Table 1.
Paper | Combined Control Signals | Combination Type | Classification | Application | Result |
---|---|---|---|---|---|
Yin et al. (2014) | P300+SSVEP | Sequential | FLDA, BLDA | Object control | Fast and accurate detection of the control state of subject |
Wang et al. (2015) | P300+SSVEP | Sequential | SWLDA | Speller | Increase the classification accuracy |
Bharne et al. (2015) | P300+SSVEP | Simultaneous | SWLDA | Speller | Reduce errors+increase the classification accuracy and ITR |
Panicker et al. (2011) | P300+SSVEP | Simultaneous | SWLDA, CCA | Speller | Increase the classification speed |
Edlinger et al. (2011) | P300+SSVEP | Simultaneous | BLDA, CCA | Target selection | Increase the classification speed |
Yin et al. (2013) | P300+SSVEP | Sequential | LDA | Object control | Increase the classification speed |
Xu et al. (2013) | P300+SSVEP | Simultaneous | SVM-FLDA | Curser movement | Inappropriate speed and ignoring the control state of subject due to system synchronization |
Xu et al. (2013) | P300+SSVEP | Sequential | Kernel FDA, SVM | Object control | Increase the classification accuracy |
Xu et al. (2013) | P300+SSVEP | Sequential | SVM | Object control | Increase the classification accuracy |
Xu et al. (2013) | P300+SSVEP | Simultaneous | LDA, SWLDA | Speller | Increase the classification accuracy and ITR |
Xu et al. (2013) | P300+SSVEP | Sequential | SVM, LDA | Speller | Increase the ITR |
Allison et al. (2010) | SSVEP+ERD | Simultaneous | FLDA | Curser movement | Increase the classification accuracy |
Savić et al. (2011) | SSVEP+ERD | Sequential | LDA | Orthotics control | Decrease the positive error rate |
Brunner et al. (2011) | SSVEP+ERD | Simultaneous | LDA | Curser movement | Increase the classification accuracy and ITR |
Pfurtscheller et al. (2010) | SSVEP+ERD | Sequential | - | Neural prosthesis control | Reduce the time spent |
Allison et al. (2012) | SSVEP+ERD | Simultaneous | LDA | Curser movement | Continuous and simultaneous movement in two dimensions |
Li et al. (2013) | SSVEP+ERD | Simultaneous | LDA | Wheelchair control | Simultaneous control of direction and speed |
Li et al. (2014) | SSVEP+ERD | Simultaneous | SVM | Wheelchair control | Simultaneous set of direction and speed with spend the least possible time and high classification accuracy |
Cao et al. (2014) | SSVEP+ERD | Simultaneous | RBF-SVM | Wheelchair control | Realization of eight control command |
Cao et al. (2014) | SSVEP+ERD | Simultaneous | SVM | Object control | Achieve optimal performance |
Rebsamen et al. (2008) | P300+ERD | Sequential | - | Wheelchair control | To determine and fulfill the stop command |
Long et al. (2012a) | P300+ERD | Simultaneous | LDA | Wheelchair control | Direction and speed control |
Finke et al. (2011) | P300+ERD | Sequential | FDA | Robot control | Providing movement in various dimensions |
Su et al. (2011) | P300+ERD | Simultaneous | SVM, FLDA | Object control | Realization of more complex tasks |
Riechmann et al. (2011) | P300+ERD | Sequential | LDA | Robot control | Robot control |
Riechmann et al. (2011) | P300+ERD | Sequential | LDA | Speller | Increase the classification accuracy and ITR |
Riechmann et al. (2011) | P300+ERD | Sequential | LDA | Speller | Increase the classification accuracy and ITR |
Usakli et al. (2009) | EEG+EOG | Sequential | - | Robot control | Affective robot control |
Riccio et al. (2015) | EEG+EOG | Simultaneous | SVM | Prosthesis control | Increase the classification accuracy |
Riccio et al. (2015) | EEG+EOG | Simultaneous | - | Vigilance estimation | Improve the performance |
Kim et al. (2015) | EEG+Eye Tracker | Sequential | SVM | Curser movement | Increase the ITR |
Kim et al. (2015) | EEG+Eye Tracker | Sequential | LDA | Curser movement | Increase the ITR |
Lin et al. (2015) | EEG+EMG | Simultaneous | - | Speller | Increase the classification accuracy |
Leeb et al. (2011) | EEG+EMG | Sequential | - | Speller | Increase the classification accuracy+ITR and the number of target items |
Riccio et al. (2015) | EEG+EMG | Sequential | - | Speller | Improve the performance and ITR |
Riccio et al. (2015) | EEG+EMG | Simultaneous | CCA | Speller | Increase the classification accuracy+the number of targets and ITR |
Riccio et al. (2015) | EEG+EMG | Simultaneous | LDA | Object control | Increase the classification accuracy |
Riccio et al. (2015) | EEG+EMG | Simultaneous | SVM | Object control | Improve the object control |
Ahn et al. (2013) | EEG+SSSEP | Sequential/Simultaneous | - | Curser movement | Decrease the classification accuracy in simultaneous combination |
Yao et al. (2014a) | EEG+SSSEP | Simultaneous | - | Curser movement | Providing multi-class BCI system |
Yao et al. (2014b) | EEG+SSSEP | Simultaneous | LDA | Object control | Increase the classification accuracy |
Yao et al. (2014a) | EEG+SSSEP | Simultaneous | LDA | Object control | Achieve optimal subjects’ performance |
Khan et al. (2014a) | EEG+NIRS | Simultaneous | - | Wheelchair control | Realization a large number of commands |
Yao et al. (2014b) | EEG+NIRS | Simultaneous | LDA | - | Increase the ITR |
Yao et al. (2014a) | EEG+NIRS | Simultaneous | LDA | - | Provide open access dataset |
Al-Shargie et al. (2016) | EEG+NIRS | Simultaneous | SVM | Stress assessment | Increase the classification accuracy and improve sensitivity and specificity |
SSVEP: Steady-State Visual Evoked Potential; ERD: Event-Related Desynchronization; EEG: Electroencephalogram; EOG: Electrooculogram; EMG: Electromyogram; SSSEP: Steady-State Somatosensory Evoked Potentials; NIRS: Near-Infrared Spectroscopy; and ITR: Information Transfer Rate