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Abstract

There has arisen a considerable body of research addressing the estimation of association between 

paired failure times in the presence of competing risks. In a 2002 paper, Bandeen-Roche and Liang 

proposed the conditional cause-specific hazard ratio (CCSHR) as a measure of this association and 

a parametric method by which to estimate it. The method features an interpretable decomposition 

of the CCSHR into factors describing the association between a pair’s times to first failure among 

multiple failure causes and the association in pair members’ propensities to fail due to a common 

cause. There were indications of sensitivity to model assumptions, however, in the 2002 work. 

Here we report a detailed study of the method’s sensitivity to its parametric assumptions. We 

conclude that the method’s performance is most sensitive to mis-specification of temporality in the 

association between pair members’ first-failure times and of correlation between propensity to fail 

early or late and the propensity to fail of a specific cause. Implications for methods development 

are highlighted.
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1 Introduction

Until recent decades, research on survival analysis mostly concerned univariate data, with 

observations assumed to be independent. In many modern studies, however, data of interest 

contain observations that are clustered and so may be associated. Characterizing failure time 

associations may sometimes then be of direct interest. Addressing this, multivariate survival 

function estimators have been developed by Dabrowska (1988) [11], Pruitt (1991) [16], 

Prentice and Cai (1992) [15], van der Laan (1996) [13], and Prentice (2014) [14]. Their 

implementation and the functions’ interpretation, however, may be complex. Employing a 

simple summary measure of dependence structure can ameliorate this problem. Along these 

lines, Clayton (1978) [10] suggested representing the dependence structure as a ‘cross’ (or 
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conditional) hazard ratio. When generalized to vary with time, this quantity is defined as 

follows:

θ t1, t2 =
λ(t2 |T1 = t1)
λ(t2 |T1 > t1) =

f (t1, t2) · S(t1, t2)
∂S(s1, t2)

∂s1 s1 = t1
·

∂S(t1, s2)
∂s2 s2 = t2

. (1)

It can be interpreted as the ratio comparing an individual’s hazard of failure at t2 given 

failiure of his pair partner at t1 to the hazard given that the partner has not yet failed by t1.

Multivariate survival analysis may have particular benefits to offer in re-search involving 

competing risks. Most such research has focused on the uni-variate setting in which only one 

type of failure may be observed per sampling unit. Multivariate survival analysis with 

competing risks informs the study of relationships among failure types in ways univariate 

analysis cannot, because multiple failure types may be observed in a cluster. Among many 

available measures of association in the competing risks setting (e.g. Cheng, Fine & 

Korosok, 2007, 2009 [8] [9]; Scheike et al., 2010 [18]), this paper focuses on the modified 

conditional hazard ratio, and a parametric model and estimator for this, proposed by 

Bandeen-Roche and Liang (2002) [3]. Bandeen-Roche and Ning (2008) [4] developed a 

nonparametric estimator of the modified conditional hazard ratio and proved its 

distributional properties; Cheng, Fine and Bandeen-Roche (2010) [7] extended it to 

exchangeable data in which the cluster size may be greater than two. Gorfine and Hsu 

(2011) [12] suggested a frailty-based conditional regression model in which the frailty 

processes have general distributional structure, and which subsumes the Bandeen-Roche and 

Liang parametric model as a special case.

The parametric model of Bandeen-Roche and Liang (2002) has an appeal-ing feature that is 

not shared by the nonparametric approaches to estimation of the modified conditional hazard 

ratio, nor is retained in the Gorfine and Hsu (2011) formulation: a conceptually intuitive 

decomposition of failure time associations into ‘size’ and ‘shape’ components. To explicate 

the idea, consider two failure causes: onset of a given disease, or death. The ‘size’ 

component governs clustering between times to earliest failure from any cause - either 

disease onset or death. It does this through cluster-specific frailties that multiply the overall, 

population failure hazard. The ‘shape’ component governs clustering in the tendency to fail 

preferentially from certain causes as opposed to others. It does this through cluster-specific 

compositional frailty processes (time-varying vectors of proportions) that generate cause-

specific hazards by multiplying the overall cluster hazard. Such a decomposition opens 

prospects for distinguishing shared genetic or environmental in uences that predispose faster 

overall health declines from those that speed or delay some diseases as opposed to others. 

The methodology was never pursued beyond the 2002 paper, however, because it performed 

badly in simulation scenarios in which its underlying assumptions were replaced by 

alternative reasonable assumptions. Our goal herein is to better understand the source of this 

sensitivity, with an eye to correcting it.

Kim and Bandeen-Roche Page 2

Lifetime Data Anal. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The remainder of this paper proceeds as follows. Section 2 introduces notation and relevant 

background. Section 3 investigates sensitivity to one of the methodology’s major 

assumptions: Dirichlet distribution of the shape frailty. We study the behavior of the 

estimator when the data are generated from a logit-normal distribution and also investigate 

the potential influence of mis-specified size frailty. Section 4 investigates the second major 

assumption: that size and shape frailty variables are statistically independent. Both 

investigations employed simulation studies. Section 5 concludes.

2 Background and Motivation

2.1 Notation

We consider a simple setting in which the data are independently and identically distributed 

across clusters, there are two types of competing risks, and there are two units per cluster 

(pairs). For members j = 1, 2 of a given pair (subscript i tracking pairs suppressed for the 

time being), let Tj1 denote the failure time of interest and Tj2 the failure time for the 

competing risk, with respective hazard functions λ1(t) and λ2(t). Then the time of the first 

failure is Xj = Tj1 ∧ Tj2; if events truly are competing, only Xj is observable, whereas for 

semicompeting risks Tj1 and Tj2 both may be observed in certain instances. The data also 

includes a failure type indicator Kj which is 1 when Xj = Tj1 and 2 when Xj = Tj2. For now 

we treat the data as fully observed; later we introduce the possibility of censoring 

independent of the occurrence of both types of risks.

2.2 The conditional cause-specific hazard ratio (CCSHR)

The CCSHR compares two instances of the cause-specific hazard - a fundamental quantity 

estimable from observed data in the competing risks setting. In the univariate setting, the 

cause-specific hazard is defined as λk(x) = limh↓0 Pr (x ≤ X < x + h, K = k|X ≥ x)/h, and 

λi,k(x) denotes the i-th individual’s cause-specific hazard. Its generalization to the bivariate 

setting is given by λ(k1,k2)(x1, x2) = lim(h1,h2)↓0 Pr (x1 ≤ X1 < x1 + h1, K1 = k1, x2 ≤ X2 < x2 

+ h2, K2 = k2|X1 ≥ x1, X2 ≥ x2)/(h1h2); Bandeen-Roche and Liang (2002) considered a 

corresponding joint density for the failure times and causes, given by f(x1, x2, k1, k2) = 

lim(h1,h2)↓0 Pr(x1 ≤ X1 ≤ x1 + h1, x2 ≤ X2 ≤ x2 + h2, K1 = k1, K2 = k2)/(h1h2). Then, the 

conditional cause-specific hazard ratio (CCSHR) may be defined as

θCS x1, x2; k1, k2 =
λ1, k1

(x1 X2 = x2, K2 = k2)

λ1, k1
(x1 X2 > x2)

=
S(x1, x2) f (x1, x2; k1, k2)

{∫ x2
∞ ∑k = 1

2 f (x1, x, k1, k)dx} {∫ x1
∞ ∑k = 1

2 f (x, x2, k, k2)dx}
,

(2)

where S(x1, x2) denotes the joint survival function. Roughly it is the factor by which an 

individual’s risk of failure at x1 due to cause k1 is changed if his pair partner fails at x2 due 

to cause k2 versus has not yet failed at all by x2. It generalizes the conditional hazard ratio 

which has similar definition as in (2), only omitting all references to causes k.
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2.3 A parametric model for the CCSHR

The model we seek to study is grounded in the frailty modeling (Vaupel et al., 1979 [21]). A 

frailty variable, A, is an unobserved random effect that multiplicatively modifies the hazard 

function of an individual, or of related individuals. Taking G as the frailty distribution and a 
as a generic realization, the bivariate survival function can be expressed as follows:

S(x1, x2) = ∫ {∏ j = 1
2 S j*(x j)}

a
dG a = ∫ exp{−a∑ j = 1

2 ∫ 0
x jλ j*(x)dx}dG(a),

where S j*(x j) are survival functions and λ j*(x j) are corresponding hazard functions conditional 

on A = 1 (henceforth, ‘reference’ survival or hazard functions). The conditional hazard ratio 

defined in Equation (1) then can be represented in terms of A and λ j* as

θ(x1, x2) =
E[A2exp{−A∑ j = 1

2 ∫ 0
x jλ j*(t)dt}]E[exp{−A∑ j = 1

2 ∫ 0
x jλ j*(t)dt}]

E2[Aexp{−A∑ j = 1
2 ∫ 0

x jλ j*(t)dt}]
(3)

.

Importantly for what follows, the survival function for each j-th pair member conditional on 

A = a is S j*(x j)
a, and the corresponding hazard function is

λ j(x j | A = a) = aλ j*(x j) (4)

.

To represent the CCSHR, Bandeen-Roche and Liang observed that because the overall 

failure hazard is the sum of cause-specific hazards λ(x) = λ1(x) + λ2(x), the cause-specific 

hazard can be written as a proportion Rk(x) of the overall hazard, λk(x) = Rk(x)λ(x) with 

Rk(x) = λk(x)/λ(x), k = 1, 2. To characterize a hazard specific to both pair and cause k, then, 

they proposed to modify the right-hand side of (4) by multiplying the frailty for overall 

failure, A, by a proportional shape frailty vector B(x) = {B1(x), B2(x)} having mean function 

{R1(x), R2(x)}. This yields

λ jk(x j | A = a, B(x j) = b(x j)) = abk(x j)λ j*(x j) (5)

where ∑k bk(x j) = 1. Conceptually, A amplifies or diminishes a pair’s tendency to fail early, 

regardless of cause, and B(x) tailors the pair’s allocation of the overall hazard to the 

respective causes.
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To develop an estimator for the CCSHR, Bandeen-Roche and Liang imposed two 

assumptions upon (5): Dirichlet distribution of the shape frailty B(x), and independence 

between the size frailty A and the shape frailty B(x). With the independence assumption, the 

CCSHR for causes k1 and k2 becomes

E{Bk1
(x1)Bk2

(x2)}
E{Bk1

(x1)}E{Bk2
(x2)} × θ(x1, x2) . (6)

If B(x) has Dirichlet distribution with parameter δ(x) and mean function R(x) and we set 

δ(x) = ΔR(x), the first multiplicand becomes

1 − 1
Δ + 1

Rk1
(x1 ∧ x2) − 1

Rk1(x1 ∧ x2)

I(k1 = k2)

. (7)

Here, Rk1(x1 ∧ x2) can be estimated by a nonparametric method reported in a separate paper 

by the authors, or by a method explained in Appendix I of Bandeen-Roche and Liang (2002) 

when the term is assumed to be time-invariant. The parameter Δ can be estimated by solving 

the score equation (15) in Bandeen-Roche and Liang paper. The second multiplicand is the 

conditional hazard ratio for the frailty model without competing risks. The first and second 

multiplicands have interpretations as association in failure causes and in times to first failure, 

respectively. The distributional assumptions yield convenient estimators.

Notwithstanding these advantages, prior studies have suggested that estimators employing 

(6) and (7) may be sensitive to assumptions made. In the next two sections we study this 

issue seeking means to ameliorate the sensitivity.

3 Sensitivity to assumption 1: Dirichlet distribution of shape frailty

To evaluate the sensitivity of the Bandeen-Roche and Liang (2002) parametric estimator just 

described (henceforth, BRL estimator) to the Dirichlet distribution assumption, a natural 

comparator is one incorporating a logit-normal distribution instead. In this section, we 

propose an estimator based on logitnormal-distributed shape frailty and then compare the 

performance of the two estimators for simulated data sets in which the shape frailty has 

Dirichlet versus logit-normal distribution. Additionally, we repeated simulation scenarios in 

which the underlying assumptions of the BRL framework were replaced by alternative 

reasonable assumptions, but revisited estimation not only of the shape frailty component of 

our model but also the size frailty component – a source of sensitivity not considered in the 

2002 paper.

3.1 Introduction of distributions to be studied

The Dirichlet distribution is frequently used to model vectors of multivariate proportions, W, 

which sum to one (i.e. ‘compositional’ data). Thus it is suited to allocate proportions of 
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hazards of the various failure types to the overall hazard. It has density 

Γ(α)
∏k = 1

K Γ(αk)
∏k = 1

K wk
αk − 1

 where α = Σk = 1
K αk, E(Wk) = αk

α  and Var(Wk) =
αk(α − αk)

α2(α + 1)
. [1] 

It arises intuitively by dividing a collection of ‘amounts’ by their sum when the amounts are 

mutually independent, and the proportions resulting from dividing the amounts by their sum 

are independent of the sum, or when the amounts are independent gamma random variables 

with common scale, or in certain cases when amounts are positively correlated. [5] In the 

failure time context, if disease A and disease B arise independently within families, and the 

type of failure that occurs first is independent of the total propensity to fail, then the 

assumptions of the Dirichlet distribution are satis ed. If diseases A and B have a common 

cause, these assumptions are likely to be violated because the propensities to fail from two 

diseases are correlated. Moreover, the Dirichlet distribution constrains the covariance 

between any pair of proportions to be negative. If there are only two types of failures (i.e. a 

single proportion and its difference from one to be modeled), the Dirichlet distribution 

reduces to the beta distribution.

The logit-normal distribution is a primary alternative to the Dirichlet for modeling 

compositional data. [2] Suppose that a (K – 1)-dimensional random vector Y follows a 

multivariate normal distribution NK − 1(μ, Σ) over ℝK − 1. Then W with 

W j =
exp(Y j)

1 + ∑k = 1
K − 1exp(Yk)

, j = 1, ⋯, K − 1 and WK = 1 − ∑k = 1
K − 1Wk define the logit-normal 

distribution of dimension K. The associated density function is given by 

2πΣ
− 1

2 ∏k = 1
K Wk

−1
exp[− 1

2 log(W−K /WK) − μ TΣ−1 log(W−K /WK) − μ ] where 

W−K = (W1, ⋯, WK − 1). The logit-normal distribution has 1
2 (K − 1)(K + 2) parameters 

compared with only K parameters for the Dirichlet distribution; in fact, a suitably chosen 

logit-normal can closely approximate any Dirichlet. It relaxes some of the assumptions 

underlying the Dirichlet class, for example independence of the bases, making it a 

worthwhile choice for further study.

Following on the 2002 paper by Bandeen-Roche and Liang, we proceed to study the case of 

two competing causes.

3.2 Methods

We began by implementing a maximum likelihood estimator for the parameters of a logit-

normal shape distribution in the BRL framework, assuming that Bj(x) = Bj for all x. The 

likelihood function for hazard and frailty quantities based on a sample of pairs i = 1, …, n is 

given by

∏
i = 1

n
E BKi1

(xi1)BKi2
(xi2) E[A2λ1*(xi1)λ2*(xi2)exp{−A ∑

m = 1

2 ∫
0

xim
λm*(t)dt}] (8)
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(Bandeen-Roche and Liang, 2002). Additionally assuming size and shape independence 

factorizes this into quantities involvinng only the shape frailty distribution versus only the 

reference hazard and size frailty distribution. Inference for the pair-specific hazards and size 

frailty can be accomplished by existing methods such as Shih and Louis (1995). [19] 

Inference for the shape frailty involves only the first multiplicand of Equation (8), taking the 

likelihood function for the logit-normal parameters proprotional to

∏
i ∈ I1

E(B1(x)B1(x)) ∏
i ∈ I3

E(B1(x)B2(x)) ∏
i ∈ I2

E(B2(x)B2(x))

= ∏
i ∈ I1

E(B2) ∏
i ∈ I3

E(B(1 − B)) ∏
i ∈ I2

E((1 − B)2)

= ∏
i ∈ I1

E exp(2Y)
(1 + exp(Y))2 ∏

i ∈ I3

E exp(Y)
(1 + exp(Y))2 ∏

i ∈ I2

E 1
(1 + exp(Y))2

(9)

where Y is a normal, and B, a logit-normal, random variable, and I1, I2, and I3 refer 

respectively to sets of pairs whose members both fail of cause 1, both fail of cause 2, and fail 

of different causes. Then the log-likelihood is

n1log∫
−∞

∞ exp 2y
1 + exp y 2

1
2πσ

exp − y − μ 2

2σ2 dy

+n3log∫
−∞

∞ exp y
1 + exp y 2

1
2πσ

exp − y − μ 2

2σ2 dy

+n2log∫
−∞

∞ 1
1 + exp y 2

1
2πσ

exp − y − μ 2

2σ2 dy

(10)

where μ and σ are the mean and standard deviation of the logit, n1 is the number of pairs 

whose members both fail due to cause 1, n2 is the number of pairs whose members both fail 

due to cause 2, and n3 is the pairs whose members fail of different causes. For improved 

numerical stability, we replaced the standard deviation σ with exp(log(σ)) and then 

estimated log(σ). The values of μ and log(σ) that maximize the log-likelihood function were 

obtained using the ‘optim’ function with L-BFGS-B method in the R Statistical Software 

package.

When we have censored observations, we can still use the same likelihood function to 

estimate μ and σ. First, we count the number of pairs whose members both fail due to cause 

1, both fail due to cause 2, and fail of different causes among pairs in which both members 

are observed to fail. Using the proportional frequencies of these three groups of pairs, we 

can get imputed frequencies of three groups for singly and doubly censored pairs. Then 

adding the observed and imputed frequencies of pairs gives us n1, n2, and n3. This method is 

described in more detail in Step 1~3 in the Appendix 1 of Bandeen-Roche and Liang (2002).
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A simulation study was conducted to assess the performance of the estimator with logit-

normal shape frailty assumption and the sensitivity of both it and the previously proposed 

Dirichlet-based estimator to violations of their respective distributional assumptions. The 

simulation settings and procedures mimicked those of Bandeen-Roche and Liang (2002). A 

first set of studies assessed the accuracy of the logit-normal parameter estimation. It 

assumed that the pair members’ earliest failure times regardless of cause followed a Clayton 

copula distribution. To create such failure times, we first generated 1,000 replicates of n = 

100 or n = 500 size frailties. ‘A’ drawn independently from a gamma distribution with mean 

= 1 and variance = 1. Per replicate and pair i, we generated two failure times drawn 

independently from an exponential distribution with rate parameter Ai. Next, we allocated 

‘causes’ of failure. Per replicate and pair, we drew shape frailties ‘Bi’ independently from a 

logit-normal distribution with mean of the logit equal to μ and standard deviation of the logit 

equal to σ. Parameters μ = 0, 0.75, and 1.5 and σ = 1 and 3 were varied as true values of the 

logit-normal parameters. The resulting distribution is symmetric when μ = 0 and 

increasingly left skewed as is larger; σ = 1 results in unimodal distributions and σ = 3 results 

in a bi-modal (U-shaped) distribution. In each case, to decide the failure type for each failure 

time in a pair, we generated independent uniformly distributed random numbers and 

compared these to the shape frailties Bi; if an individual’s uniform realization was less than 

or equal to Bi, we assigned cause 1, and otherwise, cause 2. Finally, we estimated μ and σ as 

the values maximizing the log-likelihood equation (10) and then the CCSHR according to 

(6). In the first multiplicand of CCSHR1,1 (between cause 1 and cause 1), E(B2) and E(B) 

were calculated using numerical integration, plugging in the estimated logit-normal 

parameters. The numerical integration was implemented using the ‘integrate’ function in R 

with default settings. [17] The first multiplicand of CCSHR1,2 and CCSHR2,2 can be 

obtained by numerical integration of E B 1 − B
E B E 1 − B  and E((1 − B)2)

E 1 − B 2  respectively. The second 

CCSHR multiplicand is the conditional hazard ratio without competing risks: it was 

obtained using two-stage semiparametric estimation of Shih and Louis (1995) assuming 

Clayton’s copula. [19]

A next set of studies assessed sensitivity of estimators to mis-specified shape distribution, 

within the BRL framework. To assess sensitivity of the original, Dirichlet-based estimator to 

violation of its assumption of distribution for the shape frailty, we applied an estimator 

assuming beta shape distribution (detailed in Section 4.1, Bandeen-Roche and Liang, 2002) 

to the same data as described above. Here, we used maximum likelihood method to estimate 

Dirichlet parameters instead of closed-form formula in their paper. Conversely, to assess 

performance of the logit-normal estimator under a Dirichlet shape assumption, we t both 

estimators to data generated as described earlier in this paragraph except replacing logit-

normal shape frailties with beta frailties, varying the beta parameters as (α, β) = (0.2, 0.8), 

(1, 4), (0.5, 0.5), and (2, 2).

A third set of studies employed a generating mechanism outside of the BRL framework. 

This mechanism imagines a ‘latent’ failure time for each cause of which only the first is 

observed. For each of 1,000 replicates, we first generated n = 500 pairs of ‘cause 1’ (say, 

‘disease’) failure times as exponential conditional on gamma frailties, Ai1, exactly as in the 
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first step of the first set of studies. Then, we independently generated n = 500 pairs of ‘cause 

2’ (say, ‘death’) failure times, also exponential conditional on gamma frailties, Ai2; for each 

individual, we considered the pairwise minimum of the ‘disease’ and ‘death’ failure times as 

the failure time (with associated cause). For both causes the gamma scale parameter was set 

equal to 1. The gamma shape parameter was set equal to 1/(t1 − 1) for ‘disease’ (yielding 

‘marginal’ CHR of t1) and to 1/(t2 − 1) for ‘death’, varying of t1 and t2 as in Table 1. For 

‘disease’ the exponential rate parameters were set to l1 × Ai1 and l2 × Ai1 for the respective 

members of the pair; for ‘death’, they were set equal to l3 × Ai2 and l4 × Ai2. Values of l1, l2, 

l3, and l4 also were varied as in Table 1, for a total of six scenarios. CCSHRs were estimated 

through the same estimation procedures as in the second simulation study (falsely assuming 

data generated according to the Bandeen-Roche and Liang framework).

A fnal set of simulation studies was similar to the third one in all ways with one exception: 

rather than generating cause-specific failure times as expo-nential conditional on the 

pairwise frailty, we generated them to be marginally exponential. Details are provided in the 

Appendix. The gamma, exponential, normal, beta, and uniform random numbers needed for 

the studies just de-scribed were generated using standard R functions.

3.3 Results

The first and second sets of simulation studies addressed the estimation of the logit-normal 

parameters μ and σ (Table 2) and resulting CCSHR (Table 3). The estimator of μ exhibited 

bias at most 5.3% for completely observed data and at most 7.6% for 30% censored data. 

The estimator of σ exhibited bias which increased in absolute value with σ, but bias as a 

percentage of the estimand decreased. For both estimators based on beta and logit-normal 

shape distributions, biases decreased considerably comparing n = 500 to n = 100 and 

increased for 30% censored data compared to complete data. Precision of estimation 

improved substantially for n = 500 compared to n = 100, with standard errors in estimation 

generally smaller by 50% to 60% for both μ and σ. Standard errors for the censored data 

were greater than those for complete data by 35~60% for both μ and σ.

Table 3 compares performance in estimating CCSHR1,1 between procedures based on a 

logit-normal shape distribution and on a beta distribution when the true failure types are 

generated by various parameters of these two distributions. Each column displays mean and 

standard deviation of the CCSHR estimates using estimators based on logit-normal and beta 

distribution respectively. The upper and lower parts of the table show the results when the 

true failure type distribution was beta and logit-normal, respectively. Two estimators 

exhibited bias no greater than 1.2% for complete data and 2.0% for censored data in all 

scenarios except for (α, β) = (0.2, 0.8) scenario where logit-normal based estimator had 

biases of 2.8% and 4.0%, respectively. The coefficient of variation (CV) for CCSHR1,1 was 

no greater than 14.3% for complete data and no greater than 18.9% for censored data, and 

there were little differences between beta-based and logit-normal-based estimators for most 

scenarios. For the most highly skewed scenario, (α, β) = (0.2, 0.8), logit-normal-based 

estimator was less accurate than beta-based one, but also less variable. For all the other 

scenarios, both estimators were highly accurate.

Kim and Bandeen-Roche Page 9

Lifetime Data Anal. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The third set of simulation studies addressed the estimation of CCSHR for failure times 

arising as the pairwise minimum of cause-specific failure times (Table 4). When failure rates 

due to cause 1 equaled those for cause 2 for both pair members (l1 = l3 and l2 = l4; Scenarios 

1 and 2), the bias of CCSHR estimator was very small (<1%). When the cause-specific 

failure rates differed across causes for only one member of the pair (l1 = l3 and l2 ≠ l4; 

Scenarios 3 and 4), the estimator was moderately biased (up to 2.7%). When the cause-

specific hazard rates differed for both pair members (l1 ≠ l3 and l2 ≠ l4; Scenarios 5 and 6), 

the biases inflated further (up to 8.9%). In most of the scenarios, biases in estimating 

CCSHR1,2 were smaller than those of CCSHR1,1. The coefficients of variation of CCSHR1,2 

estimates, however, were greater than those of CCSHR1,1. Beta-based and logit-normal-

based estimators performed similarly in all scenarios.

The fourth set of simulation studies differed from the third set only in the distributions of T1 

and T2 (exponential marginally versus conditionally on the pair frailty; Table 5). We 

observed a pattern of findings quite similar to the third set of studies, however with biases 

that were much more severe. For scenarios in which the strength of association was equal 

across causes (Scenarios 1, 3, and 5), the bias increased with increasing differentiation in the 

cause-specific marginal distributions. (0~10%) For scenarios in which the strength of 

association differed across causes (Scenarios 2, 4, and 6), the estimators were severely 

biased regardless of the marginal distributions. (30~60%) For each estimand, beta- and logit-

normal-based estimators performed similarly. For the beta estimator, this finding replicates 

that in the Bandeen-Roche and Liang (2002) paper.

3.4 Data Analysis: Cache County Study

The estimators considered in the previous subsections were applied to data from the Cache 

County Study on Memory Health and Aging. (Breitner, 1999) This study was conducted to 

investigate the prevalance of dementia in terms of age, education, sex, and APOE genotype. 

To this end, the study collected information on dementia onset from the permanent residents 

of Cache County, Utah, U.S.A., aged 65 and over (the ‘proband’) on themselves and all their 

family members. This data set has been used to illustrate methods related to multivariate 

failure time data. (Bandeen-Roche and Liang, 2002, Bandeen-Roche and Ning, 2008, Cheng 

and Fine, 2008, and Cheng, Fine, and Bandeen-Roche, 2010)

To simplify the analysis, we included data only from the participants’ mother and the eldest 

sibling inclusive of self. This subset has 4,522 pairs of observations, (Xi1, Xi2, Ki1, Ki2), 

where Xi1 is the age of event occurence of the eldest sibling, Xi2 is the event time of the 

mother, and Kij is the event type corresponding to Xij, j = 1, 2. The event type is 0 if the 

subject was censored or not demented at the end of the study, 1 if demented, and 2 if died 

without dementia. We included 3,635 pairs of observations for which some data were 

observed and who had not yet failed due to either cause by age Among these, 1,431 pairs 

had no censored component, that is, both pair members either were demented or died. The 

proportion of data censored was 60.4% among the eldest siblings and 4.0% among mothers. 

Among those expe-riencing events, 13~14 % of participants experienced dementia before 

death. Both members of a pair became demented in 40 pairs, both members died without 

dementia in 1,132 pairs, and the members failed of different causes in pairs.

Kim and Bandeen-Roche Page 10

Lifetime Data Anal. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We aimed to estimate the CCSHR of dementia onset between the child and mother using the 

two methods introduced in the previous sections: the estimators based on the Dirichlet 

distribution and logit-normal distribution. To characterize the variability of the estimates, we 

obtained 95% bootstrap condence intervals: 500 bootstrap samples were generated by 

random selection at the pair level with replacement taking records as vectors of failure times 

and failure cause indicators of both child and mother. For the Dirichlet estimator, the 

CCSHR was 6.81 (different from displayed in the Bandeen-Roche and Liang 2002 paper 

because we used MLE for parameter estimation instead of MME of theirs) with 95% 

confidence interval (6.03, 7.56). For the logit-normal estimator, we obtained CCSHR of 6.89 

with 95% confidence interval (5.99, 7.62). The size component’s estimate was 1.16 with 

95% bootstrap CI (1.09, 1.20). The shape component’s estimate by Dirichlet estimator was 

5.88 with 95% bootstrap CI (5.49, 6.44) and that by logit-normal estimator was 5.92 with 

95% bootstrap CI (5.44, 6.48). This suggests that association between the causes of failure 

contributes most to the excess hazard for a dementia failure given a family member having 

experienced a dementia failure as opposed to remaining alive and dementia free, rather than 

association between times to a first adverse outcome. Commensurate with our simulation 

studies, the two estimators were quite similar.

3.5 Application of Diagnostic to Assess Model Fit

In seeking to understand biases in estimating the CCSHR observed in the 3rd and 

particularly the 4th set of simulations, estimation of the size (second) multiplicand (Equation 

(6)) and not only the shape (fie) multiplicand of the CCSHR must be considered. 

Specifically, even though the dependence between bivariate failure times for each cause 

follows a gamma frailty model where the strength of association does not change over time, 

the dependence in observed failure times (generated as the minimum of cause-specific 

failure times) may not. This was a possibility not considered by Bandeen-Roche and Liang 

in their 2002 paper. We used the diagnostic method of Chen and Bandeen-Roche (2005) [6] 

to assess whether the pairwise minimum retained gamma frailty dependence structure. If so, 

the ‘size’-associated conditional hazard ratio, θ* (S(t1, t2)), should be constant considered as 

a function of the survival function. The results of this diagnostic are displayed in Table 6. 

The numbers in the table are the mean and standard deviation of the CHR (for time to first 

failure) over 200 replicates of simulation studies when the joint survival function is 0, 1/6, 

2/6, 3/6, 4/6, 5/6, and 1, respectively. For Scenarios 2, 4, and 6 of the 4th simulation study in 

which the bias in estimating the CCSHR was most severe (bottom of Table 6), the ratios 

were strikingly non-constant. This implies that the association between the first failure times 

of a pair regardless of cause may not follow gamma frailty dependence structure even 

though the association for the cause-specific failure time does. Thus, both herein and in the 

2002 paper by Bandeen-Roche and Liang, the bias in CCSHR estimation may reflect mis-

specification in estimating its size multiplicand rather than undue sensitivity to the shape 

distributional assumption.

We applied the diagnostic we have just introduced to the Cache County data described in 

Section 3.4: The CHR as a function of joint survival function S(t) ranged from 1.01 to 1.34. 

This calls into question the assumption of a gamma frailty model for the failure times, and 
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supports the non-parametric analyses conducted in the papers by Bandeen-Roche & Liang 

(2002) and Bandeen-Roche and Ning (2008).

4 Sensitivity to assumption 2: Independence of size and shape frailty

The simplicity of the Bandeen-Roche and Liang method becomes possible by assuming that 

the size frailty A and the shape frailty B(x) are statistically independent. This means that the 

overall tendency to fail early or late should not relate to the propensity to fail of a specific 

cause at any time. This assumption allows the CCSHR (Equation (6)) to be decomposed into 

multiplicands which respectively characterize the propensity to fail from a particular cause 

and dependence in the timing of one’s earliest failure regardless of cause.

In this section we evaluate the e ect which the dependence structure between the size and the 

shape frailty has on estimation of the CCSHR when the size frailty A is gamma distributed 

and the shape frailty B(x) is beta distributed. Assuming only the ‘size-shape frailty’ 

framework and not the independence of A and B(x),

θCS x1, x2; k1, k2 =
E A2BK1

x1 BK2
x2 Λ∗ x1, x2 E Λ∗ x1, x2

E ABK1
x1 Λ∗ x1, x2 E ABK2

x2 Λ∗ x1, x2
, (11)

where Λ∗ x1, x2 = exp{−A∑m = 1
2 ∫ 0

xmλm* t dt}. This is Equation (9) in Bandeen-Roche and 

Liang (2002). Equation (10) in this paper,

E BK1
x1 BK2

x2

E BK1
x1 E BK2

x2
×

E A2Λ∗ x1, x2 E Λ∗ x1, x2
E2 AΛ∗ x1, x2

, (12)

on the other hand, decomposes θCS x1, x2; k1, k2  based on the assumption that A and B(x) are 

independent. Thus the effect of the assumption of in-dependence between A and B(x) can be 

assessed by directly comparing the CCSHR calculated by Equation (11) and parametrically 

estimated using Equation (12).

In this section, we will approximate true values of the CCSHR for various degrees of 

dependence between size and shape frailty. Then we compare them with parametric and 

nonparametric estimates of CCSHR.

4.1 Methods

First, we studied the difference between the CCSHR surfaces as functions of t1 and t2 when 

A and B(x) are independent versus dependent. To approximate these surfaces, we generated 

a random sample of 2000 realizations of size frailty A and shape frailty B, with scenario-

specific details to follow shortly. CCSHR1,1, CCSHR1,2, and CCSHR2,2 were obtained using 
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Equation (11), replacing expectations by sample means and using λm* (t) = 1. These CCSHRs 

were evaluated on a grid consisting of Cartesian products of 1st to 99th percentiles of failure 

time points generated from an exponential distribution as in the first set of simulation studies 

in Section 3.

For an independent case, we generated gamma-distributed size frailty A with mean 1 and 

variance 1 and time-invariant, beta-distributed shape frailty B with parameters 0.2 and 0.8 

sampled independently from A. To construct a dependent sample (A*, B*) from A and B, 

we generated a bivariate standard normal-distributed sample with a pre-specified correlation 

value. We obtained ranks within the first components of the bivariate sample and ranks 

within the second components; then we re-ordered A and B yielding A* with the same ranks 

as the first components of the bivariate sample and B* with the second components.

After studying the effect of varying the joint distribution of A and B on the true CCSHR 

values, we evaluated the performance of the Bandeen-Roche and Liang’s parametric and 

nonparametric estimator when A and B are not independent. The parametric estimator of 

CCSHR was obtained by plugging in maximum likelihood estimates of R1 and Δ from the 

beta distribution model into Equation (7). We implemented the time-invariant nonparametric 

estimator of CCSHR described by Bandeen-Roche and Liang (2002) for the CCSHR 

between cause 1 and cause 1. This estimator compares concordances and discordances for 

parings of pairs, where a concordance occurs if both failure times of cause 1 for one pair in 

the pairing are greater than both failure times of cause 1 in the other pair in the pairing, and 

a discordance occurs otherwise. If all four members of a pairing were observed to fail of 

cause 1, then a concordance or discordance can be confirmed. If the smaller observation 

among the first components of the two pairs and the smaller one among the second 

components were observed to fail of cause 1, then we can confirm concordance/discordance 

status since the concordance/discordance among observed or latent cause 1 failure times 

coincides with that among observed (minimum) failure times. On the other hand, either in 

the first components or the second components, if the smaller observation failed of cause 2, 

then we cannot decide whether it is concordant or discordant.

4.2 Results

When A and B are statistically independent, θCS(x1, x2; 1, 1) = 6 for all (x1, x2), and indeed 

our approximation of this function using the method described in the first paragraph of the 

previous section was virtually constant near 6. As the correlation of the bivariate normal 

distribution used to generate dependence between A and B increased, we observed the 

CCSHR to increase throughout the (x1, x2) space (Figure 1), particularly rapidly in the 

upper-right region. Conversely, the CCSHR decreased throughout the (x1, x2) space as the 

correlation decreased below 0. Table 7 displays CCSHR values at three diagonal (x, x) 

points. Our work further indicates that the CCSHR increases with x1 and x2 when A and B 
are positively correlated and decreases with x1 and x2 when A and B are negatively 

correlated(Figure 1). As electronic supplementary material we present CCSHR contour plots 

for various degrees of dependence between A and B.
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Global (time-invariant) estimates of CCSHR1,1 are presented for comparison: the 2nd 

column of Table 8 presents parametric estimates of CCSHR as in Bandeen-Roche and Liang 

(2002), and the 3rd column presents nonparametric estimates of CCSHR1,1. Since the 

parametric estimation does not take the dependence between A and B into consideration, the 

estimates for all correlation values were close to 6, the true value under independence. In 

contrast, the nonparametric estimates of the CCSHR increase as the correlation increases, 

resembling the pattern of underlying values of the CCSHR.

5 Discussion

This paper addressed association among paired failure times subject to a competing risk, as 

defined by conditional cause-specific hazard ratios (CCSHRs), and estimated in the 

parametric framework proposed by Bandeen-Roche and Liang (2002). This framework 

partitions the CCSHR into two factors—one reflecting association between times to earliest 

failure regardless of cause (overall hazard ‘size’) and a second reflecting association 

between the causes of failure (cause allocation ‘shape’). We implemented a new estimator in 

this framework based on a logit-normal shape frailty distribution and compared its 

performance with an existing one based on a beta shape frailty distribution, in data scenarios 

generated from each distribution within the framework as well as scenarios outside the 

framework. We also studied the effect of dependence between overall failure propensity and 

the allocation of this among causes on the CCSHR magnitude and temporal variation, and 

we evaluated the robustness of the Bandeen-Roche and Liang estimator of the CCHSR to 

such dependence. We found little difference in estimator performance between the two 

shape-generating distributions but large implications of dependence between size and shape 

frailty for the magnitude and temporal variation of failure time associations hence for 

estimator performance.

When size and shape were generated independently, both beta- and logit-normal-based 

estimators estimated the CCSHR accurately when data were generated according to the 

Bandeen-Roche and Liang framework, regardless of the underlying shape distribution. When 

data were generated according to models outside the Bandeen-Roche and Liang framework, 

both estimators exhibited biases comparable to those observed in the 2002 paper; however, 

based on our application of diagnostics for model fit, we suspect that this owes primarily to 

mis-modeling of the association in first failure times (‘size’ association) rather than 

sensitivity to the ‘shape’ distributional assumption. We conclude that parametric estimation 

of shape component of CCSHR will adequately estimate the CCSHR in many 

circumstances, provided that association in first failure times is characterized carefully as a 

function of time. The estimator employing a beta distribution assumption was comparably 

accurate and precise as the logit-normal-based estimator, hence we recommend both for 

paired failure-time data.

Independence between the size and shape frailty is a key feature enabling the simplified 

likelihood formulation in the Bandeen-Roche and Liang framework. Dependence in size and 

shape induces a mathematically complex likelihood form as well as a complicated time 

dependence of the resulting CCSHR. It remains to be seen whether a simply estimable, and 

interpretable, methods can be developed to accommodate this scenario. We conjecture that 
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this model is only weakly identi able from one in which independence of size and shape 

frailty is maintained but the overall (‘size’-dependent) association is allowed to vary 

arbitrarily with time. If so, one might retain a parametric estimation of shape component of 

CCSHR together with nonparametric estimation of size component, a flexibly time-varying 

conditional hazard ratio with CC-SHR estimator as a multiplication of shape and size 

components. In such an approach, methods which accommodate estimation of a time 

varying ratio of cause-specific to overall hazard, R(t), within the shape component of 

CCSHR (Equation (7)) may well be needed.

A limitation of our work is that we have only evaluated scenarios with two competing causes 

and two candidate shape distributions. The similarity we observed in estimator performance 

comparing beta and logit-normal models, as well as for generalized beta distributions (data 

not shown), is not surprising because logit-normal and Dirichlet distributions closely 

approximate each other when there are only two categories to be modeled. More substantive 

differences likely would emerge for 3 or more competing causes, because the logit-normal 

distribution admits more exible correlation structures in this case.

We believe there is merit in distinguishing contributions to associations among clustered 

failures of multiple types into shared overall failure risk and shared failure cause 

propensities. Multimorbidity–an important and common setting in which clustered failures 

of multiple types arises–may reflect, both, individuals’ overall vulnerability to physiological 

declines and disease-specific mechanisms (Varadhan et al., 2014 [20]). By partitioning 

disease heritability into these two components, methodology as discussed in this paper could 

inform the etiology of psychiatric disorders, metabolic syndrome, frailty in aging, and other 

medical syndromes. Whether the partitioning proposed here well addresses this goal, or 

alternative means and measures for achieving the goal are needed, frames another area of 

needed work.

A Generation of correlated failure times with marginally exponential distribution

To generate ‘disease’ failure time of the first component of a pair, we generated gamma 

distributed random numbers as in the third set of simulation studies (see methods). Then we 

used the fact that log 1 − log U /A
l1 × t − 1  is exponentially distributed where U is uniformly 

distributed, l1 is the exponential parameter, and A is gamma distributed with a shape 

parameter 1/(t − 1) and a scale parameter 1. The ‘disease’ failure time for the second 

component and the ‘death’ failure times for two components were generate similarly.

To see that this method yields the distributions as claimed, let us consider a univariate frailty 

model with a random effect denoted by α, with distribution G and Laplace transformation 

p(x) = E(e−xα), where the marginal survival function for individual j in the cluster is 

S j(t) = ∫ {S j*(t)}adG(a) . Then, −logS j*(t) = q[S j(t)], that is, S j(t) = p[−logS j*(t)] where q is the 

inverse function of p (See Equation (1) of Bandeen-Roche and Liang (1996)).

For exponential distribution, S j(t) = e−λt and for Claytoncopula, p(u) = (1 + u)
1

1 − θ . Thus,
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e−λT = (1 − logS j*(T))
1

1 − θ

− λT = 1
1 − θ log(1 − logS j*(t))

T = 1
λ(θ − 1)log(1 − logS j*(t))

(13)

For gamma frailty, conditionally on frailty, S j*(T)A is uniformly distributed, thus 

log(S j*(T)) = log(U)/A. Then,

T = 1
1 − θ log 1 − log(U)/A (14)

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Contour plot of log(CCSHR1,1) when the correlation of the bivariate normal distribution 

inducing dependence between A and B (Section 4.1) is 0.4. The horizontal and vertical axes 

are failure time percentiles.
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Table 1

Exponential rate (l) and association (gamma shape-defining; t) parameters for the 3rd and 4th sets of 

simulation studies

Cause 1 Cause 2

Scenario l1 l2 t1 l3 l4 t2

1 2 2 2 2 2 2

2 2 2 2 2 2 4

3 2 2 2 2 3 2

4 2 2 2 2 3 4

5 2 2 2 3 3 2

6 2 2 2 3 3 4

Lifetime Data Anal. Author manuscript; available in PMC 2020 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Bandeen-Roche Page 20

Table 2

Simulation study findings: Performance of ML estimation of logit-normal distribution parameters (Equation 

(10)). Data were generated according to the Bandeen-Roche and Liang parametric model with gamma size 

frailty and logit-normal shape frailty.

Estimates of μ

True values No censoring 30% censoring

µ σ Mean SD Bias Mean SD Bias

0 1 −0.002 0.188 −0.002 −0.001 0.278 −0.001

0 3 −0.003 0.400 −0.003 0.017 0.548 0.017

 n=100 0.75 1 0.770 0.221 0.020 0.789 0.342 0.039

0.75 3 0.778 0.437 0.028 0.801 0.629 0.051

1.5 1 1.537 0.294 0.037 1.585 0.472 0.085

1.5 3 1.579 0.537 0.079 1.614 0.775 0.114

µ σ Mean SD Bias Mean SD Bias

0 1 0.002 0.082 0.002 0.005 0.120 0.005

0 3 0.003 0.170 0.003 0.004 0.245 0.004

 n=500 0.75 1 0.756 0.096 0.006 0.762 0.142 0.012

0.75 3 0.751 0.179 0.001 0.748 0.261 −0.002

1.5 1 1.511 0.127 0.011 1.519 0.186 0.019

1.5 3 1.506 0.218 0.006 1.512 0.306 0.012

Estimates of σ

True values No censoring 30% censoring

µ σ Mean SD Bias Mean SD Bias

0 1 0.998 0.406 −0.002 1.029 0.567 0.029

0 3 3.025 0.657 0.025 3.010 0.903 0.010

n=100 0.75 1 0.997 0.457 −0.003 1.010 0.685 0.010

0.75 3 3.083 0.686 0.083 3.126 0.993 0.126

1.5 1 0.951 0.515 −0.049 0.963 0.737 −0.037

1.5 3 3.120 0.757 0.120 3.146 1.078 0.146

µ σ Mean SD Bias Mean SD Bias

0 1 0.990 0.177 −0.010 0.985 0.260 −0.015

0 3 2.987 0.300 −0.013 2.994 0.430 −0.006

n=500 0.75 1 0.990 0.191 −0.010 0.972 0.292 −0.028

0.75 3 2.991 0.315 −0.009 2.991 0.451 −0.009

1.5 1 0.999 0.214 −0.001 0.980 0.334 −0.020

1.5 3 2.993 0.327 −0.007 2.998 0.477 −0.002
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Table 4

Comparison of the CCSHR estimators based on beta and logit-normal distributions (3rd simulation study); 

Data generated from distributions with CCSHR1,1 = 2 and CCSHR1,2 = 1

CCSHR1,1 CCSHR1,2

Scenario Beta Logit-normal Beta Logit-normal

Mean (SD) Mean (SD) Mean (SD) Mean (SD)

1 2.006 (0.138) 2.001 (0.151) 1.000 (0.084) 1.006 (0.103)

2 2.001 (0.117) 1.993 (0.115) 0.997 (0.099) 1.023 (0.085)

3 2.054 (0.131) 2.054 (0.131) 1.018 (0.092) 1.018 (0.092)

4 2.036 (0.108) 2.029 (0.106) 0.996 (0.099) 1.015 (0.086)

5 2.177 (0.150) 2.177 (0.150) 1.021 (0.086) 1.021 (0.085)

6 2.085 (0.121) 2.077 (0.119) 0.958 (0.094) 0.980 (0.080)

Lifetime Data Anal. Author manuscript; available in PMC 2020 April 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim and Bandeen-Roche Page 23

Table 5

Comparison of the CCSHR estimators based on beta and logit-normal distribu-tions (4th simulation study); 

Data generated from distributions with CCSHR1,1 = 2 and CCSHR1,2 = 1

CCSHR1,1 CCSHR1,2

Scenario Beta Logit-normal Beta Logit-normal

1 2.006 (0.139) 1.999 (0.155) 1.002 (0.080) 1.010 (0.105)

2 2.689 (0.200) 2.682 (0.206) 1.009 (0.097) 1.017 (0.111)

3 2.061 (0.131) 2.061 (0.131) 1.038 (0.084) 1.038 (0.084)

4 2.808 (0.218) 2.806 (0.216) 1.082 (0.099) 1.083 (0.097)

5 2.273 (0.168) 2.273 (0.168) 1.029 (0.085) 1.029 (0.085)

6 3.200 (0.257) 3.194 (0.253) 1.107 (0.099) 1.111 (0.095)
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Table 7

CCSHR1,1 values resulting for three values of (x, x) and various degrees of correlation between A and B

Correlation CCSHR1,1(0.2, 0.2) CCSHR1,1(0.5, 0.5) CCSHR1,1(0.8, 0.8)

1 7.909 20.857 115.207

0.7 7.275 11.992 26.169

0.4 6.640 8.234 12.061

0 5.977 6.074 6.421

−0.5 4.514 3.882 3.213

−1 1.614 1.295 1.315
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Table 8

Comparison of parametric and nonparametric estimates of CCSHR1,1 for various degrees of dependence 

between A and B

Correlation
Parametric Nonparametric

Mean (SD) Mean (SD)

1 5.992 (0.296) 8.150 (0.566)

0.7 6.001 (0.290) 7.871 (0.552)

0.4 6.005 (0.283) 7.266 (0.559)

0 6.000 (0.296) 6.040 (0.505)

−0.5 6.008 (0.299) 3.892 (0.355)

−1 5.994 (0.301) 1.344 (0.14)
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