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Abstract

Epithelial cells and differentiated fiber cells represent distinct compartments in the ocular lens. 

While previous studies have revealed proteins that are preferentially expressed in epithelial vs. 

fiber cells, a comprehensive proteomics library comparing the molecular compositions of 

epithelial vs. fiber cells is essential for understanding lens formation, function, disease and 

regenerative potential, and for efficient differentiation of pluripotent stem cells for modeling of 

lens development and pathology in vitro. To compare protein compositions between the lens 

epithelium and fibers, we employed tandem mass spectrometry (2D-LC/MS) analysis of 

microdissected mouse P0.5 lenses. Functional classifications of the top 525 identified proteins into 

gene ontology categories by molecular processes and subcellular localizations, were adapted for 

the lens. Expression levels of both epithelial and fiber proteomes were compared with whole lens 

proteome and mRNA levels using E14.5, E16.5, E18.5, and P0.5 RNA-Seq data sets. During this 

developmental time window, multiple complex biosynthetic and catabolic processes generate the 

molecular and structural foundation for lens transparency. As expected, crystallins showed a high 

correlation between their mRNA and protein levels. Comprehensive data analysis confirmed 

and/or predicted roles for transcription factors (TFs), RNA-binding proteins (e.g. Carhsp1), 

translational apparatus including ribosomal heterogeneity and initiation factors, microtubules, 
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cytoskeletal [e.g. non-muscle myosin IIA heavy chain (Myh9) and βB2-spectrin (Sptbn2)] and 

membrane proteins in lens formation and maturation. Our data highlighted many proteins with 

unknown function in the lens that were preferentially enriched in epithelium or fibers, setting the 

stage for future studies to further dissect the roles of these proteins in fiber cell differentiation vs. 

epithelial cell maintenance. In conclusion, the present proteomic datasets represent the first mouse 

lens epithelium and fiber cell proteomes, establish comparative analyses of protein and RNA-Seq 

data, and characterize the major proteome remodeling required to form the mature lens fiber cells.
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1. Introduction

The ocular lens represents a unique system to probe mechanisms of cellular differentiation, 

cell and membrane remodeling, translational regulation, protein quality control, and protein 

transport (Bassnett and Sikic, 2017; Cvekl and Zhang, 2017; Horwitz, 2003; Morishita and 

Mizushima, 2016; Schey et al., 2014). These processes evolved in concert to support lens 

transparency and its refractive power (Bassnett et al., 2011). Lens proteins formed during 

early lens morphogenesis persist throughout the entire lens lifespan, and studies of protein 

aging in the lens serve as a paradigm to understand a variety of protein aggregation and 

misfolding diseases (Toyama and Hetzer, 2013), including age-related cataracts, defined as 

any opacity in the lens (Michael and Bron, 2011; Sharma and Santhoshkumar, 2009; 

Truscott and Friedrich, 2016).

Age-related cataracts are found in over 60% of individuals over the age of 85, and females 

are at much higher risk compared to males (nei.nih.gov/eyedata/cataract) (Klein et al., 

1998). Cataract surgery to replace opaque lenses with artificial intraocular lenses is the 

number one vision-related Medicare cost in the United States. Despite the success of 

cataract surgeries, cataracts remain the leading cause of blindness in the world, and cataract 

surgery is not without risk. Potential side effects include secondary cataract formation 

(Petrash, 2013; Walker and Menko, 2009; West-Mays et al., 2010; Wormstone and Eldred, 

2016), infection or bleeding in the eye, increased intraocular pressure, retinal detachment 

and droopy eyelid. Use of small molecules to prevent and/or delay the onset of human 

cataract formation represents an ongoing challenge for lens research (Barnes and Quinlan, 

2017; Quinlan, 2015), and no non-surgical interventions are currently available. To facilitate 

these drug development studies, in vitro cultures from human embryonic stem cells and 

induced pluripotent (ES/iPS) cells may become an advantageous system to generate lens-

like organoids for both high throughput drug screening and mechanistic studies. Although 

considerable progress has been achieved in this field in recent years (Fu et al., 2017; Murphy 

et al., 2018; Yang et al., 2010), in vitro generated lens-like organoids still need to be fully 

characterized in order to evaluate how closely culture systems mimic normal lens 

development and to compare the fidelity of different culture and differentiation systems.
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A rapidly growing number of proteomic studies have generated data using bovine (Wang and 

Schey, 2009, 2015; Wilmarth et al., 2009), chicken (Chen et al., 2016; Wilmarth et al., 

2009), human (Wang et al., 2017; Wang et al., 2013; Wenke et al., 2016), mouse (Bassnett et 

al., 2009; Khan et al., 2018; Liu et al., 2015; Whitson et al., 2017), and zebrafish (Greiling et 

al., 2009; Posner et al., 2017) lens materials. In addition, several mammalian cataract models 

were recently subjected to in depth proteomic analyses (Shang et al., 2014; Whitson et al., 

2017). However, very few of these studies separately probed the epithelial and fiber cell 

compartments. Although there is an increasing number of lens “quantitative” RNA-Seq 

datasets (Audette et al., 2016; Cavalheiro et al., 2017; Hoang et al., 2014; Khan et al., 2015; 

Sun et al., 2015b), the attempts, so far, to analyze and connect both the lens proteomes and 

transcriptomes are very limited. These combined studies are required to better understand 

the entire transcriptional-translational cascade as the foundation for lens differentiation and 

remodeling to achieve and maintain lens transparency and refractive power.

To address these gaps in our understanding of the molecular composition of the mammalian 

lens, we conducted parallel analyses of mouse lens epithelial and lens fiber cell proteomes 

and transcriptomes and presented the first comprehensive comparative analysis of both lens 

compartments. The present data and the accompanying RNA-Seq study (Zhao et al., 2018) 

established multiple reference datasets for future studies of human lens proteomes and 

transcriptomes, including resources to aid The Human Cell Atlas project (Rozenblatt-Rosen 

et al., 2017). Importantly, the analysis of our data allowed the segregation of proteins needed 

for epithelial cell maintenance vs. fiber cell differentiation. These datasets pave the road for 

future studies of mammalian lens proteomes and stem-cell-derived lens-like organoids to 

determine whether these cultured structures undergo the correct programming to create 

distinct epithelial and fiber cell populations.

2. Materials and Methods

2.1 Tissue samples and protein isolation

The lens epithelium and fiber were microdissected from P0.5 mice (CD1 strain) as described 

in detail previously (Zhao et al., 2018). Seventy-four frozen P0.5 epithelium, 74 P0.5 

cortical fiber, and 22 whole lens samples from mice were dispersed by adding 0.25, 1.0, and 

1.0 ml of 100 mM ammonium bicarbonate buffer, respectively, followed by 3 × 5 sec probe 

sonication (60 Sonic Dismembrator, Fisher Scientific) with 30 sec of cooling on ice between 

treatments. The smaller volume of homogenization buffer used for the preparation of the 

epithelial sample was to partially adjust for the smaller amount of tissue in this sample. 

Samples were then further homogenized using a 1 ml Tenbroeck tissue grinder (Wheaton), 

and the protein concentrations were determined using bovine serum albumin as a standard 

(BCA assay, Thermo Scientific). Epithelium, cortical fiber, and whole lens samples yielded 

0.168, 4.91, and 1.80 mg of total protein, respectively. One hundred microgram portions of 

each sample were then trypsinized overnight at 37°C with agitation at an enzyme:substrate 

ratio of 1:25 following reduction and alkylation in dithiothreitol/iodoacetamide in the 

presence of ProteaseMax™ detergent as recommended by the man ufacturer (ProMega). 

Trifluoroacetic acid was then added to a final 1% concentration, and samples were 

centrifuged at 14,000xg for 10 minutes. The supernatant was removed, and samples were 
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dried by vacuum centrifugation. 50 µg portions were then dissolved in 21 µl of 10mM 

ammonium acetate, pH 9.0 (buffer A) in preparation for two-dimensional liquid 

chromatography/mass spectrometric analysis (2D-LC/MS).

2.2 2D-LC/MS analysis

Forty-eight microgram (20 µl) portions of digests from epithelium, fibers, and whole lenses 

from P0.5 mice were separated by 2D-LC/MS using two rounds of reversed phase 

chromatography. The first dimension separation was performed at pH9 in buffer A, and the 

second dimension separation was performed in 0.1% formic acid using an automated 

nanoflow liquid chromatography method as previous described (Whitson et al., 2017), 

except peptides were eluted from the first dimension column using 14, 17, 20, 22, 24, 26, 28, 

30, 40, and 90% acetonitrile concentrations in buffer A. The 10 second-dimension 

separations were performed with 100 minutes of data collection using an Orbitrap Fusion 

mass spectrometer (Thermo Scientific) with an extra 20 minutes for column washing and re-

equilibration for a total of 20 hours analysis time for each digest. Data was collected using 

Orbitrap profile survey scans between 375–1500m/z at a resolution of 120,000, a user 

defined m/z = 445.12 polysiloxane ion lock mass, 50ms maximum injection time (MIT), and 

automatic gain control (AGC) = 4 ×105, and 3 seconds dwell time. Data-dependent MS2 

scans were triggered using a minimum intensity of 5 × 103, MIPS filter set for peptides, 

charge states from +2 to +7, exclusion of isotopic peaks, and dynamic exclusion set at a 

repeat count of 1, duration of 60 s, and +/−10ppm mass tolerance. Peptides were isolated 

using the quadrupole at a 1.6m/z isolation width, fragmented by collision induced 

dissociation (CID) at a normalized collision energy of 35%, q activation = 0.25, MIT = 300 

ms, AGC =5 ×103, and rapid scan rate in the ion trap in centroid mode.

2.3 Data Analysis

The ten raw files from each of the three 2D-LC/MS analyses were loaded into MaxQuant 

(version 1.6.10) for peptide identification and MS1 feature detection (Cox and Mann, 2008). 

The first-dimension fractions were combined for each biological sample. Default parameters 

were used with two exceptions: iBAQ (intensity-based absolute quantification) 

quantification (Krey et al., 2014; Schwanhausser et al., 2011) was turned on and matching 

between runs was turned off. The protein database was a canonical reference proteome for 

mouse (UP000000589) with 22,276 sequences downloaded from www.UniProt.org (version 

2017.12) using software available at https://github.com/Delan-Huang/

Reference_Proteome_Manager.git. There were 840,765 total MS2 scans acquired. Of those, 

182,145 had PSMs passing the 1% false discover rate (FDR). The parsimonious number of 

identified proteins was 5,633 across the three samples at a 1% FDR. Protein relative 

abundance estimates were based on iBAQ values (Schwanhausser et al., 2011). Proteins 

were ranked by decreasing iBAQ values, and relative abundances were expressed as 

percentages of the sum of all iBAQ values within each sample. In order to categorize and 

interpret results, the rich annotations available for mouse Swiss-Prot (reviewed) proteins 

were downloaded from UniProt.org. In-house scripts parsed a variety of annotation 

information (GO terms, gene names, keywords, and pathways) from the flat text format files 

and annotations were matched to the identified proteins. The annotations of interest were 

added to the main MaxQuant protein Groups table to facilitate filtering proteins by 
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annotation information and enable manual categorizations. The mass spectrometry 

proteomics data has been deposited to the ProteomeXchange Consortium via the PRIDE 

(Vizcaino et al., 2016) partner repository with the dataset identifier PXD009639.

2.4 Annotations of the top abundant proteins in lens epithelium and fibers

The top 525 abundant proteins in lens epithelium and lens fiber were classified into 26 lens 

functional categories, based on knowledge and literature in the field. The functional 

categories were further merged into 8 larger groups: nucleus and DNA, protein synthesis, 

membrane, cytoskeleton, signaling, mitochondria, degradation and recycling, and 

metabolism.

2.5 Comparisons of proteomic and RNA-Seq data from P0.5 epithelium and fibers

Only unique genes that were detected by both proteomic and RNA-Seq data were used for 

the analysis, including 4584 and 3977 genes in lens epithelium and fibers, respectively. The 

log2 (Fragments Per Kilobase of the transcript per Million mapped reads (FPKM)) of P0.5 

epithelium and fibers averaged over three replicates from RNA-Seq data (Zhao et al., 2018) 

and the log2 (iBAQ) values from the proteomic data were used as mRNA and protein 

relative expression levels for each gene and used for computing the Spearman’s correlations. 

The Spearman correlation coefficients of mRNA and protein levels of crystallin genes were 

also calculated.

2.6 Transcription factors analysis

To identify transcription factors expressed uniquely in lens epithelium or fiber, 1,484 mouse 

TFs were downloaded from the AnimalTFDB (Zhang et al., 2015) site (http://

bioinfo.life.hust.edu.cn/AnimalTFDB/). Among them, 131 TFs were detected by both RNA-

Seq and proteomic data, 69 of which were supported by literature for known or potential 

DNA binding roles in lens and thus selected for further analysis here.

2.7 Enriched proteins in the epithelial and fiber compartments

More than 200 proteins from 6 major categories (RNA-binding, microtubules, cytoskeleton, 

membrane, initiation factors, ribosomes) were collected from the top 525 epithelial or fiber 

proteins for further rank-based analysis. Epithelium enriched proteins were identified by 

determining the ratios between the fiber rank and the epithelium rank (Enrichment ratios for 

epithelium enriched proteins). Fiber enriched proteins were revealed by the ratios between 

the epithelium rank and the fiber rank (Enrichment ratios for fiber enriched proteins). All 

proteins with Enrichment ratios over 2 were identified as epithelium-enriched or fiber-

enriched proteins. All other proteins are classified as not enriched. We then calculated the 

percentages of epithelium, fiber, and non-enriched proteins within each category.

2.8 Immunofluorescence

Primary antibodies used for immunofluorescence are anti-CARHSP1 (Novus Biologicals, 

NBP1–31660, 1:100), anti-Myh9 (Abcam, ab75590, 1:100), and anti-β-spectrin II (BD 

Biosciences, 611451, 1:100). Whole eyeballs were collected from P0.5 CD1 mice (Charles 

River Laboratories). A small opening was made at the corneal–scleral junction to facilitate 
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fixative penetration. Eyeballs were then fixed for 4 hours in 1% paraformaldehyde in 1X 

PBS at 4°C. After fixation, samples were washed in ice- cold 1X PBS, cryoprotected in 30% 

sucrose and frozen in optimal cutting temperature (OCT) medium (Sakura Finetek, 

Torrance, CA, USA) in the anterior-posterior orientation. Frozen tissue blocks were stored at 

−80°C until sectioning. Frozen sections (10 µm thick) were collected with a Leica CM1950 

cryostat (Wetzlar, Germany). The tissue slides were washed in 1X PBS plus 0.1% Triton 

X-100 and permeabilized 1X PBS plus 0.3% Triton X-100 for 30 minutes. Tissue slides 

were then blocked for 60 minutes in 3% bovine serum albumin plus 1% goat serum in 1X 

PBS. After blocking, sections were then hybridized with primary antibody. Tissues were 

incubated with NMIIA/Myh9 antibody for 15 minutes at room temperature then for 45 

minutes at 37°C. Tissues were incubated with β-spectrin II antibody for 15 minutes at room 

temperature then overnight at 4°C. For Carhsp1 antibody, tissues wer e also incubated for 15 

minutes at room temperature then overnight at 4°C. Slides were then washed and incubated 

with anti-rabbit Alexa Fluor 488-conjugated secondary antibody (1:100 dilution) and Alexa 

555-phalloidin (F-actin stain, 1:100 dilution; Life Technologies) for 2 hours at room 

temperature. Finally, slides were washed and mounted with a DAPI-containing mounting 

media (Vectashield) and1.5mm thick glass coverslips. Images for NMIIA/Myh9 and β-

spectrin II were taken with confocal imaging system Leica SP8 ×10 air or x63 oil-immersion 

objectives. Images for CARHSP1 were taken with Carl Zeiss inverted fluorescence 

microscope x10 or x63 oil-immersion objectives. For x63 oil-immersion the quantification 

was done on stacks of 41 optical sections with Z spacing of 0.2 µm. Three-dimensional 

image data were acquired using the Zeiss Axio Observer CLEM microscope (Carl Zeiss) 

with a Zeiss AxioCam MRm Black/White camera using Axiovision Software 10X, 1.0 NA 

and 60X 1.4 NA objectives and filters for DAPI, FITC and Cy3. Slides were evaluated at 

10X magnification to review overall section quality. All 41 image z-stacks were compressed 

into one image using Maximum Projection in ImageJ. Three biological replicates were used 

for each protein staining and representative images were shown.

3. Results and Discussion

3.1 Global analysis of newborn mouse lens epithelial and fiber cell proteomes

Our experiments revealed lists of proteins present in lens epithelium and lens fibers, 

including 4,951 and 4,281 unique entries (by iBAQ values (intensity-based absolute 

quantification; the sum of all MS1 features associated with a particular protein normalized 

by the predicted number of detectible tryptic peptides for that protein. iBAQ values have 

been shown to be well correlated with absolute protein abundances (Krey et al., 2014; 

Schwanhausser et al., 2011)) >0), with 3,766 in common and 1,185 epithelium and 515 fiber 

proteins unique to the two lens compartments (Fig. 1A). The total number of proteins 

identified in the epithelium and fiber samples was 5,466. For comparison, an independent 

proteomic analysis of the whole lens identified a total of 4,438 proteins, including 125 

proteins with very low abundances (they are proteins with iBAQ values of bottom 98%

−100% total proteins in the whole lens) not detected in the microdissected preparations (data 

not shown). All proteins detected are listed in Supplemental Table S2. Analysis of 

cumulative percentage showed that 54 and 525 proteins account for 90% of the total iBAQ 

values for lens fiber and epithelium proteomes, respectively (Fig. 1B). To reach the 95% 
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coverage, 196 lens fiber and 969 epithelium proteins were needed, respectively. The main 

reason for these differences was high levels of crystallin proteins in the lens fibers (see 3.2 

for details).

To better understand which proteins contribute highly to both proteomes, we reasoned that a 

comparable number of proteins should be analyzed. In lens epithelium, 525 and 657 

proteins, respectively, represented 90% and 92% percentiles, while 525 fiber cell proteins 

represented nearly 98% of all fiber cell proteins. We decided to use the top 525 proteins in 

each compartment. The proteins in both compartments were initially annotated using gene 

ontology (GOs) and then further manually curated to emphasize basic knowledge of lens 

structure and function. We found that lens-adjusted annotations of these proteins resulted in 

only 26 categories (Fig. 2, Table S1). These functional groups were subsequently combined 

into eight larger categories: nucleus and DNA, protein synthesis, membrane (including the 

extracellular compartment), microtubule, cytoskeleton, signaling, mitochondria, degradation 

and recycling, and metabolism (Fig. 2). The largest protein groups showed distinct 

proportions of epithelium- and fiber-enriched proteins (see section 2.7), including RNA-

binding proteins (epithelium >> fibers), mitochondria (epithelium >> fibers), ribosomes 

(fibers >> epithelium), proteasomes (fibers > epithelium), membrane (fibers >> epithelium), 

microtubules (fibers >> epithelium) and initiation factors (eIFs, fibers >> epithelium) 

(shown in Table S3). Expression of globin genes and proteins in mouse lens using 

immunofluorescence, immunobloting, and RNA analysis was shown in detail elsewhere 

(Mansergh et al., 2008). It is interesting that only one protein detected in the epithelium and 

six proteins detected in fibers could not be annotated due to the lack of functional data.

Use of the top 525 proteins in the detailed analysis was done to improve proteomics 

reproducibility since the most variable proteins in proteomics experiments are found among 

the higher-ranked, lower abundance proteins. To further analyze these data, we first focused 

on the comparison between protein and mRNA levels globally, followed by detailed analysis 

of selected groups, including DNA-binding transcription factors, RNA-binding proteins, 

components of ribosomes and translational systems, cytoskeleton, and membrane proteins.

3.2 Comparison of proteomics and RNA-Seq data

To understand the relationship between mRNA and protein levels, we calculated the 

Spearman’s correlation coefficients between them for both lens epithelium and fibers (Fig. 

3A). The top 90% abundant proteins (n=54) in lens fibers showed a strong positive 

correlation to the mRNA levels (r=0.66), while in lens epithelium (n=525) the correlation 

was weaker (r=0.37) (Fig. 3A). Overall, a significant positive correlation between protein 

and mRNA levels was observed (Fig. 3A, r=0.5 and r=0.46 in fiber and epithelium including 

all proteins, both p values <2.2e-16). Excluding the highly abundant crystallin proteins, we 

found that in lens epithelium and fiber the correlations between protein and mRNA levels 

were r=0.46 and r=0.50, respectively with p values <2.2e-16 (Fig. 3B and Fig. 3C). The 

crystallin proteins (n=15) had exhibited stronger correlations in both epithelium and fiber 

(r=0.83 and r=0.75, respectively), as shown in Fig. 3D.

Lens crystallins represented as much as 78% of our fiber cell proteome. The top non-

crystallin proteins were tubulins, Tuba1a and Tubb4b, histone H2A, and filensin (Bfsp1), 
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ranked #12, 16, 14, and 17, respectively. In contrast, crystallin proteins only made up 24% of 

the epithelium proteome, and several non-crystallin proteins, including histones H2A and 

H4, cytoplasmic actin, ubiquitin, and Aldh1a1, were within the top 10 protein ranks (#2, 7, 

4, 8, and 9), respectively. Consistent with the finding that the mRNA levels of crystallin 

genes were lower in lens epithelium compared to fibers (see below), the most abundant 

crystallins in epithelium proteome, i.e. αA-, βB3-, βB1-, αB-, and βA1-crystallins were 

between 7.5% and 1.5% levels.

Given the key roles of crystallin proteins for lens transparency and their multifunctionality 

(Cvekl et al., 2015; Haslbeck and Vierling, 2015; Shiels and Hejtmancik, 2017; Slingsby et 

al., 2013; Thanos et al., 2014) and common transcriptional regulatory mechanisms 

governing their expression (Cvekl et al., 2017), the individual profiles of all crystallin 

mRNAs determined by RNA-Seq (Zhao et al., 2018) are shown in Fig. 4. These data show 

for the first time that expressions of the majority of crystallin mRNAs were significantly 

increasing from E14.5 to P0.5 in fiber (by adjusted p-value <0.05, in E16.5 VS E14.5, E18.5 

VS E16.5 and P0.5 VS E18.5 comparisons), except for Cryab, Cryba1, Crybb2, Crygn, 

Crygs which significantly increased from E14.5 to E18.5 (Fig. 4). Our earlier studies of 

nascent mRNA transcription of Cryaa and Cryba1 in individual lens fiber cell nuclei showed 

that expression of these genes peaked at E16.5, while expression of Cryga reached maximal 

levels in central lens fiber cell nuclei approaching their destruction to form the organelle-free 

zone (Limi et al., 2018). These data quantitatively confirmed the well-established temporal 

pattern of crystallin gene expression in the lens fiber cell compartment, with αA- and αB- 

crystallins expressed at higher quantities than the other β-/γ-crystallins as their chaperone-

like functions may be needed for proper folding and assembly of “late” β-/γ-crystallins in 

the lens fiber cell cytoplasm as well as for the formation of lens fiber cell cytoskeleton 

(Cheng et al., 2017; Song et al., 2009).

Expression of multiple crystallins was detected in laser microdissected mouse lens placodes 

(stages E9.5 and E10.5) by transcriptome profiling (Huang et al., 2011; Wolf et al., 2013). 

The quantitative order of individual transcripts is Cryaa > Crybb3 > Cryab > Cryge > Crygd 
> Crygb > Crygc > Cryba2 > Crygn in the invaginating lens placode. Previous studies 

established sequential appearance of Cryab and Cryaa mRNAs in the lens placode and lens 

pit, respectively (Robinson and Overbeek, 1996). Thus, low expression levels of β-/γ-

crystallins in newborn lens epithelium found here were consistent with findings of multiple 

corresponding mRNAs in the invaginating lens placode (Huang et al., 2011; Wolf et al., 

2013). Interestingly, proteomic analysis of the lens epithelium ranked all 15 major crystallins 

within range 1 to 449. Nevertheless, notable differences in their ranks between lens 

epithelium and lens fibers supported the high quality of our epithelial preparation.

It was well established that several proteins function as taxon-specific enzyme crystallins, 

including α-enolase (Eno1, Ƭ-crystallin, (Wistow et al., 1988)), aldehyde dehydrogenase 

family 1 subfamily 7A Aldh1a7 (η-crystallin, (Graham et al., 1996)), and lactate 

dehydrogenase A Ldha (ν-crystallin, (van Rheede et al., 2003)), in lamprey and turtle, 

elephant shrew, and platypus, respectively. Here we found that Ƭ-, η- and ν-crystallins were 

ranked #13, #145, #72 and #33, #385 and #238 in lens epithelium and fibers, respectively. 
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Thus, we propose that expression dynamics of these genes will be useful markers for early 

developmental studies of the cells forming the lens pit and/or placode.

3.3 Analysis of DNA-binding transcription factors

The mRNAs encoding DNA-binding transcription factors were analyzed more thoroughly in 

the accompanying paper (Zhao et al., 2018). Here, we extended this analysis for the 

proteome (Fig. 5). Thirty-six transcription factors (21 have significantly higher mRNA levels 

in P0.5 lens epithelium), including FoxE3, Sp3, Onecut1, Creb1 and Tfcp2, were only found 

in the lens epithelium. In contrast, 11 transcription factors (5 have significantly higher 

mRNA levels in P0.5 lens fibers) were found only in lens fibers, including Pitx2, HoxB7, 

Hsf4, Mlxip and Nfx1. Finally, Ybx1, Tsc22d1, Ybx3, Gtf2i, Pax6 and Ubtf were found in 

both lens compartments. Lens defects have been previously reported in FoxE3, Pitx2, Hsf4, 

and Pax6 knockout mouse models (Collinson et al., 2001; Fujimoto et al., 2004; Kelberman 

et al., 2011; Medina-Martinez et al., 2005; van Raamsdonk and Tilghman, 2000). Pax6 

mouse heterozygous lenses show completely disrupted crystallin gene expression profile 

(Xie and Cvekl, 2011) while Hsf4 null lenses mostly disrupt expression of γ-crystallins 

(Fujimoto et al., 2004) and HSF4 cataract causing missense mutation reduces expression of 

αB-crystallin in an animal model (Jing et al., 2014). Amongst the signal-regulated 

transcription factors, the present proteomic analysis identified three, including Creb1 (Cvekl 

et al., 1995; Yang et al., 2006), Smad4 (Liu et al., 2010), and Stat3 (Potts et al., 1998) that 

mediate canonical cAMP, BMP/TGF-β, and JAK/STAT signaling in the vertebrate lens, 

respectively. Note that Ybx1 (Shurtleff et al., 2016; van Zalen et al., 2015) and Ybx3 

(Snyder et al., 2015) also function as RNA-binding proteins and regulators of translation and 

as sorters of specific microRNAs.

3.4 Analysis of RNA-binding proteins

Analysis of RNA-binding proteins within the epithelium vs. fiber-enriched groups revealed 

major differences between proteins found in the lens epithelium (n=49) and those in lens 

fibers (n=27) (Fig. 2; Table S1). These RNA-binding proteins are involved in RNA splicing, 

regulation of mRNA translation and stability, and other cellular functions. Consistent with 

previous studies showing that fiber cell abundant proteins Caprin2 (Enrichment ratio=18.2) 

(Dash et al., 2015) and Tdrd7 (Enrichment ratio=11.3) (Lachke et al., 2011) played major 

roles in lens morphogenesis, both Caprin2 (#156) and Tdrd7 (#242) belonged to the most 

highly abundant fiber cell proteins and were enriched in fiber together with polyadenylate-

binding proteins 1 and 2 (Pabpc1/2) (#251, Enrichment ratio=2.3), and Caprin1 (#257, 

Enrichment ratio=2.2) (Fig. 7B). Increased abundance of RNA-binding Motif protein 38 

(Rbm38, #341, Enrichment ratio=14.5) and Purkinje cell protein 4 (Pcp4, #357, Enrichment 

ratio=3.1) in lens fibers mimicked trends found with Caprin2 and Tdrd7, making these 

proteins excellent candidates for future functional studies.

Fiber-cell-abundant protein Rbm38 regulates splicing during late erythroid differentiation 

(Heinicke et al., 2013) and the lens might use similar mechanisms. In contrast, CUGBP 

Elav-like family member 1 (Celf1) protein only ranked #1746 in lens fibers yet a recent 

study shows its critical role in posttranscriptional regulation of Cdkn1b/p27 and Dnase2b 

mRNAs (Siddam et al., 2018). Rbm3 (Enrichment ratio=4.3) is abundant both in lens 
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epithelium (#91) and lens fibers (#390) (Table S1). Mutations in human RBM3 are 

associated with high myopia and retinal dystrophy (Arno et al., 2015). Pabpc1/2 proteins 

bind to poly(A) to facilitate ribosome recruitment, translational initiation, and are also 

required for initial steps of mRNA decay (Stupfler et al., 2016). Both Hnrnpk (Enrichment 

ratio=2.2) and Hnrnph1 (Enrichment ratio=1.8) were co-immunoprecipitated with Pax6 in 

lens nuclear extracts (Sun et al., 2016) and influence pre-mRNA processing expression of 

heat shock proteins Hsp27 and Hsp70 (Kim et al., 2017). Another trend was epithelial-

preferred expression of several serine/arginine rich splicing factors, including Srsf1 

(Enrichment ratio=3.9), Srsf7 (Enrichment ratio=2.6), Srsf5 (Enrichment ratio=2.9), and 

Srsf10 (Enrichment ratio=2.8), that might be selectively employed to control alternate 

splicing between lens epithelial and fiber cells (Srivastava et al., 2017). A cold-shock 

domain-containing calcium regulated heat stable protein 1 (Carhsp1, also called Crhsp24, 

Enrichment ratio=3.4) is a cytoplasmic protein used to stabilize specific mRNAs (Hou et al., 

2011). It is localized to processing bodies (P-bodies) and cytoplasmic exosomes but not on 

translating mRNAs (Pfeiffer et al., 2011) in mouse leukemic monocyte-macrophage cell 

line. Carhsp1 is one of the mostly highly abundant lens RNA-binding proteins (epithelium 

ranking #244, fiber ranking #72). Our localization studies identified this protein in the 

cytoplasm at the apical edges of the lens fibers as well as in lens epithelium. Carhsp1 

proteins were also found in the cell nuclei in lens epithelium and peripheral fibers as well as 

in the anterior regions of lens fiber but mostly in the cytoplasm (Fig. 6). These staining 

patterns support the idea that Carhsp1 regulates multiple stages of the mRNA cycle of 

abundant lens transcripts. Ongoing experiments are aimed to identify mRNAs bound to 

Carhsp1.

3.5 Formation of lens fiber cell cytoskeleton and microtubules

Lens fiber cell cytoskeleton is comprised of universal and lens-specific protein components 

(Cheng et al., 2017; Rao and Maddala, 2006; Song et al., 2009). A large number of the 

cytoskeletal proteins identified by our screen have known localization and functions in the 

lens. Actin-associated periaxin (Prx, Enrichment ratio=10.4) is highly enriched in lens fiber 

cells of the developing lens, and loss of Prx leads to a mispacking of hexagonal lens fiber 

cells (Maddala et al., 2011b). Both non-muscle myosin IIA (Myh9, rank#122, Enrichment 

ratio=4.4) and IIB (Myh10, rank #273, Enrichment ratio=3.2) were found abundant in the 

lens epithelium while related myosin IIC (Myh14) was significantly less expressed (rank 

#3340). Expression of both these myosin proteins in the epithelium suggests that the 

contractile actomyosin network may be important for lens epithelium function and integrity. 

Immunostaining revealed that myosin IIA was found mostly in the epithelial cells and is 

highly concentrated along the apical-apical interface between epithelial and fiber cells (Fig. 

8A). Mutations in MYH9 cause human cataracts and other diseases, such as 

macrothrombocyopenia, nephropathy and sensorineural hearing loss (Aoki et al., 2018; De 

Rocco et al., 2013). Myosin IIB (Myh10, Enrichment ratio=3.2) is important for active 

contraction of F-actin networks. Myosin IIB is highly expressed in lens placode epithelial 

cells and is needed for normal placode invagination (Chauhan et al., 2009; Plageman et al., 

2010). This is consistent with the epithelial-cell-enrichment we observed for Myh10 in the 

proteome.
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Three spectrin proteins, Sptb, Sptbn1 and Sptbn2, were detected predominantly in the lens 

fiber proteome (Sptbn1 > Sptbn2 >> Sptb). Non-erythrocyte β2-spectrin (Sptbn2, 

Enrichment ratio=4.4) is important for the formation of the membrane skeleton with 

tropomodulin 1 (Tmod1)-capped F-actin in the lens (Cheng et al., 2016; Gokhin et al., 2012; 

Nowak et al., 2009; Woo et al., 2000) (Fig. 8B). Consistent with this proteomics data, 

Tmod1 (Enrichment ratio=11.0) is highly expressed and localized to fiber cell membranes, 

but have low expression in epithelial cells (Nowak et al., 2009). In agreement with the 

proteomics results, our immunostaining data reveals that β2-spectrin (Enrichment ratio=4.3) 

is highly expressed in lens fiber cells, with lower staining signal in epithelial cells (Fig. 8B).

The actin cytoskeleton is likely very dynamic in both epithelium and fiber due to the high 

abundance of cofilin-1 (Cfl1, ranked #62 in epithelial cells and #116 in fibers, Enrichment 

ratio=1.9), profilin-1 (Pfn1, ranked #60 in epithelial cells and #64 in fibers, Enrichment 

ratio=1.1) and gelsolin (Gsn, ranked #247 in epithelial cells and ranked # 78 in fibers, 

Enrichment ratio=3.2). These three proteins are important for assembly and dynamic 

remodeling of F-actin networks (Skruber et al., 2018). Cfl1 is an F-actin severing protein 

(Ostrowska and Moraczewska, 2017) while Pfn1 binds and sequesters G-actin monomers 

and catalyzes F-actin assembly in a concentration dependent manner (Alkam et al., 2017). 

Gsn is able to cap and sever F-actin and can also sequester G-actin (Nag et al., 2013).The 

balance of these actin sequestering, severing and polymerization factors are likely needed to 

remodel the F-actin network as epithelial cells divide, differentiate and elongate into fiber 

cells and as fiber cell membrane morphology increases in complexity during cell maturation 

(Cheng et al., 2016; Dickson and Crock, 1972; Kistler et al., 1986; Kuszak et al., 1980; 

Kuwabara, 1975; Lo and Harding, 1984; Willekens and Vrensen, 1981, 1985). Rac proteins 

(Enrichment ratio=2.0) were present in both epithelium and fiber compartments, with no 

enrichment in either. Regulation of F-actin by Rac family small GTPase 1 (Rac1) is required 

for normal lens shape, maintenance of lens epithelial cells and fiber cell orientation 

(Maddala et al., 2011a).

Lens fiber cells also form a specialized beaded intermediate filament network comprised of 

lens-specific beaded filament structural proteins 1 and 2, Bfsp1 (filensin, Enrichment 

ratio=21.5) and Bfsp2 (phakinin or CP49, Enrichment ratio=21.3) (Alizadeh et al., 2003; 

Sandilands et al., 1995b). Previous studies showed that CP49 and filensin had enhanced 

immunostaining signal in lens fiber cells (Ireland et al., 2000; Simirskii et al., 2006; Sun et 

al., 2015a), consistent with fiber-cell-enrichment in our dataset. Beaded intermediate 

filaments are important for maintaining the integrity of the innermost mature fiber cells 

(Yoon et al., 2008) and for lens biomechanical properties (Fudge et al., 2011; Gokhin et al., 

2012). In contrast, lens epithelial cells have a rich vimentin network (Song et al., 2009; Sun 

et al., 2015a), consistent with our data showing high expression of vimentin (rank #24, 

Enrichment ratio=1.1). Overexpression of vimentin in the lens leads to abnormal vacuoles in 

newly differentiating fiber cells and inner fiber cells degeneration (Capetanaki et al., 1989), 

suggesting that too much vimentin inhibits the normal differentiation programming from 

epithelial cells to fiber cells. These ranking differences implicated different needs of lens 

fiber cells during their morphogenesis that was achieved by proteome remodeling, including 

the formation of intermediate filaments from lens-specific proteins Bfsp1 and Bfsp2, and 

vimentin (Perng et al., 2007; Sandilands et al., 1995a; Song et al., 2009).
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Lens epithelial and fiber cells contained abundant tubulin isoforms forming microtubules, 

including α1-, α3-, β4b-, β5-, β1b-, and β2a-tubulins (Enrichment ratios range from 1.0–

1.9) (Table S1). There was no obvious enrichment of tubulin subunits in either cell 

compartment, other than β6-tubulin enriched in fiber. The α-tubulin data agreed with a 

recent work showing ubiquitous α-tubulin staining in embryonic mouse lens sections (Logan 

et al., 2018).

3.6. Analysis of membrane proteins and its limitation

Despite the expected negative bias towards detection of membrane proteins in typical 

shotgun proteomics protocols, our data revealed 29 lens integral membrane and membrane-

associated proteins and 12 cell adhesion proteins (Table S1). The top protein components of 

lens fiber cell membranes were enriched for Mip (aquaporin 0, Enrichment score=36.3) and 

Lim2 (MP20, Enrichment score=10.0). Earlier studies linked these proteins and their 

encoded genes with lens membrane structure (Gorin et al., 1984; Maher et al., 2012; 

Mulders et al., 1995) and identified cataract-causing mutations (Irum et al., 2016; Shi et al., 

2011; Shiels et al., 2007). Recent studies have shown that Mip was important for fiber cell 

integrity (Bennett et al., 2016), lens biomechanical properties (Sindhu Kumari et al., 2015) 

and ion and fluid homeostasis (Kumari et al., 2017), while Lim2 was required for fiber cell 

adhesion (Shi et al., 2011). Mip and Lim2 staining patterns were similarly increased in lens 

fiber cells with membrane insertion in inner mature fiber cells (Bassnett et al., 2011; Schey 

et al., 2017) consistent with our enrichment analysis. Interestingly, aquaporin 1 (Aqp1, 

Enrichment ratio=9.2) was enriched in the epithelium, consistent with its known staining 

pattern in the lens and its function in regulating water permeability in the lens (Schey et al., 

2017). In contrast to earlier studies of lens membrane proteins (Bassnett et al., 2009; Grey et 

al., 2013; Petrova et al., 2015), aquaporin 5 (Aqp5) was not detected in current samples, 

which was consistent with its low expression levels in our RNA-seq data (Zhao et al., 2018) 

using CD1 mice as well as previously published RNA-seq data using FVB mice (Hoang et 

al., 2014).

Consistent with previous work, other top fiber-cell-enriched proteins included gap junction 

protein 3 (Gja3, connexin 46, Enrichment score=6.1) (Gong et al., 1997), gap junction 

protein 8 (Gja8, connexin 50, Enrichment score=3.2) (Graw, 2009; Rong et al., 2002; Wang 

et al., 2016), griffin (Enrichment score=4.0) (Ogden et al., 1998), brain acid soluble protein 

1 (Basp1, Enrichment score=2.6) (Bagchi et al., 2008; Wenke et al., 2016), calcium regulator 

Slc3a2 (Enrichment score=1.5) (Bassnett et al., 2009), and glucose transporter Slc2a1 

(Glut1, Enrichment score=3.0) (Swarup et al., 2018). Connexins 46 and 50 were highly 

expressed in lens fiber cells and were required for lens transparency and growth (Gong et al., 

2007). These proteins formed important large gap junction plaques between lens fiber cells 

to facilitate the outflow pathway of the lens microcirculatory pathway (Cheng et al., 2015; 

Mathias et al., 2010).

The most notable differences in cell adhesion molecules were epithelium-preferred 

fibronectin 1 (Fn1, Enrichment score=9.1) (Hayes et al., 2012) and neural cell adhesion 1 

(Ncam1, Enrichment score=2.8) (Bassnett et al., 2009). In contrast, armadillo repeat gene 

deleted in velocardifacial syndrome (Arvcf, Enrichment score=2.5 (Bassnett et al., 2009; 
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Wistow et al., 2002), α2-catenin (Ctnna2, Enrichment score=5.0 (Bassnett et al., 2009), and 

neuronal cell adhesion molecule (Nrcam, Enrichment score=6.7 (More et al., 2001), were 

more prominent in the fiber cell proteome (Table S1). In terms of membrane remodeling, our 

data pointed to a much lower ranking of basigin (Bsg, Enrichment score=4.9), vesicle-

associated membrane protein 2 (Vamp2, Enrichment score=1.8), aquaporin-1 (Aqp1, 

Enrichment score=9.2), and carbonic anhydrase 14 (Ca14, Enrichment score=4.1) in fiber 

cell vs epithelial cell proteome pointing to their important functions in the lens epithelial 

cells. Recent studies outside of lens showed that basigin is an integral partner of plasma 

membrane Ca2+-ATPases, key regulators of Ca2+ signaling (Schmidt et al., 2017), and 

Vamp2 is a component of synaptic vesicles (Lou et al., 2017). While no specific role of 

Ca14 is known in the lens, fluid transport is critical for maintenance of lens homeostasis 

(Mathias et al., 2010; Paterson and Delamere, 2004).

3.7 Analysis of ribosomal subunits and translational system

Lens fiber cell differentiation requires robust production of high-quality proteins that are 

essential for refractive index and transparency. Since degradation of fiber cell nuclei and 

endoplasmic reticulum during cell maturation imposed additional restrictions on the 

translational system, we examined the distribution of individual ribosomal proteins 

(Yoshihama et al., 2002) amongst the top 525 proteins between lens epithelium and lens 

fibers (Fig. 9). We found that several ribosomal subunits, including Rps10, Rpl23a, Rps3a, 

Rps16, Rpl13, Rpl7a, Rps25, Rpl18a, Rpl36, Rpl10, Rpl10l, and Rps12 (Enrichment scores 

range from 2.0 to 11.8), were enriched in the fiber cell proteome. In contrast, the lens 

epithelium showed more abundant Rps27a and Rps27l (Enrichment score=3.1 and 3.5, 

respectively). Rps27a is produced as an N-terminal ubiquitin and C-terminal small 

ribosomal protein fusion (Redman and Rechsteiner, 1989), and Rps27l is 96% identical to 

Rps27 and also plays a regulatory role in apoptosis (He and Sun, 2007). These findings 

raised the intriguing possibility that both lens compartments employed specialized 

ribosomes (Briggs and Dinman, 2017) that optimally produce crystallins and other abundant 

lens proteins. Importantly, reduced expression of RPL7A, RPL13A, RPL15, and RPL21 

were found in human age-related cataract samples (Zhang et al., 2002) supporting the idea 

that specialized ribosomes indeed function in the lens.

Twenty initiation factors of translation, subunits of the eIF1-eIF6 complexes (Enrichment 

ratios range from 1.2 to 3.4), were ranked within the top 525 proteins and also showed 

notable differences between lens epithelium and fibers (Fig. 7, Table S1). The common trend 

was an increased abundance of 10 of these subunits in the fibers to support the translational 

machinery (Fig. 7). Interestingly, the 3’-UTRs of multiple crystallin-mRNAs in zebrafish 

were recognized by a subunit eIF3h (Choudhuri et al., 2013) which was found outside of the 

top 525 group (rank #1,660 in epithelium and #1,188 in fiber proteomes, respectively). On 

the other hand, there was a preference to express the “non-core” subunits (Hinnebusch, 

2006; Siridechadilok et al., 2005), including eIF3k, eIF3f, eIF3l, eIF3m, and eIF3d 

(Enrichment ratios range from 1.4 to 3.4), in lens fibers. Both translation and transcript 

stability are regulated by fiber cell-enriched eIF4e (Enrichment ratio=2.1), Pabpc1 and 

Pabpc6 (Enrichment ratio=2.4), and Eif3g (Enrichment ratio=2.0). These proteins form the 

“mRNA closed loop” structure together that regulates both translation and mRNA stability 
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(Jackson et al., 2010). It is thus possible that these fiber-enriched subunits control translation 

of crystallins and other abundant mRNAs in lens fibers and that many proteins discussed 

earlier in section 3.4 are also involved in mRNA translation and stability.

3.8 Lens epithelial and fiber cell phenotypes

Systematic analysis of all proteins, RNAs, and other molecules that collectively contribute to 

specific cell types is challenging due to natural complexity of individual tissues; 

nevertheless, it is now becoming feasible due to advances in methods applicable at single 

cell levels (Buenrostro et al., 2015; Macosko et al., 2015). Vectors of cellular identity as well 

underlying organization of the chromatin and nuclei have to be identified (Wagner et al., 

2016). While we have excellent lens-specific markers, including crystallins, filensin, Lim2, 

Mip, and phakinin, additional proteins need to be identified for specific stages and 

subcellular compartments of the developing and mature lens.

Lens formation can be viewed as a series of cell fate decisions including the formation of 

lens progenitor cells, precursor cells, nascent epithelium and fibers, and, finally, mature 

epithelium and fibers. Nevertheless, different populations of cells exist within these 

compartments, such as quiescent anterior vs. proliferative equatorial epithelial cells and 

fibers at different stages of differentiation and maturation before and after organelle 

degradation (Bassnett and Sikic, 2017; Cvekl and Ashery-Padan, 2014). Unfortunately, with 

micro-dissection method, we could not resolve the proteome changes during epithelial cell 

division and fiber cell organelle degradation. Additionally, due to the sonication and tissue 

grinding, some membrane proteins might not be detected as described above. However, our 

data provided novel insights into the abundance of lens structural proteins between lens 

epithelium and fibers, and expression of these genes can be traced back during the formation 

of lens progenitor cells to understand their presumptive heterogeneity and plasticity. For 

example, two enzymes, Aldh1a1 and Eno1, were amongst the top 10 most highly expressed 

proteins in the lens epithelium and it will be interesting to track their expression during the 

earliest stages of lens cell formation. High expression of αA-, βB3-, and αB-crystallins in 

newborn lens epithelium correlated with their early expression in the lens placodes (Huang 

et al., 2011; Wolf et al., 2013). Comparative analysis of their mRNAs together with DNA-

binding transcription factors at single cell level will generate new testable hypotheses to 

reconstruct gene regulatory networks underlying early stages of lens induction. Likewise, 

transcriptional regulation of lens fiber-enriched non-crystallin encoding genes remains in its 

infancy, and current data will assist in prioritization of these studies. Finally, functions of 

numerous abundant proteins in lens fibers, including α4-actinin (Actn4), coactosin-like 

protein (Cotl1), α-and β-spectrins, protein S100A4, plectin (Plec), Pdlim1, and others, 

remain unknown or poorly understood. The enrichment analysis also revealed new markers 

for epithelial vs. fiber cells that will be important benchmarks for in vitro lens-like organoid 

cultures to verify segregated cell populations that mimic lens development.

4. Conclusion

The present study is the first combined analysis of unique lens epithelial and lens fibers 

proteomes and transcriptomes. We show that analysis of as few as 525 most abundant 
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proteins within each lens compartment generated novel information regarding critical 

processes involved in lens formation and was linked to distinct cellular and molecular 

organization of lens epithelial and lens fiber cells. These lens proteins can be grouped into 

eight groups, including nucleus and DNA, protein synthesis, membrane, cytoskeleton, 

signaling, mitochondria, degradation and recycling, and metabolism. Although the functions 

of a number of these proteins are already known in the lens, functions of the majority of 

these proteins in the lens remain unknown. Quantitative analysis of individual proteins with 

unknown roles in the lens together with their roles outside of the lens provides a clear 

rationale to prioritize the follow-up studies including analysis of subcellular localization, 

interactions between proteins and DNA/RNA polymers, and mapping of protein-protein 

interactions.

Although the proteomics data are from three large-scale analyses of pooled lens epithelium, 

lens fibers, and whole lens performed without replication, the reproducibility of these 

experiments are supported by the parallel analyses of transcriptomes by RNA-seq conducted 

in triplicate, by comparison of the whole lens proteome to each region of the lens, and by 

analyses using the top abundance ranked proteins. Future studies are planned to directly 

address reproducibility, including duplicate analysis of lenses from C57Bl6 and FVB strains 

with stable isotope labeling (tandem mass tagging) to determine biological and technical 

variation. The full proteomics results and datasets produced in this study provide additional 

opportunities to explore the 4,000 lens proteins that were not discussed in detail here. It is 

important to point out that several well-known lens membrane proteins such as E-cadherin 

(Cdh1), Ephrin-B2 (Efnb2), Ephrin-A5 (Epha5), Ephrin type-B receptor 2 (Ephb2), and gap 

junction α−1 protein/connexin 43 (Gja1), were likely found outside of the top 525 most 

abundant proteins due to the experimental limitations.

Our study took a conservative approach to explore relationships between mRNA expression 

and protein expression levels; nevertheless, lens crystallins showed a high correlation 

between their mRNA and protein levels. Changes in protein ranking between lens epithelium 

and lens fibers supported a model of proteome remodeling that drives lens fiber cell 

morphogenesis and resulting intricate microarchitecture of lens fiber cells. Taken together, 

this work identified and prioritized proteins for future lens localization, protein-protein 

interactions, and functional studies to understand their roles in lens morphogenesis, protein 

synthesis quality control, and transparency.
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Abbreviations:

eIFs elongation initiation factors

ECM extracellular matrix proteins

GO Gene Ontology

2D-LC/MS tandem mass spectrometry
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Highlights:

• First comparative analysis of mouse lens proteomes and transcriptomes

• Reveals quantitative differences in proteins found in lens epithelium and lens 

fibers

• Identifies fiber cell enriched protein components of the translational system

• Evidence for proteome remodeling in differentiating lens fiber cells

• Data source for prioritizing protein candidates for functional studies
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Fig. 1. Global analysis of P0.5 mouse lens epithelial and lens fiber proteomes.
(A) Venn diagram to compare proteomes of lens epithelium and lens fibers. (B) Saturation 

analysis as a function of relative abundance rank of individual proteins.
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Fig. 2. Cellular process and cell compartment analysis of top 525 most abundant proteins 
comprising the lens epithelial and lens fiber proteomes.
(A) Epithelium data/pie diagram. (B) Fiber cell data/pie diagram. The inner functional 

categories are the 26 lens terms. The annotations in the outer layer are the 8 (not including 

“no annotation” [?]) larger functional groups. Manually curated functional annotations of 

individual proteins were chosen based on known lens biology.
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Fig. 3. Relationship of mRNA and protein abundances.
(A) A plot of the Spearman’s correlation coefficients computed for the top ranked proteins, 

sorted by decreasing relative abundance, for fiber (red) cells and epithelium (blue) cells. (B, 

C) Scatter plots of the correlation between protein and mRNA levels for epithelium (B) and 

lens fibers (C). Crystallins are labeled green and non crystallins are labeled blue and red for 

lens epithelium and fiber respectively. The Spearman’s correlation coefficients shown are for 

non-crystallin proteins. (D) Correlation between protein and mRNA levels of 15 crystallins 

in epithelium (blue) and fiber (red). The protein and mRNA levels are calculated as 

described in the Materials and Methods section 2.5, and plotted here in log2 transformation.
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Fig. 4. Expression profiles of 15 individual crystallin genes by RNA-Seq.
The graphs illustrate that expressions of most crystallins in lens fibers (red) increased from 

E14.5 to P0.5. The expression in epithelium (blue) is also shown. The “*” indicates adjusted 

p value (by Benjamini-Hochberg method) <0.05.
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Fig. 5. Proteomic analysis of DNA-binding transcription factors.
The graph shows three groups of transcription factors: found in both lens compartments 

(grey), only in lens epithelium (blue), and only in lens fibers (red). Transcription factors 

studied by loss-of-function studies and regulating lens formation are boxed.
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Fig. 6. Immunofluorescence analysis of expression of Carhsp1 in mouse lens.
Immunostaining for Carhsp1 (green), F-actin (red) and DAPI (nuclei, blue) in P0.5 CD1 

mouse lens sections. Low magnification images show Carhsp1 is expressed in both lens 

epithelium and fiber. High magnification images demonstrate Carhsp1 is mostly found in the 

nuclei at lens epithelial as well as periphery fiber cells (see yellow arrows) while in the 

cytoplasm (see yellow chevrons) at anterior (apical) portions of fiber cells. Yellow boxes 

were used to indicate the positions of high magnification images, including epithelium, 
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fibers position a (periphery fiber cells), and fibers position b (anterior/apical fiber cells). 

Scale bars: 100 µm (low magnification, top panels) and 20 µm (high mag, lower panels).
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Fig. 7. Proteomic analysis of RNA-binding, microtubule, cytoskeletal, membrane and initiation 
factor proteins.
(A). Pie charts show numbers of epithelium-, fiber- and not enriched proteins inside each 

group. (B). The table shows the enriched and not enriched proteins alphabetically listed 

inside each group.
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Fig. 8. Immunofluorescence analysis of expression of Myh9 and Sptb in mouse lens sections.
A) Immunostaining for Myh9 (green), F-actin (red) and DAPI (nuclei, blue) in P0.5 CD1 

mouse lens sections. Low magnification (10X) images show that Myh9 is expressed mostly 

in lens epithelial cells (see yellow arrows). High magnification (60X) images demonstrate 

the Myh9 is highly concentrated at the apical-apical interface between lens epithelial and 

fiber cells (see yellow arrows). B) Immunostaining for β2-spectrin (green), F-actin (red) and 

DAPI (blue) in mouse lens sections reveals that β2-spectrin is highly expressed in lens fiber 

cells (see yellow arrows) with low signal in lens epithelial cells (see yellow chevrons). 

Zhao et al. Page 34

Exp Eye Res. Author manuscript; available in PMC 2020 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Yellow boxes were used to indicate the positions of high magnification images. Scale bars: 

100 µm (low magnification, top panels) and 20 µm (high mag, lower panels).
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Fig. 9. Proteomic analysis of small and large ribosomal subunits.
Ribosomal protein ranks in lens epithelium and lens fiber are shown. A small ribosome 40S 

subunit, Rps; a large ribosome 60S subunit, Rpl.
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