSCLC who had received at least 1 prior line of platinum-containing 

chemotherapy.

HER2 mutations and amplifications are found in approximately 2%−6% of NSCLCs. 

Various attempts at targeted therapy for these mutations/amplifications are presently under 

evaluation.8,9,42–44
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ROS1 and RET gene rearrangements have each been identified in 1%−2% of patients with 

NSCLC. These gene rearrangements result in fusion products with constitutive activation of 

the respective tyrosine kinases which act as oncogenic drivers.45 Both ROS1 and RET 

tyrosine kinases have been shown to be targetable with small molecule TKIs. Owing to 

structural similarities between the ROS1 and ALK tyrosine kinases, crizotinib is a potent 

inhibitor of the ROS1 kinase. In a retrospective European study of 32 patients with advanced 

adenocarcinoma of the lung with ROS1 rearrangements who received crizotinib for off-label 

use, the overall RR was 80% and median PFS was 9.1 months.46 These results validate the 

observations from an expansion cohort of a phase I study of crizotinib in which 50 patients 

with advanced NSCLC with ROS1 rearrangements were treated with the standard crizotinib 

dose of 250 mg orally twice daily resulting in a RR of 72% (95% CI: 58%−84%) and 

median PFS of 19.2 months (95% CI: 14.4 months to not reached).47 Early reports also 

document the activity of the RET inhibitors, cabozantinib and vandetanib in patients with 

NSCLC harboring RET rearrangements.48,49 Several clinical trials are evaluating other TKIs 

in patients with ROS1- and RET-positive NSCLC.9,45

NEWER CHALLENGES IN THE PRECISION THERAPY ERA

The ability to perform genomic analyses of lung cancers and make treatment decisions based 

on the identification of oncogenic drivers has resulted in remarkable benefits for patients 

with advanced disease in need of effective options for systemic therapy. However, these 

developments have brought into focus a unique set of challenges uncovered by the precision 

medicine approach.

Undruggable Targets

Although several drugs are being developed to inhibit a variety of oncogenic drivers, some 

of the most common genetic changes associated with lung cancer have proven to be 

notoriously difficult to target, and are essentially “undruggable” at present. Of particular 

relevance in this regard are mutations in RAS and p53. KRAS mutations occur in 20%−30% 

of NSCLCs.8 The oncogenic properties of RAS are influenced by high-affinity binding to 

guanosine triphosphate leading to activation, attachment to the inner aspect of the cell 

membrane by the process of prenylation, and subsequent activation of downstream signaling 

pathways including BRAF and PIK3CA, which themselves are also mutated in NSCLC.50 

Farnesyltransferase inhibitors which block prenylation, as well as inhibitors of downstream 

effectors, such as MEK and PI3K/AKT/mTOR, have been evaluated without much success.
51,52 Nevertheless, renewed efforts to target RAS are focusing on direct RAS inhibitors, 

novel downstream targets like TBK1, CDK4, and GATA-2, newer methods to target RAS 

localization, and identification of targets that have synthetic lethal interactions with RAS.
50,53

Mutations in the tumor suppressor p53 are seen in 46% of lung adenocarcinomas.7 Although 

restoring p53 activity has proved to be challenging thus far, there have been renewed efforts 

in this direction in recent years.54
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Tumor Heterogeneity

The success of precision medicine is predicated on the accurate identification of genomic 

aberrations in a tumor. The existence of pretreatment tumor heterogeneity, and clonal 

evolution following initiation of treatment influence the clinical outcome of precision 

therapy. Clonal heterogeneity provides an explanation for de novo resistance to a targeted 

drug, as well as the development of acquired resistance. Efforts are underway to study tumor 

heterogeneity to better understand the genomic landscape of a tumor both at a certain point 

in time, as well as longitudinally by acquiring tumor tissue at the time of disease 

progression. TRAcking non–small cell lung Cancer Evolution through therapy (Rx) 

(TRACERx) is a prospective trial designed to study intratumor heterogeneity by using an 

array of techniques including next-generation sequencing, immunohistochemistry, 

fluorescence in situ hybridization, fluorescence-activated cell sorting, and analysis of 

circulating tumor cells, as well as circulating tumor DNA. The aims of this trial are to follow 

tumors from diagnosis to relapse, study the effect of therapy on the evolutionary trajectory 

of lung cancer, and determine the effects of tumor heterogeneity and clonal dominance on 

clinical outcome.55

Development of Resistance

Presently acquired resistance is an inevitable consequence of precision therapy as illustrated 

above in reference to the use of EGFR and ALK TKIs. With increasing availability of 

sophisticated genomic techniques and the development of trials such as TRACERx, 

significant efforts are underway to delineate the mechanisms of resistance to targeted 

therapy. As development of resistance is a dynamic process, it is imperative to evaluate a 

tumor in real time for identification of new genomic abnormalities that mediate acquired 

resistance. This necessitates a new strategy to evaluate tumors with repeat biopsies at the 

time of disease progression (Fig. 2). A challenging dilemma is how to deal with radio-

graphic progression when a patient is receiving a targeted drug. It is not uncommon to 

observe progression of lesions in distinct organ sites, whereas the disease remains stable 

elsewhere. Additionally, abrupt withdrawal of a targeted agent can precipitate a growth flare 

owing to the presence of clonal populations of tumor cells that remain sensitive to the 

targeted drug.56 Studies have shown that under these circumstances, local therapy for sites of 

progression and continued use of the targeted agent results in additional clinical benefit.57 

Even in the setting of widespread slow growing disease that meets Response Evaluation 

Criteria In Solid Tumors (RECIST) guidelines for progression, continuation of the targeted 

drug can provide sufficient disease control for a considerable period of time.58

IMMUNOTHERAPY

Despite the use of cutting-edge technology, a driver event cannot be identified in 

approximately one-third of patients with NSCLC. In addition, aforementioned issues such as 

the presence of undruggable targets and the emergence of acquired resistance limits the 

efficacy of precision therapy for NSCLC based on TKIs alone. The use of immuno-therapy 

to surmount these challenges has gained widespread recognition in recent years. Several 

immunotherapeutic interventions have been evaluated with mixed results. Vaccines designed 

to target proteins such as mucin-1 (MUC-1) and melanoma-associated antigen E-3 
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(MAGE-3), allogenic whole-tumor vaccines like belagenpumatucel-L and the 

immunostimulatory compound, talactoferrin alpha failed to demonstrate an improvement in 

survival in most clinical trials.59

Cellular immune responses to normal self-antigens, microbial agents, and cancer cells are 

regulated by diverse interactions of stimulatory, as well as inhibitory ligands and receptors 

on lymphocytes, professional antigen presenting cells, as well as cancer cells.60–62 CTLA-4 

is a receptor on T cells, which interacts with B7.1 and B7.2 stimulatory ligands on antigen 

presenting cells to dampen response of CD28 engagement with these ligands during T-cell 

activation. CTLA-4 activation results in down modulation of CD4 T cells and enhanced 

immunosuppressive function of regulatory T cells. Program death-1 (PD-1) is a receptor, 

which is typically expressed on activated T cells. Engagement of PD-1 with its ligand (PD-

L1) on normal cells inhibits destruction of normal tissues during inflammatory responses to 

infectious agents. Approximately, 50% of lung cancers express PD-1 or PD-L1.63 

Engagement of PD-1 with PD-L1 on cancer cells results in T-cell exhaustion and anergy.

Although the monoclonal antibodies, ipilimumab, and tremelimumab, which inhibit 

CTLA-4 activation, have been shown to be effective against melanoma, these agents by 

themselves have limited activity against lung cancer.61,62 A randomized phase II trial has 

been performed to evaluate carboplatin and paclitaxel with placebo or ipilimumab 

(concurrent or phased) in 204 chemotherapy-naïve patients with stage III/IV NSCLC. 

Steroids (to limit ipilimumab-mediated autoimmune responses) were administered in all 

arms.64 The primary end point of the study was immune-related PFS (ir-PFS). Although ir-

PFS was improved in the phased treatment vs placebo group (5.7 vs 4.6 months; HR = 0.72; 

P = 0.05), there was no improvement in OS. In an unplanned analysis, PFS and OS appeared 

to be improved in squamous cell carcinomas.

Carboplatin and paclitaxel with placebo or ipilimumab (concurrent or phased) has also been 

evaluated in 130 chemotherapy-naïve patients with extensive disease–small cell lung cancer 

(SCLC) in a randomized phase II trial.65 Steroids were administered in all arms. The 

primary end points were ir-PFS and clinical PFS. Although ir-PFS was improved in the 

phased vs placebo group (6.4 vs 5.3 months, HR = 0.64; P = 0.03), there was no 

improvement in clinical PFS or OS. These studies prompted 2 large randomized phase III 

trials (NCT01285609 and NCT01450761) evaluating ipilimumab vs placebo with paclitaxel 

and carboplatin in squamous cell lung cancers, and ipilimumab vs placebo with etoposide 

and platinum therapy in extensive disease–SCLC, respectively.

A phase I trial has evaluated the safety and clinical activity of an anti-PD-1 antibody 

(nivolumab) in cancer patients.66 Clinical responses were observed in 14 of 76 (18%) 

patients with NSCLC. In another phase I trial, an anti-PD-L1 antibody (BMS-936559) was 

evaluated in patients with advanced cancers, and objective responses were observed in 5 of 

49 (10%) patients with NSCLC.67 Treatment-related toxicities included fatigue, rash, 

transaminitis, and pneumonitis (only in the PD-1 trial). Responses in both studies were 

durable. Subsequent efforts have con-firmed results of these seminal studies.61,62 RRs in 

patients with NSCLC treated with nivolumab or pembrolizumab (another humanized 

monoclonal anti-PD-1 antibody) are approximately 18% with median durations of response 

Rajan and Schrump Page 8

Semin Thorac Cardiovasc Surg. Author manuscript; available in PMC 2019 February 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of 74 and 31 weeks, respectively. Rare and fatal pneumonitis has been associated with both 

of these agents. MPDL3280A is a human monoclonal antibody to PD-L1. RRs in patients 

with lung cancer following treatment with this antibody are in the range of 23%. No 

pneumonitis has been observed with this antibody. In general RRs for anti-PD-1 and anti-

PD-L1 antibodies appear to coincide with levels of intratumoral PD-L1 expression. 

Additionally RRs for these antibodies appear to be higher in smokers or former smokers 

compared with never-smokers, possibly owing to the mutational load in tobacco-associated 

cancers.

Preliminary results from a phase I study evaluating a combination of ipilimumab and 

nivolumab in 49 patients with chemo-naïve NSCLC revealed a RR of 16%.68 Responses 

were seen in squamous cell and nonsquamous cell cancers, as well as PD-L1 positive and 

PD-L1 negative tumors. Grades 3 and 4 AEs were seen in nearly 50% of patients. Totally 3 

patients died from treatment-related toxicities (respiratory failure, pulmonary hemorrhage, 

and toxic epidermal necrolysis).

The emergence of immune checkpoint inhibitor therapy represents a major paradigm shift in 

lung cancer therapy. These impressive results have prompted the initiation of numerous trials 

evaluating immune checkpoint inhibitors alone or in combination with other agents (Table 

3).61,62,69–75

EFFECT OF THE PRECISION THERAPY ERA ON CLINICAL TRIAL DESIGN

Traditional clinical trial designs with enrollment predicated on histology and end points 

based on the phase of the clinical trial are not well suited for evaluating targeted therapies in 

patients with tumors harboring specific genomic abnormalities. Early-phase proof-of-

concept studies with novel designs to match a targeted treatment to its corresponding 

molecular abnormality provides a more efficient means of evaluating precision therapy.76 

These studies can be histology-independent, and based on specific molecular abnormalities 

(also known as basket trials) or histology-based, and designed to evaluate multiple molecular 

abnormalities (umbrella trials). An alternative approach is to consider single patient (n-of-1) 

trials in which an individual patient receives precision therapy for a specific molecular 

abnormality.77

The U.S. National Cancer Institute (NCI) has developed a series of precision medicine 

initiatives that illustrate the use of these novel clinical trial designs. These include the NCI 

Molecular Analysis for Therapy Choice (MATCH) trial, Adjuvant Lung Cancer Enrichment. 

Marker Identification and. Sequencing Trials (ALCHEMIST), Lung Cancer Master Protocol 

(Lung-MAP), and the Exceptional Responders Initiative.78

NCI MATCH is an example of a prospective basket trial that will enroll patients with 

relapsed or refractory, advanced or metastatic solid tumors or lymphomas that harbor 

actionable mutations.78 A mandatory pretreatment biopsy will be performed, and a targeted 

next-generation sequencing assay will be used to analyze approximately 200 genes. Patients 

with actionable mutations will receive appropriate targeted therapy and be followed for 
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response and PFS. At progression patients will be eligible for rebiopsy and further targeted 

therapy if additional mutations are detected.

The ALCHEMIST trial and Lung-MAP are examples of umbrella trials. The ALCHEMIST 

trial is designed to evaluate the benefit of adding erlotinib or crizotinib to standard adjuvant 

therapy vs adjuvant therapy alone, in resectable, early-stage lung cancer harboring EGFR 

mutations or ALK trans-locations respectively.78 Lung-MAP will enroll patients with 

advanced squamous cell carcinoma of the lung who have progressed after frontline therapy 

and evaluate targeted therapies based on the results of an NGS panel of approximately 250 

genes.78,79 Patients with tumors harboring actionable mutations will be assigned to a 

substudy that uses a phase II/III trial design. A phase II interim analysis will determine if the 

assigned intervention is beneficial based on a predefined improvement in PFS. Co-primary 

end points for the phase III component will be assessment of PFS and OS. Selection of drugs 

for the various substudies that comprise Lung-MAP will be a fluid process that is based on 

the latest findings from ongoing precision medicine studies. Initially Lung-MAP will consist 

of 5 substudies with 10 treatment arms. Among these substudies 4 will enroll patients based 

on the presence of a relevant biomarker and will compare appropriate precision therapy with 

chemotherapy or a combination of precision therapy and chemotherapy with chemotherapy 

alone. If the patient’s tumor does not harbor a biomarker that can be paired with a study 

drug, the patients will be assigned to a “nonmatch” arm, and will be randomly assigned to 

receive immunotherapy vs standard chemotherapy.

The Exceptional Responders pilot study aims to use genome sequencing to understand the 

molecular basis of an exceptional response of an individual patient to a targeted agent to 

which most patients do not usually demonstrate significant or durable response. Eligible 

patients should have demonstrated a complete response or partial response lasting for at least 

6 months to a drug whose overall response is less than 10%.78,80 The exceptional responders 

initiative illustrates the concept underlying n-of-1 studies.

FUTURE AVENUES

Despite several challenges that need to be overcome, precision medicine has yielded 

impressive dividends for patients with advanced cancers, including NSCLC. In the future, it 

is conceivable that the benefits of precision medicine will extend beyond the discovery of 

genomic aberrations and the development of TKIs to target these abnormalities (Fig. 3). 

Novel targets that are being explored for precision therapy include chemokines and their 

receptors and aberrant glycosylation associated with cancer.81,82 Immunotherapy provides a 

vivid example of the concept of precision medicine. Several clinical trials exploring different 

immunotherapeutic interventions to treat a variety of tumors have been successfully 

completed in recent years.83 A personalized approach to immunotherapy could involve 

recognition of tumor heterogeneity, identification of tumor-specific antigens, detection of 

differences in antitumor immunity in individual patients, and development of adoptive T-cell 

therapies.84 Precision therapies could potentially involve RNA interference after 

identification of microRNA-based signatures of individual tumors.85 Finally, the possibility 

of coupling information about tumors gained from various molecular methods with 

nanomedicine to improve diagnostic tools and drug delivery is under evaluation.86 
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Integration of these approaches to generate robust therapies to target individual tumors could 

be considered the holy grail of precision medicine.
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Figure 1. 
Frequency of oncogenic drivers in adenocarcinoma of the lung detected by the Lung Cancer 

Mutation Consortium.8
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Figure 2. 
The precision therapy paradigm. Successful application of the concept of precision medicine 

relies on the ability to identify constantly evolving molecular aberrations that occur in 

response to treatment and as a result of the passage of time. The initial step in this process is 

to obtain sufficient tissue at the time of diagnosis for molecular profiling and identification 

of targets for precision therapy. The initial choice of systemic therapy should be based on the 

presence of a druggable target. Upon disease progression, attempts should be made to 

acquire tumor tissue from the sites of progression to perform molecular analyses and 

determine the cause of treatment failure.
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Figure 3. 
The components of precision therapy. Abnormalities in the genome, epigenome, and 

transcriptome can be targeted using several interventions including small molecule 

inhibitors, monoclonal antibodies, epigenetic strategies, and small interfering RNAs. 

Immune dysregulation can be targeted using vaccines against tumor-specific antigens, 

immune checkpoint inhibitors to block cell surface inhibitory molecules, and adoptive cell 

transfer technologies.
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